JP2591153B2 - Inflatable antenna - Google Patents

Inflatable antenna

Info

Publication number
JP2591153B2
JP2591153B2 JP1111060A JP11106089A JP2591153B2 JP 2591153 B2 JP2591153 B2 JP 2591153B2 JP 1111060 A JP1111060 A JP 1111060A JP 11106089 A JP11106089 A JP 11106089A JP 2591153 B2 JP2591153 B2 JP 2591153B2
Authority
JP
Japan
Prior art keywords
mirror surface
mirror
forming portion
adhesive
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1111060A
Other languages
Japanese (ja)
Other versions
JPH02288704A (en
Inventor
新一 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1111060A priority Critical patent/JP2591153B2/en
Publication of JPH02288704A publication Critical patent/JPH02288704A/en
Application granted granted Critical
Publication of JP2591153B2 publication Critical patent/JP2591153B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Aerials With Secondary Devices (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は宇宙空間において使用される大型,高利得ア
ンテナの構成方法に関するものであり,特に使用周波数
帯において有効な鏡面精度を実現する上で有効であるイ
ンフレータブルアンテナに関する。
Description: TECHNICAL FIELD The present invention relates to a method for constructing a large, high-gain antenna used in outer space, and particularly to realizing an effective mirror surface accuracy in a used frequency band. An effective inflatable antenna.

[従来の技術] 従来,この種のインフレータブルアンテナの技術とし
てはヨーロッパ宇宙機構(ESA)が概念設計を行ったク
ォーサット(Quasat)に搭載予定の宇宙硬化型インフレ
ータブルアンテナがある。このアンテナの外観図を図−
6に,鏡面部分の断面図を図−7に示す。
[Prior Art] Conventionally, as a technology of this kind of inflatable antenna, there is a space hardening type inflatable antenna to be mounted on Quasat, which was conceptually designed by the European Space Agency (ESA). Figure 1 shows the appearance of this antenna.
Fig. 6 shows a sectional view of the mirror surface part.

上述した従来のインフレータブルアンテナは,人工衛
星(クォーサット)を打上げる時に,第6図(b)示す
如くの収納状態とし,宇宙空間の正規軌道上で,第6図
(a)に示す如く展開する方式を採っている。
When launching an artificial satellite (quarsat), the above-mentioned conventional inflatable antenna is placed in a housed state as shown in FIG. 6 (b) and deployed on a normal orbit in space as shown in FIG. 6 (a). The method is adopted.

この展開メカニズムを第7図により説明する。このア
ンテナはインフレータブル,即ち気体の圧力を利用して
アンテナ鏡面を形成するものであり,アルミニウムコー
ティングが施されている鏡面10と,レドーム11及び安定
化トーラス12等から構成されている。これらは第6図
(b)の様な収納状態から,内部に所定の圧力を加える
ことにより,第7図の様な放物面の鏡面を形成する。
This deployment mechanism will be described with reference to FIG. This antenna is inflatable, that is, it forms a mirror surface of an antenna using gas pressure, and is composed of a mirror surface 10 coated with aluminum, a radome 11, a stabilizing torus 12, and the like. These form a parabolic mirror surface as shown in FIG. 7 by applying a predetermined pressure to the inside from the housed state as shown in FIG. 6 (b).

[発明が解決しようとする課題] しかしながら,この方式の欠点は,収納状態で折りた
たんだ鏡面に皺が出来る可能性が高く,アンテナとして
の重要な性能パラメータである鏡面の面粗さ(鏡面精
度)を著しく劣化させる。又,鏡面10及びレドーム11に
は加熱あるいは紫外線等で硬化する接着剤が全面に塗布
されている為,地上での製作段階から打上げまでの品質
維持管理,軌道上での接着剤が硬化するまでのアウトガ
スの人工衛星システムへの悪影響が有る。
[Problems to be Solved by the Invention] However, the drawback of this method is that the folded mirror surface is likely to wrinkle in the stowed state, and the mirror surface roughness (mirror surface accuracy) is an important performance parameter as an antenna. Significantly deteriorates. Also, the mirror surface 10 and the radome 11 are coated with an adhesive that can be cured by heating or ultraviolet rays. Therefore, quality control from the production stage on the ground to the launch, and until the adhesive is cured on the orbit. Outgassing has an adverse effect on satellite systems.

そこで,本発明の技術的課題は,上記欠点に鑑み,収
納状態においても鏡面に発生する皺を低減できるインフ
レータブルアンテナを提供することである。
In view of the above drawbacks, a technical object of the present invention is to provide an inflatable antenna which can reduce wrinkles generated on a mirror surface even in a housed state.

[課題を解決するための手段] 本発明によれば,柔軟性を有する鏡面を一方向に有す
る鏡面形成部と,鏡面形成部の一方向と反対側の所定箇
所に分割されて設けられた複数の鏡面支持部と,複数の
鏡面支持部の相互を接続するために該複数の鏡面支持部
周辺の鏡面形成部に設けられて輻射熱で硬化する接着剤
とを含み,複数の鏡面支持部の面形状は,鏡面形成部上
において鏡面と組み合わされて宇宙空間で展開加工した
ときに輻射熱による接着剤の硬化を得て該鏡面が凹状放
物反射面を成すように,予め微小な凹状放物型に形成さ
れたインフレータブルアンテナが得られる。
[Means for Solving the Problems] According to the present invention, a mirror surface forming portion having a mirror surface having flexibility in one direction, and a plurality of portions provided separately at predetermined positions on the opposite side of the mirror surface forming portion in one direction. A plurality of mirror support members, and an adhesive which is provided on a mirror forming portion around the plurality of mirror support members and which is hardened by radiant heat for connecting the plurality of mirror support members to each other. The shape is determined in advance so that the mirror surface forms a concave parabolic reflection surface when the adhesive is cured by radiant heat when unfolded in space in combination with the mirror surface on the mirror surface forming section. Is obtained.

[実施例] 以下に実施例を挙げ,本発明のインフレータブルアン
テナについて,図面を参照して詳細に説明する。
[Examples] Examples will be given below to describe the inflatable antenna of the present invention in detail with reference to the drawings.

第1図は本発明の一実施例に係るインフレータブルア
ンテナの側面断面図を示したもので,第2図はその下面
図に関するもの,第3図はその部分拡大図に関するもの
である。
FIG. 1 is a side sectional view of an inflatable antenna according to an embodiment of the present invention, FIG. 2 is related to a bottom view thereof, and FIG. 3 is a partially enlarged view thereof.

このインフレータブルアンテナは,柔軟性を有する鏡
面1を一方向に有する鏡面形成部と,この鏡面形成部の
一方向と反対側の所定箇所に分割されて設けられた複数
の鏡面支持部2と,これらの鏡面支持部2の相互を接続
するために複数の鏡面支持部2周辺の鏡面形成部に塗布
して設けられて輻射熱で硬化する接着剤3とを含んでい
る。
The inflatable antenna includes a mirror surface forming portion having a flexible mirror surface 1 in one direction, a plurality of mirror surface support portions 2 provided separately at predetermined locations on the opposite side of the mirror surface forming portion in one direction, and And an adhesive 3 which is provided by being applied to the mirror surface forming portions around the plurality of mirror surface support portions 2 and is cured by radiant heat in order to connect the mirror surface support portions 2 to each other.

このうち,複数の鏡面支持部2の面形状は,鏡面形成
部上において鏡面1と組み合わされて宇宙空間で展開加
工したときに輻射熱による接着剤3の硬化変形を経て鏡
面1が凹状放物反射面を成すように,予め微小な凹状放
物型に形成されている。又,鏡面形成部は一方向に鏡面
1を設けた周辺部5であり,この周辺部5の一方向側に
は鏡面1の凹状放物反射面と対向するように同様な凹状
放物面形状に形成されたレドーム4が接着されている。
Among these, the surface shape of the plurality of mirror-surface support portions 2 is such that when the mirror surface 1 is combined with the mirror surface 1 on the mirror surface forming portion and developed in space, the adhesive surface 3 undergoes hardening deformation due to radiant heat and the mirror surface 1 has a concave parabolic reflection. It is formed in advance in a minute concave parabolic shape so as to form a surface. The mirror surface forming portion is a peripheral portion 5 provided with a mirror surface 1 in one direction, and has a similar concave parabolic surface shape on one side of the peripheral portion 5 so as to face the concave parabolic reflection surface of the mirror surface 1. Is adhered.

このような構成のインフレータブルアンテナは,地上
で基本構成部分が組み立て製作され,宇宙空間で展開さ
れて熱輻射を受けて図示のような形態となる。
In the inflatable antenna having such a configuration, the basic components are assembled and manufactured on the ground, deployed in outer space, and received heat radiation to be in the form shown in the drawing.

ところで,周辺部5は,例えばケブラーの薄膜で柔軟
性を持たせて本体を成すと共に,電波の反射面とする鏡
面1をその周波数に対応する表皮厚の10倍程度まで本体
の一方向の一面側に金属を蒸着することによって形成す
る。又,各鏡面支持部2は例えばCFRPを母材としてそれ
自体で放物面の閾率を有するようにオートクレーブで加
工したものを所定の形状に分割したものである。因み
に,第2図では各鏡面支持部2を矩形状に分割している
が,この分割形状はインフレータブルアンテナの展開前
の収納条件を最適にするものであれば,如何なる形状で
あっても構わない。
By the way, the peripheral portion 5 is made of a thin film of Kevlar, for example, to provide flexibility, and the mirror surface 1 serving as a reflection surface of the radio wave is arranged in one direction in the body up to about 10 times the skin thickness corresponding to the frequency. It is formed by evaporating metal on the side. Each of the mirror-surface support portions 2 is, for example, CFRP as a base material, which is processed by an autoclave so as to have a parabolic threshold rate by itself and divided into a predetermined shape. Incidentally, in FIG. 2, each mirror-surface supporting portion 2 is divided into a rectangular shape. However, any shape may be used as long as the shape of the divided portion can optimize the storage condition before the deployment of the inflatable antenna. .

周辺部5において鏡面1と各鏡面支持部2とは互いに
製作段階で接着剤3により接着固定されるが,鏡面形成
部として鏡面1を柔軟性のある素材で形成することによ
り,アンテナ収納時の鏡面1全体の剛性は主に各鏡面支
持部2の個片に支配される。因みに,接着剤3には周知
の加熱硬化型か,或いは紫外線硬化型のものを用いれば
良い。
In the peripheral portion 5, the mirror surface 1 and each mirror surface support portion 2 are adhered and fixed to each other by an adhesive 3 at a manufacturing stage. However, by forming the mirror surface 1 as a mirror surface forming portion with a flexible material, the antenna surface can be stored. The rigidity of the entire mirror surface 1 is mainly governed by the individual pieces of each mirror surface support 2. Incidentally, a known heat-curable or ultraviolet-curable adhesive may be used as the adhesive 3.

第4図は上記インフレータブル鏡面を複数個組合せた
場合の応用例である。又第5図は大型パラボラアンテナ
を人工衛星へ搭載した例で,展開後の状態を示す。第4
図も展開後の状態を示しているが,収納時の鏡面は展開
トラスの内側に所定の形状にたたみ込まれている。
FIG. 4 shows an application example in which a plurality of the inflatable mirror surfaces are combined. FIG. 5 shows an example in which a large parabolic antenna is mounted on an artificial satellite, and shows a state after deployment. 4th
The figure also shows the state after deployment, but the mirror surface during storage is folded into a predetermined shape inside the deployment truss.

[発明の効果] 以上説明した様に,本発明は鏡面を収納した状態で発
生する鏡面の皺を限定することができると同時に,皺の
発生場所を予測することができるので,展開後のアンテ
ナ特性解析を容易にすることが可能となる。
[Effects of the Invention] As described above, the present invention can limit wrinkles of a mirror surface generated in a state where a mirror surface is stored, and at the same time, can predict a place where the wrinkles are generated. Characteristic analysis can be facilitated.

又,軌道上で硬化させる接着剤の使用場所を支持部周
辺に限定することにより,接着剤からのアウトガスの量
を大幅に減少させることができる。
Also, by limiting the use location of the adhesive to be cured on the track to the vicinity of the support portion, the amount of outgas from the adhesive can be greatly reduced.

更に支持部の材質をシステムの制約の範囲内で自由に
選定できるので,熱歪の少ない材料を用いることができ
る。
Further, since the material of the support portion can be freely selected within the limits of the system, it is possible to use a material having low thermal strain.

又,支持部の面形状を予め微小な凹状放物型に加工し
ているので,アンテナ展開時の内圧調整の制御精度を従
来の技術のものに比べて格段に高めることができ,所要
鏡面の再現性を向上させることができる。
In addition, since the surface shape of the support portion is preliminarily processed into a minute concave parabolic shape, the control accuracy of the internal pressure adjustment when the antenna is deployed can be significantly improved as compared with the conventional technology, and the required mirror surface can be improved. Reproducibility can be improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のインフレータブルアンテナの断面図,
第2図は同下面図,第3図は同断面図の拡大図,第4図
及び第5図は本発明の応用例,第6図は従来の技術の応
用例,第7図は従来のインフレータブルアンテナの断面
図である。 1,10……鏡面,2……分割された鏡面支持部,3……接着
剤,4,11……レドーム,5……周辺部。
FIG. 1 is a sectional view of an inflatable antenna according to the present invention,
FIG. 2 is a bottom view of the same, FIG. 3 is an enlarged view of the sectional view, FIGS. 4 and 5 are applied examples of the present invention, FIG. 6 is an applied example of the prior art, and FIG. It is sectional drawing of an inflatable antenna. 1, 10 mirror surface, 2 divided mirror surface support, 3 adhesive, 4, 11 radome, 5 peripheral part.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】柔軟性を有する鏡面を一方向に有する鏡面
形成部と,前記鏡面形成部の前記一方向と反対側の所定
箇所に分割されて設けられた複数の鏡面支持部と,前記
複数の鏡面支持部の相互を接続するために該複数の鏡面
支持部周辺の前記鏡面形成部に設けられて輻射熱で硬化
する接着剤とを含み,前記複数の鏡面支持部の面形状
は,前記鏡面形成部上において前記鏡面と組み合わされ
て宇宙空間で展開加工したときに前記輻射熱による前記
接着剤の硬化変形を経て該鏡面が凹状放物反射面を成す
ように,予め微小な凹状放物型に形成されたことを特徴
とするインフレータブルアンテナ。
A mirror surface forming portion having a mirror surface having flexibility in one direction; a plurality of mirror surface support portions divided at predetermined locations on the opposite side of the mirror surface forming portion in the one direction; An adhesive that is provided on the mirror surface forming portion around the plurality of mirror surface support portions to connect the mirror surface support portions to each other and that is cured by radiant heat, and the surface shape of the mirror surface support portions is On the forming portion, when the mirror surface is combined with the mirror surface and developed in space, the adhesive surface is hardened and deformed by the radiant heat so that the mirror surface forms a concave parabolic reflection surface. An inflatable antenna formed.
JP1111060A 1989-04-28 1989-04-28 Inflatable antenna Expired - Lifetime JP2591153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1111060A JP2591153B2 (en) 1989-04-28 1989-04-28 Inflatable antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1111060A JP2591153B2 (en) 1989-04-28 1989-04-28 Inflatable antenna

Publications (2)

Publication Number Publication Date
JPH02288704A JPH02288704A (en) 1990-11-28
JP2591153B2 true JP2591153B2 (en) 1997-03-19

Family

ID=14551386

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1111060A Expired - Lifetime JP2591153B2 (en) 1989-04-28 1989-04-28 Inflatable antenna

Country Status (1)

Country Link
JP (1) JP2591153B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2639879B2 (en) * 1993-04-26 1997-08-13 川崎重工業株式会社 Reflective surface structure of large reflector
CN110112533B (en) * 2019-06-05 2021-08-03 哈尔滨工业大学 Rigid-flexible combined supported inflatable unfolding type Z-shaped folding array antenna

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0201727A1 (en) * 1985-05-15 1986-11-20 Oerlikon-Contraves AG Reflector aerial
JPS62262503A (en) * 1986-05-09 1987-11-14 Toray Ind Inc Metallic plating cloth for antenna

Also Published As

Publication number Publication date
JPH02288704A (en) 1990-11-28

Similar Documents

Publication Publication Date Title
CA1226669A (en) Spacecraft-borne electromagnetic radiation reflector structure
US5686930A (en) Ultra lightweight thin membrane antenna reflector
US20090213031A1 (en) Furlable Shape-Memory Reflector
US10916859B2 (en) Inflatable reflector antenna and related methods
US6735920B1 (en) Deployable space frame and method of deployment therefor
US4613870A (en) Spacecraft antenna reflector
US20080137221A1 (en) Stretched membrane device
JPH02882B2 (en)
US6208317B1 (en) Hub mounted bending beam for shape adjustment of springback reflectors
US3969731A (en) Mesh articles particularly for use as reflectors of radio waves
US6771229B2 (en) Inflatable reflector
JP2591153B2 (en) Inflatable antenna
JP2021530125A (en) Deployable reflector for antenna
JP2586133B2 (en) Inflatable antenna
US11892661B2 (en) Wrinkle free foldable reflectors made with composite materials
US20030223135A1 (en) Parabolic membrane mirror having a shape-restorative force
JP2005511318A (en) Curved surface, especially reflector and method of forming the same
Archer High-performance parabolic antenna reflectors
JPH06196926A (en) Equalized offset feeder molding reflector antenna system andequalizing method
JP2702444B2 (en) Deployment structure
WO2020190264A1 (en) Inflatable reflector antenna and related methods
JPH01220902A (en) Structure of antenna
JPS6035288Y2 (en) reflector antenna
RU2698960C1 (en) Inflatable antenna for spacecrafts
Kendall et al. Inflatable antenna microwave radiometer for soil moisture measurement