JP2591119B2 - Line fault location measurement method - Google Patents

Line fault location measurement method

Info

Publication number
JP2591119B2
JP2591119B2 JP30217088A JP30217088A JP2591119B2 JP 2591119 B2 JP2591119 B2 JP 2591119B2 JP 30217088 A JP30217088 A JP 30217088A JP 30217088 A JP30217088 A JP 30217088A JP 2591119 B2 JP2591119 B2 JP 2591119B2
Authority
JP
Japan
Prior art keywords
line
power supply
constant current
station
repeater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30217088A
Other languages
Japanese (ja)
Other versions
JPH02150126A (en
Inventor
秀樹 山元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP30217088A priority Critical patent/JP2591119B2/en
Publication of JPH02150126A publication Critical patent/JPH02150126A/en
Application granted granted Critical
Publication of JP2591119B2 publication Critical patent/JP2591119B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は中継器等が接続された回線の短絡障害時の回
線障害位置の測定方式に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of measuring a line fault position when a short circuit fault occurs in a line to which a repeater or the like is connected.

〔従来の技術〕 従来、回線障害位置の測定方式としては、回線に接続
されている中継器内の給電回路特性を利用した最少電流
測定法が知られている。この測定法は中継器の給電回路
から回線に対して一定の微少電流を供給し、このときの
回線への給電々圧と回線の線路抵抗との関係が非直線性
を示す特性を利用して、この給電々圧を計測して障害地
点までの回線線路抵抗を求め、この線路抵抗値から障害
地点までの距離を算出するものであつた。
[Prior Art] Conventionally, as a method of measuring a line fault position, a minimum current measuring method using a power supply circuit characteristic in a repeater connected to a line is known. In this measurement method, a constant small current is supplied to the line from the feeder circuit of the repeater, and the characteristic between the line feed voltage to the line and the line resistance of the line at this time shows the nonlinearity. Then, the line pressure to the point of failure is determined by measuring the power supply voltage, and the distance to the point of failure is calculated from the line resistance value.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかし、従来の微少電流測定法に基づく回線障害位置
の測定は、中継器の給電回路の特性を利用しているため
に中継器を含んだ回線の両端の局からの正確な回線短絡
障害位置は測定できず、例えばn番目の中継器とn+1
番目の中継器の間に回線短絡障害があるという程度しか
測定できなかつた。
However, since the measurement of the line fault location based on the conventional microcurrent measurement method uses the characteristics of the feeder circuit of the repeater, the exact location of the line short-circuit fault from the stations at both ends of the line including the repeater is required. Cannot be measured, for example, nth repeater and n + 1
It was only possible to measure that there was a short circuit fault between the second repeater.

また、上記の測定のために回線系の微少電流特性を事
前に測定しておかねばならなつた。
Also, for the above measurement, the microcurrent characteristics of the line system must be measured in advance.

〔課題を解決するための手段〕[Means for solving the problem]

このような課題を解決するために、本発明の回線障害
位置測定方式は、障害回線に係る二つの端局にこの障害
回線に対してそれぞれ交互に本来の給電方向とは逆向き
の一定の電流を供給する給電手段を設け、この給電手段
により前記障害回線に供給されるそれぞれの電流値を互
に等しく設定し、この給電手段の給電々圧を読みとつて
測定するようにしたものである。
In order to solve such a problem, the line fault position measuring method according to the present invention employs a method in which two terminal stations related to a faulty line alternately supply a constant current to the faulty line in a direction opposite to the original power supply direction. Power supply means for supplying the power supply, the current values supplied to the faulty line by the power supply means are set to be equal to each other, and the feed voltage of the power supply means is read and measured.

〔作用〕[Action]

回線障害時にまず、障害回線を係る一方の端局からこ
の障害回線に対して本来の給電方向とは逆向きの一定電
流を供給したときの給電々圧の値を読みとり、同様にこ
の障害回線に係る他方の端局から障害回線に対して本来
の給電方向とは逆向きの上記の一定電流の値に等しい一
定電流を供給したときの給電々圧も読みとる。
In the event of a line failure, first read the value of the power supply pressure when a constant current in the opposite direction to the original power supply direction is supplied to the failed line from one terminal station involved in the failed line. The power supply pressure when the constant current equal to the above constant current value in the opposite direction to the original power supply direction is supplied from the other terminal station to the faulty line is also read.

このようにして、障害回線に係る両端局の電位差を求
めることによつて、上記の一定電流値、それぞれ既知の
両端局間の回線の線路抵抗値、線路の単位長さ当りの抵
抗値に基づいて障害回線に係る両端局から障害地点まで
の距離を測定する。
In this way, by obtaining the potential difference between the two end stations related to the faulty line, the constant current value, the known line resistance value of the line between the both end stations, and the resistance value per unit length of the line are known. Measure the distance from the end stations related to the failed line to the point of failure.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。第1
図は本発明の一実施例の回線障害位置測定方式を示す回
路図、第2図は中継器を含む回線において短絡障害が発
生したときの等価回路図である。
Next, the present invention will be described with reference to the drawings. First
FIG. 2 is a circuit diagram showing a circuit fault position measuring method according to one embodiment of the present invention, and FIG. 2 is an equivalent circuit diagram when a short circuit fault occurs in a line including a repeater.

まず、第2図から説明する。図において1は回線障害
に係る一方の端局(以下、A局という)の定電流給電
部、10は回線障害に係る他方の端局(以下、B局とい
う)の定電流給電部、3はグランド、aはA局の定電流
給電部の+端子と障害回線との接続点、bはB局の定電
流給電部の−端子と障害回線との接続点、cは短絡障害
地点、n1ReP,R1はそれぞれa〜c区間内の中継器台数
および回線の線路抵抗、n2ReP,R2はそれぞれb〜c区
間内の中継器台数および回線の線路抵抗、Rsは短絡抵
抗、Iは本来の給電方向に基づいて給電々流である。
First, FIG. 2 will be described. In the figure, reference numeral 1 denotes a constant current feeder of one terminal station (hereinafter, referred to as A station) related to a line failure, 10 denotes a constant current feeder of the other terminal station (hereinafter, referred to as B station) related to a line failure, and 3 denotes a constant current feeder. Ground, a is a connection point between the + terminal of the constant current power supply unit of the A station and the faulty line, b is a connection point between the-terminal of the constant current power supply unit of the B station and the faulty line, c is a short-circuit fault point, and n 1 · ReP, R 1 is line resistance of the repeater number and line respectively within a~c interval, n 2 · ReP, R 2 is line resistance of the repeater number and line respectively within b~c interval, R s is shorted The resistance, I, is a power supply flow based on the original power supply direction.

以上のように構成された等価回路図において、障害位
置測定のためにA局およびB局の給電々流の方向と逆方
向とするような一定電流(以下、逆定電流という)を障
害回線に対して供給し、この逆定電流の値を従来の微少
電流測定法に比べて大きくする(従来の10倍程度の値)
と、中継器の電圧降下は中継器内の給電回路を構成する
ツエナーダイオードの順方向分となつて無視できる値と
なるため、第1図に示すような中継器を省いた回路に表
現できる。
In the equivalent circuit diagram configured as described above, a constant current (hereinafter, referred to as a reverse constant current) which is in the opposite direction to the direction of the supply current of the stations A and B for measuring the fault position is applied to the fault line. Supply, and increase the value of this reverse constant current compared to the conventional microcurrent measurement method (about 10 times the value of the conventional)
Then, the voltage drop of the repeater becomes a negligible value because it is the forward direction of the Zener diode constituting the feeder circuit in the repeater, and can be expressed as a circuit without the repeater as shown in FIG.

次に、第1図の本発明の一実施例である回線障害位置
の測定方式を示す回路図について説明する。図におい
て、第2図と同様な部分は同一符号を付してその説明は
省略し、以下第2図と異なる部分について説明すると、
2,20はB局またはA局がそれぞれ交互に障害回線に対し
て逆定電流を供給するための切替用スイツチ、I1はA局
またはB局から交互に障害回線に対して供給され互にそ
の値が等しく方向が逆の逆定電流である。
Next, a circuit diagram showing a method of measuring a line fault position according to an embodiment of the present invention shown in FIG. 1 will be described. In the figure, the same parts as those in FIG. 2 are denoted by the same reference numerals, and the description thereof will be omitted. Hereinafter, the parts different from FIG. 2 will be described.
2,20 The switch for switching to B station or A station supplies the reverse constant current alternately respectively failed line, I 1 is mutually be supplied to the failed line alternately from the A station and B station It is a reverse constant current having the same value and the opposite direction.

次に、第1図について簡単な数式を用いてさらに詳細
に説明する。まず、A局の定電流給電部1から逆定電流
I1を給電すると、a地点の電圧Vaは、 Va=(R1+Rs)・I1 ……(1) で表わされる。このときB局の定電流給電部10からは障
害回線に給電されないようにスイツチ20で開放されてい
る。
Next, FIG. 1 will be described in more detail using a simple mathematical formula. First, the reverse constant current is supplied from the constant current feeder 1 of the station A.
When feeding the I 1, the voltage Va of a point is represented by Va = (R 1 + Rs) · I 1 ...... (1). At this time, the switch 20 is opened so that power is not supplied from the constant current supply unit 10 of the station B to the faulty line.

同様に、B局の定電流給電部10から同一の逆定電流I1
で給電を行なうと、b地点の電圧Vbは、 Vb=(R2+Rs)・I1 ……(2) で表わされ、(1)式と(2)式の差をとつて が成立する。またa〜b区間の線路抵抗をαとすると、 R1+R2=α ……(4) (3),(4)式より 線路の単位長さ当りの抵抗をR0(Ω/Km)とすると、A
局およびB局から回線障害位置までの距離Lae,Lbcはそ
れぞれ となる。
Similarly, the same reverse constant current I 1 is supplied from the constant current feeder 10 of the station B.
When power is supplied at the point b, the voltage Vb at the point b is expressed as Vb = (R 2 + Rs) · I 1 (2), and the difference between the equations (1) and (2) is calculated. Holds. If the line resistance in the section a and b is α, R 1 + R 2 = α (4) From the equations (3) and (4), If the resistance per unit length of the line is R 0 (Ω / Km), A
Distance L ae from station and B station until the line fault location, L bc each Becomes

(7),(8)式から明らかなように、A,B局から回
線短絡障害地点までの距離は、A局とB局の電位差を計
測しておけばそれぞれ既知の単位長さ当りの抵抗R0、a
〜b間の線路抵抗αおよび逆定電流I1とから短絡抵抗に
関係なく簡単に正確に求められる。
As is apparent from the equations (7) and (8), the distance from the stations A and B to the point of the short circuit fault can be determined by measuring the potential difference between the stations A and B, respectively. R 0 , a
Regardless short circuit resistance from line resistance α and Gyakujo current I 1 Tokyo between ~b be easily and accurately determined.

また、短絡抵抗は(5)式を(1)式に、または
(6)式を(2)式に代入することにより求められる。
The short-circuit resistance is obtained by substituting equation (5) into equation (1) or substituting equation (6) into equation (2).

〔発明の効果〕〔The invention's effect〕

以上説明したことから明らかなように、本発明の回線
障害位置測定方式は、短絡障害回線に係る両端局からこ
の障害回線に対して本来の給電方向と逆向きのそれぞれ
等しい値の一定の給電々流を交互に与えて両端局の電位
差を計測し障害位置の測定を行つているので構成が簡単
でかつ正確な測定が出来るという優れた効果を有する。
As is apparent from the above description, the line fault position measuring method of the present invention is based on the short-circuit faulty line. Since the flow is alternately applied to measure the potential difference between the two end stations and measure the position of the fault, there is an excellent effect that the configuration is simple and accurate measurement can be performed.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による回線障害位置の測定方式の一実施
例を示す回路図、第2図は本来の給電状態において回線
の短絡障害が発生したときの等価回路図である。 1,10……定電流給電部、2,20……スイツチ、3……グラ
ンド、R1,R2……線路抵抗、Rs……短絡抵抗、I1……逆
定電流。
FIG. 1 is a circuit diagram showing an embodiment of a system for measuring a line fault position according to the present invention, and FIG. 2 is an equivalent circuit diagram when a short circuit fault occurs in a line in an original power supply state. 1,10 ...... constant current power supply unit, 2,20 ...... switch, 3 ...... ground, R 1, R 2 ...... line resistance, R s ...... short circuit resistance, I 1 ...... reverse constant current.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】中継器等が接続された回線の障害時の回線
障害位置測定方式において、 前記回線が接続された夫々の端局に前記回線に対してそ
れぞれ交互に本来の給電方向とは逆向きの一定の電流を
供給する給電手段を設け、 前記給電手段から前記回線に供給されるそれぞれの電流
値を互に等しく設定し、前記給電手段の給電電圧を読み
とつて測定することを特徴とする回線障害位置測定方
式。
1. A line fault position measuring method when a fault occurs in a line to which a repeater or the like is connected. In each of the terminal stations to which the line is connected, each terminal station alternately reverses the direction of the original power supply to the line. A power supply unit for supplying a constant current in a direction, a current value supplied to the line from the power supply unit is set to be equal to each other, and a power supply voltage of the power supply unit is read and measured. Line fault location measurement method.
JP30217088A 1988-12-01 1988-12-01 Line fault location measurement method Expired - Lifetime JP2591119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30217088A JP2591119B2 (en) 1988-12-01 1988-12-01 Line fault location measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30217088A JP2591119B2 (en) 1988-12-01 1988-12-01 Line fault location measurement method

Publications (2)

Publication Number Publication Date
JPH02150126A JPH02150126A (en) 1990-06-08
JP2591119B2 true JP2591119B2 (en) 1997-03-19

Family

ID=17905766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30217088A Expired - Lifetime JP2591119B2 (en) 1988-12-01 1988-12-01 Line fault location measurement method

Country Status (1)

Country Link
JP (1) JP2591119B2 (en)

Also Published As

Publication number Publication date
JPH02150126A (en) 1990-06-08

Similar Documents

Publication Publication Date Title
EP1218760B1 (en) Measurement of current in a vehicle using battery cable as a shunt
EP0570148B1 (en) Electrostatic voltmeter employing high voltage integrated circuit devices
JP2591119B2 (en) Line fault location measurement method
WO1992017790A1 (en) Armature connection resistance measuring method and apparatus
US6717416B2 (en) Circuit configuration for the voltage supply of a two-wire sensor
CN111971564A (en) Voltage detection circuit for vehicle
GB1145673A (en) Improvements in or relating to apparatus for determining salinity
JPH11133093A (en) Device, for measuring ground fault resistance, etc., in dc electric path
JPH03125939A (en) Method for detecting leak position of conductive liquid substance
US20030058594A1 (en) Differential protective method
JPH0718901B2 (en) Apparatus and method for determining values of circuit elements in three-terminal equivalent circuit
JPH04315062A (en) Method for measuring resistance value of resistor
JP2895994B2 (en) Fault location method for three-phase cable
JP3264715B2 (en) Crossed / disconnected position detection device
SU855548A1 (en) Device for checking dc network insulation
JP3337562B2 (en) Circuit carrier directionality measuring instrument
JPH0217344Y2 (en)
JP2678217B2 (en) Fault location method for power transmission system
SU1142882A1 (en) Charge amplifier
SU1532878A1 (en) Imitator of semibridge unbalance
JPH0574788B2 (en)
JPH03238930A (en) Fault retrieval system for communication line
FI93062C (en) A current mirror
JPS60229494A (en) Common earthing test circuit
JPH0814590B2 (en) Circuit element measuring device terminal connection state detection circuit