JP2589094B2 - Antineoplastic agent - Google Patents

Antineoplastic agent

Info

Publication number
JP2589094B2
JP2589094B2 JP62226450A JP22645087A JP2589094B2 JP 2589094 B2 JP2589094 B2 JP 2589094B2 JP 62226450 A JP62226450 A JP 62226450A JP 22645087 A JP22645087 A JP 22645087A JP 2589094 B2 JP2589094 B2 JP 2589094B2
Authority
JP
Japan
Prior art keywords
stimulating factor
human
colony stimulating
granulocyte colony
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62226450A
Other languages
Japanese (ja)
Other versions
JPS63190830A (en
Inventor
雅義 尾野
茂隆 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Original Assignee
Chugai Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Pharmaceutical Co Ltd filed Critical Chugai Pharmaceutical Co Ltd
Publication of JPS63190830A publication Critical patent/JPS63190830A/en
Application granted granted Critical
Publication of JP2589094B2 publication Critical patent/JP2589094B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はヒト顆粒球コロニー刺激因子(以下ヒトG−
CSFと略記する)を有効成分とする抗悪性腫瘍剤。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to human granulocyte colony stimulating factor (hereinafter referred to as human G-
(Abbreviated as CSF) as an active ingredient.

〔従来の技術〕[Conventional technology]

本発明は造血因子(hemopoietic growthfactor)の1
つであるヒトG−CSFを用いて、悪性腫瘍の治療に役立
てようとするものであって、直接これに関連する報告類
の見当たらない新規な抗悪性腫瘍剤を提供しようとする
ものである。
The present invention relates to one of the hematopoietic growth factors.
Another object of the present invention is to provide a novel antineoplastic agent which is useful for the treatment of malignant tumors using human G-CSF, and for which there are no reports directly related thereto.

ヒトG−CSFはin vitroの実験系において顆粒球の前
駆細胞に働き顆粒球への分化増進を捉す機能を有してい
る造血因子である〔例えばMetcalf.et.al:Exp.Hematol.
1,185(1973)等参照〕。
Human G-CSF is a hematopoietic factor having a function of acting on granulocyte precursor cells in an in vitro experimental system and capturing the enhancement of differentiation into granulocytes (for example, Metcalf.et.al: Exp.Hematol.
1,185 (1973) etc.].

ところがこのヒトG−CSFは今迄入手するのが極めて
困難であったため、医薬としての有用性又は有効性につ
いての検討が充分進展せず、本発明が目的とするガンの
治療への可能性についても未検討のままに置かれてい
た。
However, since it has been extremely difficult to obtain human G-CSF until now, studies on its usefulness or efficacy as a medicine have not sufficiently progressed, and the potential of the present invention for the treatment of cancer, which is the object of the present invention, has been investigated. Was also left unconsidered.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

この様な状況を打開すべく、本出願人は研究を重ねた
結果、遺伝子工学等によるヒトG−CSFの製造方法の開
発に成功し、純粋均質でしかも大量のヒトG−CSFが入
手できるようになった(特願昭59−153273号、特願昭60
−269455号、特願昭60−269456号、特願昭60−270838
号、特願昭60−270839号等参照)。
In order to overcome such a situation, the present applicant has conducted extensive research, and as a result, succeeded in developing a method for producing human G-CSF by genetic engineering and the like, so that pure and homogeneous and a large amount of human G-CSF can be obtained. (Japanese Patent Application No. 59-153273, Japanese Patent Application No. 60-153273)
No. -269455, Japanese Patent Application No. 60-269456, Japanese Patent Application No. 60-270838
No., Japanese Patent Application No. 60-270839).

この成果をふまえて、殺悪性腫瘍作用を有するヒト成
熟顆粒球に対するヒトG−CSFの影響等を研究し、そこ
で得られた知見にもとづいて副作用の少ない優れた抗悪
性腫瘍剤を開発しようとするのが本発明の目的である。
Based on these results, we will study the effects of human G-CSF on human mature granulocytes with malignant tumor activity, and based on the findings, we will develop an excellent antineoplastic agent with few side effects That is the object of the present invention.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明者らは上記目的を達成するため、鋭意研究を重
ねた結果、悪性腫瘍細胞例えばヒト悪性黒色腫細胞(HM
V)において、 ヒトG−CSF存在下で前孵置した顆粒球は、非存在下
で前孵置した顆粒球に比べて約2〜4倍の殺HMV効果が
認められた。
The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that malignant tumor cells such as human melanoma cells (HM
In V), granulocytes pre-hatched in the presence of human G-CSF exhibited about 2 to 4 times the HMV killing effect as compared to granulocytes pre-hatched in the absence.

殺HMV効果は正常ウサギ血清の存在下で影響されない
が、抗HMV血清の存在下ではその濃度に依存して最高10
〜30倍に増強した。
HMV killing effect is not affected in the presence of normal rabbit serum, but up to 10 in the presence of anti-HMV serum, depending on its concentration
Up to 30 times.

ヒトG−CSFとの前孵置による顆粒球の殺HMV効果の増
強の程度は、ヒトG−CSFの濃度と明らかな相関があ
る。
The degree of enhancement of the HMV killing effect of granulocytes by pre-incubation with human G-CSF is clearly correlated with the concentration of human G-CSF.

という事実を確認し、この結果からヒトG−CSFはヒ
ト成熟顆粒球(特に好中球)の殺悪性腫瘍作用(特に抗
悪性腫瘍血清存在下で)を著しく亢進させることを見出
し本発明に到達した。
From the above results, it was found that human G-CSF markedly enhances the malignant killing effect of human mature granulocytes (especially neutrophils) (especially in the presence of anti-malignant tumor serum), and reached the present invention. did.

すなわち本発明は、ヒト顆粒球コロニー刺激因子を有
効成分とする抗悪性腫瘍剤を提供するものである。
That is, the present invention provides an anti-neoplastic agent comprising human granulocyte colony-stimulating factor as an active ingredient.

以下本発明を詳細に説明する 本発明の抗悪性腫瘍剤の有効成分であるヒトG−CSF
は純度の高いヒトG−CSFであればその由来が制限され
るものではなく、例えば人の生体試料から抽出、分離、
精製したもの、ヒトG−CSF産生細胞を培養し、その培
養上清から単離したもの、細胞融合法を用いてヒトG−
CSF産生ハイブリドーマを形成しこれから取得したも
の、遺伝子組換えによって、大腸菌、動物細胞等の宿主
を形質転換して得た形質転換体から産生せしめ単離精製
したもの、又はそれを化学修飾したもの等のいずれも使
用することができる。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below.
The origin is not limited as long as it is high-purity human G-CSF, for example, extraction from human biological samples, separation,
Purified and human G-CSF-producing cells were cultured and isolated from the culture supernatant, and human G-CSF-producing cells were isolated by cell fusion.
A CSF-producing hybridoma is formed and obtained therefrom, a gene is obtained from a transformant obtained by transforming a host such as Escherichia coli, animal cells, etc. by genetic recombination, isolated and purified, or a chemically modified product thereof Can be used.

しかし、それらの中でも純度よく均質大量に入手でき
る本出願人が製造した次の(1)及び(2)で示すヒト
G−CSFが特に好ましいものである。
However, among them, human G-CSF shown in the following (1) and (2) manufactured by the present applicant, which can be obtained in a homogeneous and large amount with high purity, is particularly preferable.

(1)次の理化学的性質を有するヒトG−CSF。(1) Human G-CSF having the following physicochemical properties.

分子量:ドデシル硫酸ナトリウム−ポリアクリルアミ
ドゲル電気泳動法による測定で約19,000±1,000。
Molecular weight: about 19,000 ± 1,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

等電点:pI=5.5±0.1,pI=5.8±0.1,pI=6.1±0.1の
三つの等点のうち少なくとも1つを有する。
Isoelectric point: has at least one of three isoelectric points of pI = 5.5 ± 0.1, pI = 5.8 ± 0.1, pI = 6.1 ± 0.1.

紫外部吸収:280nmに極大吸収を有し、250nmに極小値
をもつ。
Ultraviolet absorption: having a maximum absorption at 280 nm and a minimum at 250 nm.

N端末から21残基目迄のアミノ酸配列が次の如くであ
る。
The amino acid sequence from the N terminal to the 21st residue is as follows.

H2N−Thr−Pro−Leu−Gly−Pro−Ala−Ser−Ser−Leu−
Pro−Gln−Ser−Phe−Leu−Leu−Lys−Cys−Leu−Glu−
Gln−Val− (2)下記のアミノ酸配列またはその一部で表わされる
ヒト顆粒球コロニー刺激因子活性を有するポリペプチド
又はこれと糖鎖部を有する糖蛋白質を含有するヒトG−
CSF。
H 2 N-Thr-Pro- Leu-Gly-Pro-Ala-Ser-Ser-Leu-
Pro-Gln-Ser-Phe-Leu-Leu-Lys-Cys-Leu-Glu-
Gln-Val- (2) a polypeptide having human granulocyte colony-stimulating factor activity represented by the following amino acid sequence or a part thereof, or a human G- containing a glycoprotein having a polypeptide having a sugar chain portion:
CSF.

(Met)n Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro G
ln Ser Phe Leu Leu Lys Cys Lue Glu Gln Val Arg Lys
Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu
(Val Ser Glu)m Cys Ala Thr Tyr Lys Leu Cys His P
ro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile
Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala L
eu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly
Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu G
ly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu
Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp G
ln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln
Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala P
he Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His
Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu A
rg His Leu Ala Gln Pro(但しmは0又は1を表わし、
nは0又は1を表わす)。
(Met) n Thr Pro Leu Gly Pro Ala Ser Ser Leu Pro G
ln Ser Phe Leu Leu Lys Cys Lue Glu Gln Val Arg Lys
Ile Gln Gly Asp Gly Ala Ala Leu Gln Glu Lys Leu
(Val Ser Glu) m Cys Ala Thr Tyr Lys Leu Cys His P
ro Glu Glu Leu Val Leu Leu Gly His Ser Leu Gly Ile
Pro Trp Ala Pro Leu Ser Ser Cys Pro Ser Gln Ala L
eu Gln Leu Ala Gly Cys Leu Ser Gln Leu His Ser Gly
Leu Phe Leu Tyr Gln Gly Leu Leu Gln Ala Leu Glu G
ly Ile Ser Pro Glu Leu Gly Pro Thr Leu Asp Thr Leu
Gln Leu Asp Val Ala Asp Phe Ala Thr Thr Ile Trp G
ln Gln Met Glu Glu Leu Gly Met Ala Pro Ala Leu Gln
Pro Thr Gln Gly Ala Met Pro Ala Phe Ala Ser Ala P
he Gln Arg Arg Ala Gly Gly Val Leu Val Ala Ser His
Leu Gln Ser Phe Leu Glu Val Ser Tyr Arg Val Leu A
rg His Leu Ala Gln Pro (where m represents 0 or 1,
n represents 0 or 1).

上記のヒトG−CSFは例えば後述する参考例に示す方
法によって製造することができる。即ち、上記(1)の
ヒトG−CSFは参考例1によって、又(2)のヒトG−C
SFは参考例2に示す方法により得ることができる。
The above-mentioned human G-CSF can be produced, for example, by the method shown in Reference Examples described later. That is, the human G-CSF of the above (1) was prepared according to Reference Example 1 and the human G-C
SF can be obtained by the method shown in Reference Example 2.

なおこれらの方法の詳細な製造条件については、本出
願人が先に出願した特願昭59−153273号,特願昭60−26
9455号,特願昭60−269456号,特願昭60−270838号,特
願昭60−270839号の各明細書を参照されたい。
The detailed manufacturing conditions of these methods are described in Japanese Patent Application No. 59-153273 and Japanese Patent Application No. 60-26 filed earlier by the present applicant.
No. 9455, Japanese Patent Application No. 60-269456, Japanese Patent Application No. 60-270838, and Japanese Patent Application No. 60-270839.

又、その他の方法としてG−CSF産生細胞と自己増殖
能を有する悪性腫瘍細胞とを細胞融合して得られるハイ
ブリドーマをマイトジェンの存在または非存在下で培養
することによって得ることもできる。これ等の方法で得
たヒトG−CSFは全て本発明に含まれる。
In addition, as another method, it can be obtained by culturing a hybridoma obtained by cell fusion of a G-CSF producing cell and a malignant tumor cell capable of self-proliferation in the presence or absence of mitogen. All human G-CSFs obtained by these methods are included in the present invention.

得られたヒトG−CSF含有液は必要により公知の手段
でさらに精製、濃縮した後凍結保存とするかまたは凍結
乾燥、真空乾燥などの手段により水分を除去して保存す
ることができる。
If necessary, the obtained human G-CSF-containing solution can be further purified and concentrated by known means and then stored frozen, or can be stored after removing water by means such as freeze-drying and vacuum drying.

また所望によりヒトG−CSFを適当な緩衝液に溶解し
た後、ミリポアフィルター等で無菌濾過して注射剤とす
ることもできる。
If desired, human G-CSF can be dissolved in an appropriate buffer, and then sterile filtered with a Millipore filter or the like to prepare an injection.

さらに本発明の抗悪性腫瘍剤はヒトまたは動物医薬用
に適した医薬製剤としての形態をとるために必要な製薬
担体や賦形剤を、さらには安定化剤、吸着防止剤を含む
ことができる。
Further, the antineoplastic agent of the present invention can contain a pharmaceutical carrier or excipient necessary for taking a form as a pharmaceutical preparation suitable for human or veterinary medicine, and can further contain a stabilizer and an anti-adsorption agent. .

本発明の抗悪性腫瘍剤に含まれるヒトG−CSFの投与
量、投与回数は対象の疾患患者の病状を配慮して決める
ことができるが、通常成人一人当たり0.1〜500μg、好
ましくは0.5〜200μgのヒトG−CSFを含有する製剤を
1週間に1〜7回投与することができる。しかし本発明
はヒトG−CSFの含有量によって限定されるものではな
い。
The dosage of human G-CSF contained in the antineoplastic agent of the present invention, the number of administration can be determined in consideration of the disease state of the target disease patient, usually 0.1 to 500 μg per adult, preferably 0.5 to 200 μg. Can be administered 1 to 7 times a week. However, the present invention is not limited by the content of human G-CSF.

〔実施例〕〔Example〕

以下本発明を参考例(ヒトG−CSFの製造例)実施例
(薬理効果)、実施例(製剤例)をあげて説明するが、
本発明はこれらに限定されるものではない。
Hereinafter, the present invention will be described with reference to Reference Examples (manufacturing examples of human G-CSF) Examples (pharmacological effects) and Examples (preparation examples)
The present invention is not limited to these.

なお、抗腫瘍血清存在下の結果を参考として併記し
た。
The results in the presence of anti-tumor serum are also shown for reference.

参考例1 (G−CSF産生細胞の培養によるヒトG−CSF
の製造例) 特願昭59−153273号の実施例1に示す方法で樹立した
ヒト口腔底癌細胞由来のG−CSF産生細胞株CHU−1(C.
N.C.M受託番号「I−315」)または同様の方法で樹立し
た細胞株CHU−2(C.N.C.M受託番号「I−483」)をウ
シ胎児血清を含有するRPMI 1640培養液に浮遊した後、
ローラーボトルにいれて回転培養を行った。細胞がロー
ラーボトル内壁に密に増殖したところで培養液を血清不
含RPMI 1640にかえ、4日間培養後上清を回収。次いで
血清含有RPMI 1640を加えて3日間培養した後、培養液
を血清不含RPMI 1640に液替し、4日間培養後上清を回
収する。、以下これを繰返し培養上清を回収した。得ら
れた血清不含培養上清を限界ろ過で約1000倍に濃縮し精
製、次いで検定を行った。
Reference Example 1 (Human G-CSF obtained by culturing G-CSF-producing cells)
Production Example) G-CSF-producing cell line CHU-1 derived from human oral floor cancer cells established by the method shown in Example 1 of Japanese Patent Application No. 59-153273 (C.
NCM accession number "I-315") or a cell line CHU-2 (CNCM accession number "I-483") established in a similar manner was suspended in RPMI 1640 culture medium containing fetal calf serum.
Rotary culture was performed in a roller bottle. When the cells grew densely on the inner wall of the roller bottle, the culture solution was replaced with serum-free RPMI 1640, and the supernatant was collected after culturing for 4 days. Then, after adding serum-containing RPMI 1640 and culturing for 3 days, the culture solution is replaced with serum-free RPMI 1640, and after 4 days of culture, the supernatant is recovered. The above procedure was repeated to collect the culture supernatant. The obtained serum-free culture supernatant was concentrated and purified about 1000-fold by ultrafiltration, and then assayed.

精製及び検定は前記特願昭59−153273号明細書の実施
例と同じ方法で行った。
Purification and assay were carried out in the same manner as in the examples of the aforementioned Japanese Patent Application No. 59-153273.

参考例2 (遺伝子組替えによるヒトG−CSFの製造例) 本出願人によって微工研に寄託されているエシエリヒ
ア・コリ(E.Coli)x1776R−2株(FERM BP−955)か
ら切り出してきたヒトG−CSF遺伝子を有するcDNA断片
をベクターpdKCRに組み込みpHGV2プラスミドとした後こ
れをSalIで処理し、次いでDNAポリメラーゼーklenow断
片を反応させる。
Reference Example 2 (Production example of human G-CSF by genetic modification) Human isolated from E. coli x1776R-2 strain (FERM BP-955), which has been deposited by the present applicant with the National Institute of Fine Arts and Sciences. A cDNA fragment having the G-CSF gene is incorporated into a vector pdKCR to prepare a pHGV2 plasmid, which is then treated with SalI, and then reacted with a DNA polymerase klenow fragment.

このDNAにEcoRIリンカーを付加し、再びEcoRIで部分
消化した後、アガロースゲル電気泳動にて約2.7kbのフ
ラグメントを回収する。
After adding an EcoRI linker to the DNA and partially digesting it again with EcoRI, a fragment of about 2.7 kb is recovered by agarose gel electrophoresis.

一方、pAdD26SVpAプラスミド(kaufman,R.G.&Sharp,
P,A.(1982)Mol.Cell.Biol,2巻1304〜1319)をEcoRIで
処理し、BAP処理し、脱リン酸する。次でフェノール処
理後電気泳動でpAdD26SVpAのEcoRI断片を回収した。
On the other hand, pAdD26SVpA plasmid (kaufman, RG & Sharp,
P, A. (1982) Mol. Cell. Biol, Vol. 2, 1304-1319) is treated with EcoRI, BAP-treated, and dephosphorylated. Next, after treatment with phenol, the EcoRI fragment of pAdD26SVpA was recovered by electrophoresis.

上記の2.7kb断片とpAdD26SVpA断片をアニールし、E.c
oli DHI株に塩化ルビジウム法により形質転換してpHGV
2−dhfrプラスミドを得た。
Anneal the above 2.7 kb fragment and the pAdD26SVpA fragment, Ec
oli DHI strain by the rubidium chloride method to transform pHGV
The 2-dhfr plasmid was obtained.

つぎにCHO細胞(dhfr-株、コロンビア大学Dr.L.chasi
nより入手)を9cm径のプレート(Nunc社製)中10%仔牛
血清を含むα最小必須倍地(α−MEM,アデノシン、デオ
キシアデノシン、チミジン添加)で培養増殖し、これを
リン酸−カルシウム法(Wigle等、Cell14巻725頁(197
8))によって形質転換した。
Next, CHO cells (dhfr - strain, Columbia University Dr.L.chasi
n) (available from Nunc) in a 9 cm-diameter plate (Nunc) and cultured on α-minimal essential medium (α-MEM, adenosine, deoxyadenosine, thymidine added) containing 10% calf serum. (Wigle et al., Cell Vol. 14, p. 725 (197
8)).

即ち、前記のpHGV2−dhfrプラスミド1μgにキヤリ
アーDNA(子牛胸線DNA)を適量加えて、TE溶液375μ
に溶解し1MCaCl2125μを加える。3〜5分氷上で冷や
し500μの2×HBS(20mM Hepes、280mM NaCl、1.5mM
リン酸緩衝液)を加え再び氷冷後、上記のCHO細胞培養
液1mlと混合し、プレートに移し、CO2インキュベーター
中で9時間培養する。
That is, an appropriate amount of carrier DNA (calf chestline DNA) was added to 1 μg of the aforementioned pHGV2-dhfr plasmid, and 375 μl of TE solution was added.
And add 1 μM CaCl 2 125 μl. Cool on ice for 3-5 minutes and 500μ of 2 × HBS (20 mM Hepes, 280 mM NaCl, 1.5 mM
(Phosphate buffer) was added, and after ice-cooling again, the mixture was mixed with 1 ml of the above CHO cell culture solution, transferred to a plate, and cultured in a CO 2 incubator for 9 hours.

以下洗浄、20%グリセロール含有TBS(Tris−buffere
d saline)添加、再び洗浄した後非選択培地(前出α−
MEM培地、ヌクレオシド添加)を添加して2日間インキ
ュベートし、選択培地で1:10に細胞を分割した。次いで
2日毎に選択培地(ヌクレオシド無添加)にて培地交換
を行いながら培養を続行し生じた集塊(foci)を選別し
て新しいプレートに移した。
Washing, TBS containing 20% glycerol (Tris-buffere
d saline), and after washing again, a non-selective medium (α-
(MEM medium, nucleosides were added), and the mixture was incubated for 2 days, and the cells were split 1:10 in the selective medium. Subsequently, the culture was continued while changing the medium with a selection medium (without adding nucleosides) every two days, and the resulting foci were selected and transferred to a new plate.

新しいプレートでは0.02μMメトトレキセート(MT
X)存在下で増殖し再び0.1μMMTX存在下で増殖させてク
ローニングを行った。
New plates contain 0.02 μM methotrexate (MT
X) The cells were grown in the presence and again grown in the presence of 0.1 μMMTX for cloning.

更にクローニングを続けた結果10mg/以上のヒトG
−CSFの生産を確認した。
As a result of continuing cloning, human G
-The production of CSF was confirmed.

なお、精製、検定は特願昭60−269456号明細書の実施
例2及び15の記載の方法によって行った。
Purification and assay were performed by the methods described in Examples 2 and 15 of Japanese Patent Application No. 60-269456.

実験例1 〔顆粒球の殺黒色腫細胞(HMV)効果の添加抗HMV血清及
びヒトG−CSF濃度変動の影響〕 dextran沈降法、Ficoll−Hypaque(1.077)重層遠心
法、低張ショック赤血球除去法を用いて、健常者末梢血
顆粒球を分離した(純度及び生細胞率90%以上)。分離
された細胞に種々の濃度のヒトG−CSFを添加し培養液
中で37℃、1時間インキュベートした後、洗浄し、ヒト
成熟顆粒球の調製をした。
Experimental Example 1 [Addition of melanoma cell (HMV) effect of granulocytes on the effect of fluctuation of anti-HMV serum and human G-CSF concentration] dextran sedimentation method, Ficoll-Hypaque (1.077) double layer centrifugation method, hypotonic shock erythrocyte removal method Was used to separate peripheral blood granulocytes from healthy subjects (purity and viable cell rate of 90% or more). Various concentrations of human G-CSF were added to the separated cells, incubated at 37 ° C. for 1 hour in a culture solution, and then washed to prepare human mature granulocytes.

次に一定数のヒト悪性黒色腫細胞株(HMV)をマイク
ロプレート中で培養し、生細胞が充分にウエル底に付着
したところで表1に示す各濃度のウサギ正常血清又は抗
HMV血清と上記の調製済みの一定数の成熟顆粒球を添加
し、37℃,24時間培養した。その後各ウエルを培養液で
洗浄し、付着して生存している細胞の数を染色後算定し
た。結果を表1に示す。
Next, a certain number of human malignant melanoma cell lines (HMV) were cultured in a microplate, and when the viable cells were sufficiently attached to the well bottom, rabbit normal serum or anti-rabbit at each concentration shown in Table 1 was obtained.
HMV serum and the above-prepared fixed number of mature granulocytes were added and cultured at 37 ° C. for 24 hours. Thereafter, each well was washed with a culture solution, and the number of adherent and surviving cells was calculated after staining. Table 1 shows the results.

表1から明らかな通り、ヒトG−CSFを添加し調製し
た顆粒球は無添加の場合に比べ約2〜4倍の殺HMV効果
が認められ、且つ抗HMV血清を添加するとその傾向がい
っそう顕著となる。
As is evident from Table 1, granulocytes prepared by adding human G-CSF exhibited about 2 to 4 times the HMV killing effect as compared to the case without the addition, and the tendency was more remarkable when anti-HMV serum was added. Becomes

又、ヒトG−CSFとのインキュベートによる顆粒球の
殺HMV効果の増強の程度にはヒトG−CSFの濃度と明らか
な相関がみられる。
Further, the degree of enhancement of the HMV killing effect of granulocytes by incubation with human G-CSF has a clear correlation with the concentration of human G-CSF.

これらの結果はヒトG−CSFがヒト成熟顆粒球の殺HMV
作用を著しく亢進するこを明らかにしている。
These results indicate that human G-CSF kills human mature granulocytes
It has been shown to significantly enhance the action.

実験例2 〔顆粒球の殺黒色腫細胞効果と添加ヒトG−CSF及び抗H
MV血清濃度変動の影響〕 一定数のHMVをマイクロプレート中で培養し、生細胞
が充分にウエル底に付着したところで表2に示す各濃度
の抗HMV血清又は正常血清を添加し、次いで実験例1と
同様にして調製した活性化顆粒球又は非活性化顆粒球を
加え、37℃,24時間インキュベートした。その後各ウエ
ルを培養液で洗浄し付着生存している細胞の数を染色後
算定した。結果を表2に示す。
Experimental Example 2 [Melanoma cell effect of granulocytes and added human G-CSF and anti-H
Effect of MV Serum Concentration Fluctuation] A certain number of HMVs were cultured in a microplate, and when viable cells sufficiently adhered to the well bottoms, anti-HMV serum or normal serum at each concentration shown in Table 2 was added, and then an experimental example Activated or non-activated granulocytes prepared in the same manner as in 1 were added and incubated at 37 ° C. for 24 hours. Thereafter, each well was washed with a culture solution, and the number of cells surviving adherence was calculated after staining. Table 2 shows the results.

表2より明らかな通り、殺HMV効果は正常血清の存在
下では影響されないが、抗HMV血清の存在下ではその濃
度に依存して最高約30倍に増強される。
As is clear from Table 2, the HMV killing effect is not affected in the presence of normal serum, but is enhanced up to about 30-fold in the presence of anti-HMV serum depending on its concentration.

又、実験例1の結果と同様にヒトG−CSFで活性化さ
れた顆粒球はヒトG−CSFを用いた非活性の顆粒球に比
べ殺HMV効果が正常血清添加下でも2倍以上優れてお
り、この差は抗HMV血清存在下ではより顕著になること
がわかる。
Further, similarly to the results of Experimental Example 1, the granulocytes activated with human G-CSF had an HMV killing effect that was at least twice as high as that of inactive granulocytes using human G-CSF even under normal serum addition. This indicates that this difference becomes more pronounced in the presence of anti-HMV serum.

これらの結果はヒトG−CSFが抗HMV血清存在下でヒト
成熟顆粒球の殺HMV作用を顕著に亢進せしめる働きがあ
ることを示している。
These results indicate that human G-CSF has a function of significantly enhancing the HMV killing effect of human mature granulocytes in the presence of anti-HMV serum.

実験例3 〔ヒトG−CSFの有無と顆粒球又はリンパ球の各種腫瘍
細胞に対する殺効果〕 実験例1と同様にして健常者末梢血顆粒球及びリンパ
球を分離し、ヒトG−CSFを添加後インキュベートし、
活性化させた。コントロールとしてはヒトG−CSFを化
せずに同様にインキュベートしたものを用意した。
Experimental Example 3 [Presence / absence of human G-CSF and killing effect of granulocytes or lymphocytes on various tumor cells] Peripheral blood granulocytes and lymphocytes of healthy subjects were separated in the same manner as in Experimental Example 1, and human G-CSF was added. Incubate after
Activated. As a control, a human G-CSF was prepared in the same manner without incubation.

一方、表3に示す各腫瘍細胞に上記の活性化顆粒球又
は非活性化顆粒球もしくはリンパ球を加え、インキュベ
ートし、各種腫瘍細胞のDNA合成を[3H]サイミジンの
取り込み率でみた。結果を表3に示す。
On the other hand, the activated granulocytes, non-activated granulocytes or lymphocytes described above were added to each of the tumor cells shown in Table 3, and incubated, and the DNA synthesis of various tumor cells was examined based on the incorporation rate of [ 3 H] thymidine. Table 3 shows the results.

表3より明らかな通り、HMVだけでなく他の腫瘍細胞
に対してもヒトG−CSFは成熟顆粒球の殺腫瘍細胞作用
を亢進させることが認められる。
As is clear from Table 3, it can be seen that human G-CSF enhances the tumoricidal cell effect of mature granulocytes not only on HMV but also on other tumor cells.

一方リンパ球には顆粒球のような効果は認められな
い。
On the other hand, lymphocytes do not have the same effect as granulocytes.

上記の実験の結果をまとめると前述した通り、 ヒトG−CSF存在下で前孵置した顆粒球は、非存在下
で前孵置した顆粒球に比べて約2〜4倍の殺HMV効果が
認められた。
Summarizing the results of the above experiments, as described above, granulocytes pre-incubated in the presence of human G-CSF have about 2 to 4 times the HMV killing effect compared to granulocytes pre-incubated in the absence of human G-CSF. Admitted.

殺HMV効果は正常ウサギ血清の存在下で影響されない
が、抗HMV血清の存在下ではその濃度に依存して最高10
〜30倍に増強した。
HMV killing effect is not affected in the presence of normal rabbit serum, but up to 10 in the presence of anti-HMV serum, depending on its concentration
Up to 30 times.

ヒトG−CSFとの前孵置による顆粒球の殺HMV効果の増
強の程度は、ヒトG−CSFの濃度と明らかな相関があっ
た。
The degree of enhancement of the HMV killing effect of granulocytes by pre-incubation with human G-CSF had a clear correlation with the concentration of human G-CSF.

上記の傾向はHMV以外の腫瘍細胞に対しても同様に認
められた。
The above tendency was similarly observed for tumor cells other than HMV.

したがって、ヒトG−CSFはヒト成熟顆粒球の殺腫瘍
細胞作用(特に抗腫瘍血清存在下で)を著しく亢進させ
ることが確認された。
Therefore, it was confirmed that human G-CSF significantly enhances the tumoricidal cell action of human mature granulocytes (particularly in the presence of antitumor serum).

実施例1(製剤例) 参考例1によって得られ且つ精製されたヒトG−CSF
を無菌処理した後−20℃で凍結された凍結物を用いて注
射剤とした。
Example 1 (Formulation Example) Human G-CSF obtained and purified according to Reference Example 1
Was aseptically treated and used as an injection using a frozen product frozen at -20 ° C.

実施例2(製剤例) 参考例2によって得られ且つ精製されたヒトG−CSF
を無菌操作で10mlバイアル瓶に5ml充填し、−20℃で凍
結乾燥後ゴム栓にて施栓した凍結乾燥物を用いて注射剤
とした。
Example 2 (Formulation Example) Human G-CSF obtained and purified according to Reference Example 2
Was filled in a 10 ml vial via aseptic operation, lyophilized at −20 ° C., and used as an injection using a lyophilized material sealed with a rubber stopper.

〔発明の効果〕〔The invention's effect〕

本発明の抗悪性腫瘍剤は人の体にもともと存在してい
るヒト成熟顆粒球の抗腫瘍作用を純化されたヒトG−CS
Fによって増強し、且つ抗腫瘍細胞血清を併存せしめる
ことによって、さらに一段と増強させ、この作用にもと
づいて悪性腫瘍を治療しようとするものであり、副作用
の少ないガン治療剤となる期待が大きい。
The anti-neoplastic agent of the present invention is a human G-CS purified from the antitumor effect of human mature granulocytes originally present in the human body.
It is intended to further enhance malignant tumors based on this effect by enhancing with F and coexisting with antitumor cell serum, and is expected to be a cancer therapeutic agent with few side effects.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C12R 1:91) ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C12R 1:91)

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ヒト顆粒球コロニー刺激因子を有効成分と
する抗悪性腫瘍剤。
(1) An antineoplastic agent comprising human granulocyte colony stimulating factor as an active ingredient.
【請求項2】悪性腫瘍が悪性黒色腫であることを特徴と
する特許請求の範囲第1項記載の抗悪性腫瘍剤。
2. The anti-malignant tumor agent according to claim 1, wherein the malignant tumor is malignant melanoma.
【請求項3】ヒト顆粒球コロニー刺激因子が好中球コロ
ニー刺激因子であることを特徴とする特許請求の範囲第
1項記載の抗悪性腫瘍剤。
3. The antineoplastic agent according to claim 1, wherein the human granulocyte colony stimulating factor is a neutrophil colony stimulating factor.
【請求項4】ヒト顆粒球コロニー刺激因子がヒト顆粒球
コロニー刺激因子産生細胞の培養上清から得られたもの
であることを特徴とする特許請求の範囲第1項記載の抗
悪性腫瘍剤。
4. The antineoplastic agent according to claim 1, wherein the human granulocyte colony stimulating factor is obtained from a culture supernatant of a human granulocyte colony stimulating factor producing cell.
【請求項5】ヒト顆粒球コロニー刺激因子が次の理化学
的性質を有するものであることを特徴とする特許請求の
範囲第1項記載の抗悪性腫瘍剤。 「理化学的性質」 分子量:ドデシル硫酸ナトリウム−ポリアクリルアミ
ドゲル電気泳動法による測定で19,000±1,000。 等電点:pI=5.5±0.1,pI=5.8±0.1,pI=6.1±0.1の
三つの等電点のうち少なくとも1つを有する。 紫外部吸収:280nmに極大吸収を有し、250nmに極小値
をもつ。 N端末から21残基目迄のアミノ酸配列が次の如くであ
る。 H2N−Thr−Pro−Leu−Gly−Pro−Ala−Ser−Ser−Leu−
Pro−Gln−Ser−Phe−Leu−Leu−Lys−Cys−Leu−Glu−
Gln−Val−
5. The antineoplastic agent according to claim 1, wherein the human granulocyte colony stimulating factor has the following physicochemical properties. "Physicochemical properties" Molecular weight: 19,000 ± 1,000 as measured by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Isoelectric point: has at least one of three isoelectric points of pI = 5.5 ± 0.1, pI = 5.8 ± 0.1, and pI = 6.1 ± 0.1. Ultraviolet absorption: having a maximum absorption at 280 nm and a minimum at 250 nm. The amino acid sequence from the N terminal to the 21st residue is as follows. H 2 N-Thr-Pro- Leu-Gly-Pro-Ala-Ser-Ser-Leu-
Pro-Gln-Ser-Phe-Leu-Leu-Lys-Cys-Leu-Glu-
Gln−Val−
【請求項6】ヒト顆粒球コロニー刺激因子がヒト顆粒球
コロニー刺激因子活性を有するポリペプチドをコードす
る遺伝子を含む組換えベクターを含有する形質転換体か
ら産生されたヒト顆粒球コロニー刺激因子活性を有する
ポリペプチドまたは糖蛋白質であることを特徴とする特
許請求の範囲第1項に記載の抗悪性腫瘍剤。
6. The human granulocyte colony stimulating factor activity of a human granulocyte colony stimulating factor produced from a transformant containing a recombinant vector containing a gene encoding a polypeptide having human granulocyte colony stimulating factor activity. 2. The antineoplastic agent according to claim 1, which is a polypeptide or glycoprotein having the same.
【請求項7】ヒト顆粒球コロニー刺激因子活性を有する
ポリペプチドが下記のアミノ酸配列またはその一部で表
わされる特許請求の範囲第1項に記載の抗悪性腫瘍剤。 (但しmは0又は1を表わし、nは0又は1を表わす)
7. The antineoplastic agent according to claim 1, wherein the polypeptide having human granulocyte colony stimulating factor activity is represented by the following amino acid sequence or a part thereof. (However, m represents 0 or 1, n represents 0 or 1)
【請求項8】ヒト顆粒球コロニー刺激因子活性を有する
糖蛋白質が下記のアミノ酸配列またはその一部で表わさ
れるポリペプチドと糖鎖部とを有するものである特許請
求の範囲第1項に記載の抗悪性腫瘍剤。 (ただしmは0または1を表わす)。
8. The method according to claim 1, wherein the glycoprotein having human granulocyte colony stimulating factor activity has a polypeptide represented by the following amino acid sequence or a part thereof and a sugar chain portion. Antineoplastic agent. (Where m represents 0 or 1).
JP62226450A 1986-09-13 1987-09-11 Antineoplastic agent Expired - Lifetime JP2589094B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP21503586 1986-09-13
JP61-215035 1986-09-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8184245A Division JP2697725B2 (en) 1986-09-13 1996-06-26 Malignant tumor treatment kit

Publications (2)

Publication Number Publication Date
JPS63190830A JPS63190830A (en) 1988-08-08
JP2589094B2 true JP2589094B2 (en) 1997-03-12

Family

ID=16665674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62226450A Expired - Lifetime JP2589094B2 (en) 1986-09-13 1987-09-11 Antineoplastic agent

Country Status (1)

Country Link
JP (1) JP2589094B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4002792A1 (en) * 1990-01-31 1991-08-01 Teves Gmbh Alfred DEVICE FOR DETERMINING THE TEXTURE OF A PRESSURE TRANSMISSION LIQUID
CA2335109A1 (en) * 2000-04-12 2001-10-12 Chemokine Therapeutics Corporation Cxcr4 agonist treatment of hematopoietic cells

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.Clin.Invest.,Vol.69(1982)P.270−276

Also Published As

Publication number Publication date
JPS63190830A (en) 1988-08-08

Similar Documents

Publication Publication Date Title
JP2579981B2 (en) M-CSF production method
KR950003492B1 (en) Thrombus control agent
JPH0725689B2 (en) Sustained-release preparation containing granulocyte colony-stimulating factor
KR100496460B1 (en) Polypeptide
US5582822A (en) Treatment of leukemia using interleukin 2
US5545536A (en) Colony-stimulating factor derivatives
EP0230980A2 (en) Pharmaceutical agent for promoting the recovery of hemopoietic capacity
JPS62174026A (en) Remedy for leukpenia
JPH09289896A (en) Protein for inducing production of interferon-gamma in immunocompetent cell
JP3955352B2 (en) Osteoclast formation inhibitor
EP0231819A2 (en) Pharmaceutical agent for the treatment of myelogenous leukemia
JP2589094B2 (en) Antineoplastic agent
EP0072541A2 (en) Human leukocyte interferons, process for their microbial production, intermediates therefor and compositions containing them
IL90975A (en) Non-glycosylated, recombinant human il2 in reduced form, the process for obtaining it and its use as a medicament
JP2907447B2 (en) Antithrombotic agent
JP2697725B2 (en) Malignant tumor treatment kit
EP0447353B1 (en) A pharmaceutical preparation for the maturation of prothymocytes
EP0401379B1 (en) STABILIZED COMPOSITION OF INTERLEUKIN-1$g(b)
JPH0618779B2 (en) Hematopoietic function recovery promoter
JPH0378847B2 (en)
JP2838867B2 (en) Stem cell proliferation promoter
JP3993652B2 (en) Sensitive disease agent
KR100491366B1 (en) A protein that induces the production of interferon-gamma by immune cells
JPH0618780B2 (en) Myeloid leukemia inhibitor
JPS62185098A (en) Polypeptide having interleukin ii activity

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term