JP2587765B2 - Method and apparatus for measuring dimensions of mechanical parts - Google Patents

Method and apparatus for measuring dimensions of mechanical parts

Info

Publication number
JP2587765B2
JP2587765B2 JP3470393A JP3470393A JP2587765B2 JP 2587765 B2 JP2587765 B2 JP 2587765B2 JP 3470393 A JP3470393 A JP 3470393A JP 3470393 A JP3470393 A JP 3470393A JP 2587765 B2 JP2587765 B2 JP 2587765B2
Authority
JP
Japan
Prior art keywords
measuring
measurement
measurement object
probe
measuring machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3470393A
Other languages
Japanese (ja)
Other versions
JPH06229726A (en
Inventor
一男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3470393A priority Critical patent/JP2587765B2/en
Publication of JPH06229726A publication Critical patent/JPH06229726A/en
Application granted granted Critical
Publication of JP2587765B2 publication Critical patent/JP2587765B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ギア、ベアリング、ブ
ッシュなどの円筒状の機械部品の寸法を測定する方法及
び装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring dimensions of cylindrical mechanical parts such as gears, bearings and bushes.

【0002】[0002]

【従来の技術】ギア、ベアリング、ブッシュなどの円筒
状の機械部品の寸法測定、例えば内径測定或いは外径測
定などは、製造元であるメーカーでの出荷検査などで
は、エアーマイクロや電気マイクロなどの測定器で自動
測定が実施されている場合が多い。しかし、ユーザーが
それら機械部品を使用前に寸法検査を行う場合には、ほ
とんどマイクロメータなどで人力で測定している。
2. Description of the Related Art Dimensional measurement of cylindrical mechanical parts such as gears, bearings, and bushes, such as inner diameter measurement or outer diameter measurement, is performed by air micros, electric micros, etc. in a shipping inspection by a manufacturer that is a manufacturer. In many cases, automatic measurement is performed by the instrument. However, when a user performs a dimensional inspection on these mechanical parts before use, they are mostly measured manually with a micrometer or the like.

【0003】これは、メーカーの製造ラインでは同一の
寸法の製品が多量に流れることから、エアーマイクロや
電気マイクロなどの測定器と測定物との位置関係を最適
に配置できるのに対して、ユーザーがそれらの機械部品
を使用前に寸法検査を行う場合には、使用する対象によ
って機械部品の寸法が毎度異なる場合が多いことから、
測定器を測定の度に位置調整する必要があり、その面倒
さが測定の自動化を阻害している。ユーザーがマイクロ
メータなどの道具を使って寸法測定を行う場合には、自
ら測定物に対する姿勢を変えることによりマイクロメー
タを測定物に対して垂直になるようにして、測定器と測
定物との位置関係を最適な状態にしているのである。
[0003] This is because a large number of products having the same dimensions flow in a manufacturer's production line, so that the positional relationship between a measuring instrument such as an air micro or an electric micro and an object to be measured can be optimally arranged. However, when performing dimensional inspection of these machine parts before use, since the dimensions of the machine parts often differ depending on the object to be used,
It is necessary to adjust the position of the measuring instrument every time the measurement is performed, and the trouble is hindering the automation of the measurement. When the user performs dimension measurement using a tool such as a micrometer, the user changes his or her attitude with respect to the workpiece so that the micrometer is perpendicular to the workpiece, and the position between the measuring instrument and the workpiece is changed. The relationship is in an optimal state.

【0004】[0004]

【発明が解決しようとする課題】大規模な工場、例えば
製鉄所などでは、機械設備の長期にわたる整備が重要で
あり、そのために多くの整備要員が必要となっている。
機械部品の寸法測定も機械設備の分解後の整備の際には
必ず行われる作業で、作業頻度としてはかなり高いもの
があり、この分野の寸法測定の自動化が強く望まれてい
た。
In a large-scale factory, for example, a steel mill, long-term maintenance of mechanical equipment is important, and therefore, a large number of maintenance personnel are required.
The measurement of the dimensions of machine parts is also an operation that is always performed at the time of maintenance after disassembly of mechanical equipment, and the frequency of operation is quite high, and automation of dimension measurement in this field has been strongly desired.

【0005】このような高精度の寸法測定では、測定物
に対する測定器の位置関係を最適にする必要がある。マ
イクロメータなどで寸法測定する場合には、作業者が測
定物に対して測定器を垂直にして測定して正確な寸法を
得ている。ユーザーでは毎度、大きさ、形が異なる機械
部品を使用するので、自動で寸法測定を行おうとする
と、測定物に対して最適な位置に測定器を位置させるの
に多くの労力を要してしまう。この点が、これまでユー
ザーで寸法検査の自動化が行われていない最大の要因で
ある。
In such high-precision dimension measurement, it is necessary to optimize the positional relationship of the measuring device with respect to the measured object. When measuring a dimension with a micrometer or the like, an operator measures the measuring instrument vertically with respect to a measured object to obtain an accurate dimension. Every time a user uses mechanical parts with different sizes and shapes, trying to measure the dimensions automatically requires a lot of effort to position the measuring instrument at the optimum position with respect to the workpiece. . This is the biggest factor that the user has not automated dimensional inspection.

【0006】本発明は、このような問題を解決し、ギ
ア、ベアリング、ブッシュなどの円筒状の機械部品につ
いて、測定物の大きさが毎回異なる場合でも、内径測定
や外径測定などの寸法測定を自動で高精度に、しかも測
定物の表面の光沢などの影響を受けずに行うことを可能
にする機械部品の寸法測定方法及びその装置を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention solves such a problem, and measures dimensions such as inner diameter measurement and outer diameter measurement of cylindrical mechanical parts such as gears, bearings, and bushes, even when the size of an object to be measured is different each time. It is an object of the present invention to provide a method and an apparatus for measuring the dimensions of mechanical parts, which can automatically perform the measurement with high accuracy and without being affected by the gloss of the surface of the object to be measured.

【0007】[0007]

【課題を解決するための手段】このための本発明方法
は、三次元測定機の測定エリア内に円筒状の測定物をそ
の軸方向を鉛直方向に向けて設置し、前記測定物の概略
の空間内での位置と概略の寸法とを上方向及び横方向か
ら撮影した画像情報で事前に認識し、この認識情報から
前記三次元測定機のプローブの移動パスを計算して該三
次元測定機を運転する機械部品の寸法測定方法であっ
て、前記測定物を撮影方向とは反対側から照明し、その
照明による光を前記測定物が遮ることにより形成される
影で該測定物の概略の位置と概略の寸法とを認識するも
のである。
According to the method of the present invention, a cylindrical measuring object is set in a measuring area of a three-dimensional measuring machine with its axial direction oriented in a vertical direction. The position in the space and the approximate dimensions are recognized in advance with image information captured from above and in the lateral direction, and the movement path of the probe of the coordinate measuring machine is calculated from the recognized information to calculate the moving path of the probe. A method for measuring the dimensions of a mechanical part that operates, wherein the object to be measured is illuminated from the side opposite to the photographing direction, and the outline of the object to be measured is shaded by blocking the light from the illumination by the object to be measured. It recognizes the position and the approximate dimensions.

【0008】また本発明装置は、測定エリア内に円筒状
の測定物がその軸方向を鉛直方向に向けて設置される三
次元測定機と、前記測定物を上方向及び横方向から撮影
する撮影手段と、この撮影手段による画像情報で前記測
定物の概略の空間内での位置と概略の寸法とを認識する
画像処理部と、この画像処理部による認識情報から前記
三次元測定機のプローブの移動パスを計算する三次元測
定機動作指令部とを備えた機械部品の寸法測定装置であ
って、前記測定物に対して前記撮影手段と反対側に照明
手段を設け、この照明手段からの光を前記測定物が遮る
ことにより形成される影を前記撮影手段で撮影するもの
である。
Further, the present invention provides a three-dimensional measuring machine in which a cylindrical object to be measured is installed in a measuring area with its axial direction oriented in a vertical direction, and an imaging device for photographing the object from above and from below. Means, an image processing unit for recognizing a position and an approximate size of the measured object in a general space with image information obtained by the imaging unit, and a probe of the CMM from the recognition information obtained by the image processing unit. A dimension measuring device for a mechanical part, comprising: a coordinate measuring machine operation command unit for calculating a movement path, wherein an illuminating means is provided on a side opposite to the photographing means with respect to the object to be measured, and Is photographed by the photographing means.

【0009】[0009]

【作用】本発明によれば、三次元測定機の測定エリア内
に円筒状の測定物をその軸方向を鉛直方向に向けて置
き、撮影手段により測定物を上方向及び横方向から撮影
する。その画像情報から画像処理部は測定物の概略の空
間内での位置と概略の寸法とを認識し、この認識情報を
三次元測定機動作指令部に渡す。三次元測定機動作指令
部は認識情報に基づいて三次元測定機のプローブの移動
のしかたを計算し、これによって、三次元測定機は測定
物の正確な寸法を自動的に測定する。その際、照明手段
により測定物を撮影方向とは反対側から照明し、その照
明による光を測定物が遮ることによりできる影を、測定
物に対して照明手段の反対側に位置する撮影手段で撮影
する。これにより、測定物を画像で認識しようとする際
に誤った認識を行う原因となる測定物の表面の光沢など
の影響を受けずに、測定物の位置、形状を正確に認識す
ることが可能になる。
According to the present invention, a cylindrical object to be measured is placed in the measuring area of the coordinate measuring machine with its axial direction oriented in the vertical direction, and the object to be measured is photographed by the photographing means from above and from the side. From the image information, the image processing unit recognizes the position of the measured object in the approximate space and the approximate dimensions, and passes the recognition information to the coordinate measuring machine operation command unit. The coordinate measuring machine operation command unit calculates the movement of the probe of the coordinate measuring machine based on the recognition information, whereby the coordinate measuring machine automatically measures the exact dimensions of the measured object. At that time, the object to be measured is illuminated from the side opposite to the imaging direction by the illuminating means, and a shadow formed by blocking the light by the illumination by the object is illuminated by the imaging means located on the opposite side of the illuminating means with respect to the object Shoot. As a result, it is possible to accurately recognize the position and shape of the measured object without being affected by the gloss of the surface of the measured object, which causes incorrect recognition when trying to recognize the measured object with an image become.

【0010】[0010]

【実施例】図1は本発明の実施例における寸法測定装置
の概略図である。
FIG. 1 is a schematic view of a dimension measuring apparatus according to an embodiment of the present invention.

【0011】機械部品測定物1は、ギア、ベアリング、
ブッシュなどで、三次元測定機2の測定エリア内に置か
れている。測定物1の形状は基本的に円筒状であり、軸
方向が鉛直方向に向いて置かれている。
[0011] The machine component measurement object 1 includes a gear, a bearing,
It is placed in the measurement area of the coordinate measuring machine 2 by a bush or the like. The shape of the measurement object 1 is basically cylindrical, and the measurement object 1 is placed so that the axial direction faces the vertical direction.

【0012】三次元測定機2は、プローブ3を三次元空
間内で移動させ、プローブ3を測定物1に押し当てて、
その点の空間上の三次元位置を高精度空間位置検出機構
で検出して、測定物1の正確な寸法を測定するものであ
る。
The coordinate measuring machine 2 moves the probe 3 in a three-dimensional space, presses the probe 3 against the object 1,
The three-dimensional position of the point in the space is detected by a high-precision spatial position detecting mechanism, and the accurate dimension of the measured object 1 is measured.

【0013】照明装置4及び照明装置5は、それぞれ測
定物1の横方向及び下方向に設けられており、発光面の
面積は測定物1よりも大きく、それぞれの照明装置4及
び5の反対側から見た場合、測定物1の影が形成できる
ようにしてある。照明装置4及び5の光源としては、蛍
光灯や白熱ランプなどが使用可能であり、明るさのむら
を減少させるためにはその前面に拡散板を配置するとよ
い。
The illumination device 4 and the illumination device 5 are provided in the lateral direction and the downward direction of the measurement object 1, respectively, and the area of the light emitting surface is larger than that of the measurement object 1, and the opposite side of the illumination devices 4 and 5 respectively. When viewed from above, a shadow of the measurement object 1 can be formed. As a light source of the lighting devices 4 and 5, a fluorescent lamp, an incandescent lamp, or the like can be used. In order to reduce uneven brightness, a diffuser plate may be provided on the front surface.

【0014】横方向テレビカメラ6及び上方向テレビカ
メラ7は、工業用のCCDカメラであり、照明装置4及
び5からの光が測定物1で遮られてできる影をそれぞれ
撮像して測定物1の概略位置、寸法を認識するためのも
のである。テレビカメラ6及び7の撮像素子は、測定物
1を高精度に認識するためにはできるだけ画素数の多い
ほうがよい。
The horizontal television camera 6 and the upward television camera 7 are industrial CCD cameras. The horizontal television camera 6 and the upward television camera 7 each capture an image of a shadow formed by the light from the lighting devices 4 and 5 being blocked by the measurement object 1 and measure the shadow of the measurement object 1. This is for recognizing the approximate position and size of. The image sensors of the television cameras 6 and 7 preferably have as many pixels as possible in order to recognize the object 1 with high accuracy.

【0015】測定物1が円筒状であることから、測定物
1を軸方向が鉛直方向に向くように置き、測定物1に対
して上方向及び横方向の2方向から測定物1を観察する
ことで、測定物1の概略の空間内での位置、概略の寸法
を認識することが可能である。
Since the measured object 1 is cylindrical, the measured object 1 is placed so that the axial direction is oriented vertically, and the measured object 1 is observed from two directions, that is, the upper direction and the lateral direction. Thereby, it is possible to recognize the position of the measurement object 1 in the approximate space and the approximate dimensions.

【0016】画像処理部8は、測定物認識用の横方向テ
レビカメラ6及び上方向テレビカメラ7で撮影した測定
物1の位置、寸法等を検出するためのものである。
The image processing section 8 is for detecting the position, size, etc. of the object 1 photographed by the horizontal television camera 6 and the upward television camera 7 for object recognition.

【0017】三次元測定機動作指令部9は、画像処理部
8で検出した測定物1に関する情報に基づき、三次元測
定機2のプローブ3をどのように動かして寸法測定を行
うかを計算し、三次元測定機2に動作指令を出力するた
めのものである。
The coordinate measuring machine operation command unit 9 calculates how to move the probe 3 of the coordinate measuring machine 2 to perform the dimension measurement based on the information on the workpiece 1 detected by the image processing unit 8. , For outputting an operation command to the coordinate measuring machine 2.

【0018】要するに本実施例の特徴とするところは、
三次元測定機2の測定エリア内に円筒状の未知の寸法の
機械部品測定物1をその軸方向を鉛直方向に向けて置
き、この測定物1を上方向テレビカメラ7及び横方向テ
レビカメラ6で撮影し、その画像情報から測定物1の概
略の空間内での位置と概略の寸法とを画像処理部8で認
識し、この認識情報を三次元測定機動作指令部9に渡す
ことにより三次元測定機2のプローブ3の移動のしかた
を計算し、これによって、測定物1の正確な寸法を三次
元測定機2で自動的に測定する方法及び装置であって、
測定物1の下方向及び横方向に照明装置5及び4を設
け、この照明装置5及び4からの光を測定物1が遮るこ
とによりできる影を、測定物1に対して照明装置5及び
4の反対側に位置する上方向及び横方向のカメラ7及び
6で撮影することにより、測定物1を画像で認識しよう
とする際に誤った認識を行う原因となる測定物1の表面
の光沢や曲率などの影響を受けずに、測定物1の位置、
形状を正確に認識することを可能にすることである。
In short, the features of this embodiment are as follows.
A cylindrical mechanical component measuring object 1 of unknown dimensions is placed in the measuring area of the coordinate measuring machine 2 with its axial direction oriented vertically, and the measuring object 1 is placed on an upward television camera 7 and a horizontal television camera 6. The image processing unit 8 recognizes the position and approximate dimensions of the measured object 1 in the general space from the image information, and passes the recognized information to the coordinate measuring machine operation command unit 9 to perform tertiary measurement. A method and apparatus for calculating the movement of the probe 3 of the original measuring machine 2 and thereby automatically measuring the accurate dimensions of the workpiece 1 by the coordinate measuring machine 2,
Illumination devices 5 and 4 are provided below and in the lateral direction of the object 1, and shadows formed by blocking the light from the illumination devices 5 and 4 by the object 1 illuminate the illumination devices 5 and 4 with respect to the object 1. By photographing with the upward and lateral cameras 7 and 6 located on the opposite side of the image, the gloss of the surface of the measurement object 1 which causes erroneous recognition when trying to recognize the measurement object 1 as an image, Without being affected by curvature, etc., the position of the workpiece 1
The purpose is to enable accurate recognition of the shape.

【0019】図2は本実施例における画像処理を説明す
る図である。
FIG. 2 is a view for explaining image processing in this embodiment.

【0020】図2(a)は測定物1の外観である。この
測定物1の概略の位置と概略の寸法とを、2台のカメラ
6及び7で撮像した画像をもとに画像処理部8で認識
し、認識情報を三次元測定機動作指令部9に渡す。
FIG. 2A is an external view of the measured object 1. The approximate position and approximate dimensions of the measurement object 1 are recognized by the image processing unit 8 based on the images captured by the two cameras 6 and 7, and the recognition information is transmitted to the coordinate measuring machine operation command unit 9. hand over.

【0021】図2(b)は測定物1の上方向及び横方向
に位置するテレビカメラ7及び6で撮影した測定物1の
像と認識すべき各特徴量である。ここで、Oは水平方向
平面内の測定物1の中心、R1 は測定物1の内径、R2
は測定物1の胴体部の外径、R3 は測定物1のつば部の
外径であり、つば部がない場合はR2 と同じである。H
1 は測定物1の高さであり、H2 はつば部の高さであ
る。
FIG. 2 (b) shows the image of the object 1 photographed by the television cameras 7 and 6 positioned above and in the lateral direction of the object 1, and each feature amount to be recognized. Here, O is the center of the object 1 in the horizontal plane, R 1 is the inner diameter of the object 1, R 2
Is the outer diameter of the body of the object 1, R 3 is the outer diameter of the collar of the object 1, and is the same as R 2 when there is no collar. H
1 is the height of the measured object 1, the height of the H 2 Watsuba unit.

【0022】図3は画像処理による測定物1の認識のフ
ロー図である。
FIG. 3 is a flow chart for recognizing the measured object 1 by image processing.

【0023】まず、測定物1を上方向及び横方向のテレ
ビカメラ7及び6で撮影し、2値化画像とする。次に、
測定物1の概略の空間内の位置、概略の寸法を求める。
First, the object to be measured 1 is photographed by the television cameras 7 and 6 in the upward and lateral directions to obtain a binarized image. next,
The approximate position and approximate dimensions of the object 1 in the space are determined.

【0024】上方向のテレビカメラ7で撮影した画像か
らは、内径R1 とつば部の外径R3とが背景と明確に識
別できる。測定物1が円筒状であることから、その重心
を求めることにより、測定物1の水平面内の中心位置O
を求めることができる。
From the image taken by the television camera 7 in the upward direction, the inner diameter R 1 and the outer diameter R 3 of the collar portion can be clearly distinguished from the background. Since the measured object 1 has a cylindrical shape, the center of gravity O of the measured object 1 in the horizontal plane is obtained by calculating the center of gravity.
Can be requested.

【0025】また、横方向のテレビカメラ6で撮影した
画像からは、測定物1の胴体部の外径R2 、つば部の外
径R3 、測定物1の高さH1 、つば部の高さH2 が求め
られる。胴体部とつば部との識別は、画像上の水平方向
の画素数が大きく変化する点を求めればよい。外径
2 、R3 、高さH1 、H2 は、測定物1の画像が横方
向から見た場合に長方形に見えることから、フェレ径を
画像処理で求めることで得ることができる。
Also, from the image taken by the television camera 6 in the horizontal direction, the outer diameter R 2 of the body of the object 1, the outer diameter R 3 of the collar, the height H 1 of the object 1, the height H 2 is required. The distinction between the body part and the brim part may be obtained by finding a point at which the number of pixels in the horizontal direction on the image greatly changes. The outer diameters R 2 , R 3 and the heights H 1 , H 2 can be obtained by determining the Feret diameter by image processing since the image of the measurement object 1 looks rectangular when viewed from the lateral direction.

【0026】測定物1の画像がコントラスト良く撮影で
きている場合には、このような画像処理を施して、測定
物1の概略の位置、寸法などを求めることができるが、
測定物1が鉄製品などのように部分的或いは全体的に光
沢を持っている場合には、室内や屋外の通常の照明環境
やカメラ6及び7側から測定物1に光を照らす方法で測
定物1を撮像すると、測定物1の光沢のために図4のよ
うに光沢部分10が明るい画像となってしまい、そのま
ま2値化すると異なった形状の測定物と認識してしまう
場合がある。
When the image of the object 1 can be photographed with good contrast, such image processing can be performed to obtain the approximate position and dimensions of the object 1.
When the measured object 1 has a partial or overall gloss such as an iron product, the measurement is performed by illuminating the measured object 1 with light from the normal indoor or outdoor lighting environment or the cameras 6 and 7. When the object 1 is imaged, the glossy portion 10 becomes a bright image as shown in FIG. 4 due to the gloss of the object 1, and if binarized as it is, the object 1 may be recognized as having a different shape.

【0027】測定物1の形状がギア、ベアリング、ブッ
シュなどの機械部品の場合には基本的に円筒状であるの
で、画像撮像用のカメラ6及び7と反対側に配置した照
明装置4及び5で測定物1を照らし、光が測定物1で遮
られてできる影をカメラ6及び7で撮影すると、図2
(b)で示したような測定物1の特徴を明確に表す画像
を得ることができる。本方法によって、円筒状の測定物
1の位置、形状を安定して認識することが可能である。
When the shape of the measurement object 1 is a mechanical part such as a gear, a bearing or a bush, it is basically cylindrical, so that the illuminating devices 4 and 5 arranged on the opposite sides of the cameras 6 and 7 for capturing images. When the object 6 is illuminated by the camera and the camera 6 and 7 photograph the shadow formed by blocking the light by the object 1, FIG.
An image that clearly shows the characteristics of the measurement object 1 as shown in (b) can be obtained. According to this method, the position and shape of the cylindrical measurement object 1 can be stably recognized.

【0028】図5は測定物1の内径測定を行う場合の測
定物1に対する三次元測定機2のプローブ3の動きを示
す図である。図6は内径測定の場合のプローブ3の動き
を説明するフロー図である。図7は測定物1の外径測定
を行う場合の測定物1に対する三次元測定機2のプロー
ブ3の動きを示す図である。
FIG. 5 is a view showing the movement of the probe 3 of the coordinate measuring machine 2 with respect to the measured object 1 when the inner diameter of the measured object 1 is measured. FIG. 6 is a flowchart for explaining the movement of the probe 3 in the case of measuring the inner diameter. FIG. 7 is a diagram showing the movement of the probe 3 of the coordinate measuring machine 2 with respect to the measured object 1 when the outer diameter of the measured object 1 is measured.

【0029】画像処理により事前に測定物1の平面上の
中央点Oと測定物1の概略の内径、外径を求めてあるの
で、三次元測定機2のプローブ3はそれらの情報により
測定物1の表面に近い位置まで高速に移動し、その後、
測定物1の表面に向かって低速に移動してゆき、測定物
1に接触した際の押し圧が一定値を越えた瞬間のプロー
ブ位置を、測定物1上のプローブ位置とする。
Since the center point O on the plane of the measured object 1 and the approximate inner and outer diameters of the measured object 1 have been determined in advance by image processing, the probe 3 of the CMM 2 uses the information to determine the measured object. Move fast to a position close to the surface of 1, then
The probe position at the moment when it moves at a low speed toward the surface of the measurement object 1 and the pressing pressure when it comes into contact with the measurement object 1 exceeds a certain value is defined as the probe position on the measurement object 1.

【0030】測定物1の内径測定を行う場合の三次元測
定機2のプローブ3の経路を図5及び図6で説明する。
The path of the probe 3 of the coordinate measuring machine 2 when measuring the inner diameter of the object 1 will be described with reference to FIGS.

【0031】まず、プローブ3は測定物1の平面上の中
央点Oの鉛直上にある点Q1 へ高速に移動する。次に、
中央点Oの鉛直上で高さhにある高さ方向測定点Q2
高速に移動する。さらに、円周方向の角度θ方向にあり
測定物1の内面の近くにある点Q3 へ高速に移動する。
点Q3 と測定物1の内面との距離は、画像処理によって
検出した中央点Oと概略の内径R1 との検出精度によっ
て異なる。画像処理によって、より高精度な検出ができ
れば、点Q3 と測定物1の内面との距離を近く取ること
ができる。次に、プローブ3を測定物1の内面Pi に向
かって低速に動かしてゆき、測定物1へのプローブ3の
押し圧が一定の値になった点を検出して点Pi の位置を
測定する。点Pi を測定物1の円周方向の複数点で同様
のプローブ移動で検出し、それらの位置測定データを最
小2乗法などの方法で連ねて測定物1の高さhでの円を
求め、その円の直径を内径とする。
First, the probe 3 moves at a high speed to a point Q 1 that is vertically above the center point O on the plane of the measurement object 1. next,
At a height h on the vertical center point O to the height direction measurement point Q 2 moves at high speed. Furthermore, to move in the circumferential direction of the angle θ lies in a direction measured 1 point Q 3 near the inner surface at a high speed.
Distance between the point Q 3 and the inner surface of the measuring object 1 is dependent detection accuracy of the inner diameter R 1 of the center point O and schematic detected by image processing. By the image processing, if it is more accurate detection can take nearly the distance between the point Q 3 and the inner surface of the measuring object 1. Next, Yuki move to the low speed toward the probe 3 on the inner surface P i of the measuring object 1, the detected position of the point P i to the point where pressing force of the probe 3 becomes a constant value to the measured object 1 Measure. The point P i detected by the same movement of the probe at a plurality of points in the circumferential direction of the measuring object 1, obtains a circle at the height h of the measured object 1 lined their position measurement data by a method such as a least square method And the diameter of the circle as the inner diameter.

【0032】次に、測定物1の外径測定を行う場合の三
次元測定機2のプローブ3の経路について図7で説明す
る。
Next, the path of the probe 3 of the coordinate measuring machine 2 when measuring the outer diameter of the object 1 will be described with reference to FIG.

【0033】プローブ3は測定物1に対して測定物1の
斜め上方に位置する点Q1 へ高速に移動する。次に、点
1 に対して下方向の高さhにある点Q2 へ高速に移動
する。さらに、測定物1の外面の近くにある点Q3 へ高
速に移動する。次に、プローブ3を内径測定と同様に測
定物1の表面Po に向かって低速に動かしてゆき、測定
物1へのプローブ3の押し圧が一定の値になった点を検
出して点Po の位置を測定する。点Po を測定物1の円
周方向の複数点で同様のプローブ移動で検出し、それら
の位置測定データを最小2乗法などの方法で連ねて測定
物1の高さhでの円を求め、その円の直径を外径とす
る。
The probe 3 moves at a high speed to a point Q 1 located obliquely above the object 1 with respect to the object 1. Next, moves at high speed to the point Q 2 to which is in the height h of the downward against the point Q 1. Furthermore, to move the measurement object 1 in the point Q 3 near the outer surface at a high speed. Next, the probe 3 is slowly moved toward the surface Po of the workpiece 1 in the same manner as in the inner diameter measurement, and a point at which the pressure of the probe 3 on the workpiece 1 reaches a constant value is detected. to measure the position of the P o. A point Po is detected at a plurality of points in the circumferential direction of the object 1 by the same probe movement, and their position measurement data are connected by a method such as the least square method to obtain a circle at the height h of the object 1. The diameter of the circle is defined as the outer diameter.

【0034】[0034]

【発明の効果】以上述べてきたように、本発明によれ
ば、従来はマイクロメータなどの道具で人手で行わなけ
ればならなかった機械部品の使用前の寸法検査を、その
機械部品の寸法が毎度異なる場合でも、自動的に簡単か
つ高精度に、しかも測定物を画像で認識しようとする際
に誤った認識を行う原因となる測定物の表面の光沢など
の影響を受けずに、測定可能となる。
As described above, according to the present invention, the dimensional inspection before use of a mechanical part, which had to be manually performed with a tool such as a micrometer in the past, is performed. Even if it is different every time, measurement can be performed automatically, easily and accurately, without being affected by the gloss of the surface of the measurement object, which may cause incorrect recognition when trying to recognize the measurement object with an image. Becomes

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における寸法測定装置の概略図
である。
FIG. 1 is a schematic view of a dimension measuring device according to an embodiment of the present invention.

【図2】本発明の実施例における画像処理を説明する図
である。
FIG. 2 is a diagram illustrating image processing according to an embodiment of the present invention.

【図3】上記画像処理による測定物の認識のフロー図で
ある。
FIG. 3 is a flowchart of recognition of a measured object by the image processing.

【図4】測定物の光沢部分が明るい画像となった例を示
す図である。
FIG. 4 is a diagram illustrating an example in which a glossy portion of a measurement object is a bright image.

【図5】本発明の実施例において測定物の内径測定を行
う場合の三次元測定機のプローブの動きを示す図であ
る。
FIG. 5 is a view showing the movement of a probe of a coordinate measuring machine when measuring the inner diameter of a measurement object in the embodiment of the present invention.

【図6】上記内径測定の場合のプローブの動きを説明す
るフロー図である。
FIG. 6 is a flowchart for explaining the movement of a probe in the case of measuring the inner diameter.

【図7】本発明の実施例において測定物の外径測定を行
う場合の三次元測定機のプローブの動きを示す図であ
る。
FIG. 7 is a view showing the movement of a probe of a coordinate measuring machine when measuring the outer diameter of a measured object in an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 測定物 2 三次元測定機 3 プローブ 4 照明装置 5 照明装置 6 横方向テレビカメラ 7 上方向テレビカメラ 8 画像処理部 9 三次元測定機動作指令部 10 光沢部分 DESCRIPTION OF SYMBOLS 1 Measurement object 2 CMM 3 Probe 4 Illumination device 5 Illumination device 6 Horizontal television camera 7 Upward television camera 8 Image processing part 9 CMM operation command part 10 Glossy part

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 三次元測定機の測定エリア内に円筒状の
測定物をその軸方向を鉛直方向に向けて設置し、前記測
定物の概略の空間内での位置と概略の寸法とを上方向及
び横方向から撮影した画像情報で事前に認識し、この認
識情報から前記三次元測定機のプローブの移動パスを計
算して該三次元測定機を運転する機械部品の寸法測定方
法であって、 前記測定物を撮影方向とは反対側から照明し、その照明
による光を前記測定物が遮ることにより形成される影で
該測定物の概略の位置と概略の寸法とを認識することを
特徴とする機械部品の寸法測定方法。
1. A cylindrical measuring object is installed in a measuring area of a three-dimensional measuring machine with its axial direction oriented in a vertical direction, and the position of the measuring object in a general space and the general dimension are raised. A method for measuring dimensions of a machine component that operates the coordinate measuring machine by recognizing in advance with image information captured from a direction and a lateral direction, calculating a movement path of a probe of the coordinate measuring machine from the identification information, Illuminating the measurement object from a side opposite to a photographing direction, and recognizing an approximate position and an approximate size of the measurement object by a shadow formed by blocking the light by the illumination by the measurement object. The method of measuring the dimensions of the machine parts.
【請求項2】 測定エリア内に円筒状の測定物がその軸
方向を鉛直方向に向けて設置される三次元測定機と、前
記測定物を上方向及び横方向から撮影する撮影手段と、
この撮影手段による画像情報で前記測定物の概略の空間
内での位置と概略の寸法とを認識する画像処理部と、こ
の画像処理部による認識情報から前記三次元測定機のプ
ローブの移動パスを計算する三次元測定機動作指令部と
を備えた機械部品の寸法測定装置であって、 前記測定物に対して前記撮影手段と反対側に照明手段を
設け、この照明手段からの光を前記測定物が遮ることに
より形成される影を前記撮影手段で撮影することを特徴
とする機械部品の寸法測定装置。
2. A three-dimensional measuring machine in which a cylindrical measurement object is set in a measurement area with its axial direction oriented vertically, and photographing means for photographing the measurement object from above and sideways;
An image processing unit for recognizing a position and a general size of the measurement object in a general space with image information obtained by the photographing unit; and a moving path of the probe of the coordinate measuring machine from the recognition information by the image processing unit. A dimension measuring device for a mechanical part, comprising: a coordinate measuring machine operation command unit for calculating; and an illuminating unit provided on a side opposite to the photographing unit with respect to the measured object, and measuring light from the illuminating unit. An apparatus for measuring the dimensions of mechanical parts, wherein a shadow formed by blocking an object is photographed by the photographing means.
JP3470393A 1993-01-29 1993-01-29 Method and apparatus for measuring dimensions of mechanical parts Expired - Lifetime JP2587765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3470393A JP2587765B2 (en) 1993-01-29 1993-01-29 Method and apparatus for measuring dimensions of mechanical parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3470393A JP2587765B2 (en) 1993-01-29 1993-01-29 Method and apparatus for measuring dimensions of mechanical parts

Publications (2)

Publication Number Publication Date
JPH06229726A JPH06229726A (en) 1994-08-19
JP2587765B2 true JP2587765B2 (en) 1997-03-05

Family

ID=12421722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3470393A Expired - Lifetime JP2587765B2 (en) 1993-01-29 1993-01-29 Method and apparatus for measuring dimensions of mechanical parts

Country Status (1)

Country Link
JP (1) JP2587765B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040009550A (en) * 2002-07-24 2004-01-31 고태조 Efficient digitizing in reverse engineering by sensor fusion
JP6247842B2 (en) * 2013-06-12 2017-12-13 パイオニア株式会社 Detection device
JP6829062B2 (en) * 2016-11-29 2021-02-10 ヘキサゴン・メトロジー株式会社 Three-dimensional measuring device

Also Published As

Publication number Publication date
JPH06229726A (en) 1994-08-19

Similar Documents

Publication Publication Date Title
CN105783723B (en) Precision die surface processing accuracy detection device and method based on machine vision
EP2700903A1 (en) Tire surface shape measuring device and tire surface shape measuring method
CN103492834A (en) Automatic apparatus for inspecting rotary parts and inspection method
CN106289325A (en) A kind of air-bubble level automatic checkout system
CN113405530B (en) Visual measurement system, method, equipment, production line and terminal for deviation of stamping process sheet material
JP5222430B1 (en) Dimension measuring apparatus, dimension measuring method and program for dimension measuring apparatus
Hsu et al. Development of a faster classification system for metal parts using machine vision under different lighting environments
EP1467176B1 (en) Inspection system and method
JP5220081B2 (en) IMAGING TOOL MEASURING APPARATUS AND METHOD FOR DETECTING FINE TOOL END IN IMAGING TOOL
JP2001266127A (en) Device for inspecting printed wiring board
JPH04269607A (en) Apparatus for measuring size of substance
CN205333535U (en) Metal strainometer defect automatic check out system
JP2587765B2 (en) Method and apparatus for measuring dimensions of mechanical parts
CN112730420B (en) Appearance flaw detection workstation
JP2013134176A (en) Imaging apparatus and imaging method
WO2014189565A2 (en) Triangulation-based, 3-d method and system for imaging the outer peripheral surface of a part
JP2582023B2 (en) Method and apparatus for measuring dimensions of mechanical parts
JP5882524B1 (en) Defect measuring device
CN114460087A (en) Welding spot defect detection system and method based on machine vision
CN117249757A (en) Workpiece detection device and workpiece detection method
CN105953728A (en) Metal plate surface detector
JP2017037055A (en) Defect measurement device
TWI608226B (en) Providing examination and measurement of auto focus apparatus and method using the same
RU2777718C1 (en) Method for non-destructive optical and visual testing of items by means of computer vision
WO2014178936A2 (en) Method and system for optically inspecting outer peripheral surfaces of parts

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960820