JP2586482Y2 - High frequency NH capacitor - Google Patents
High frequency NH capacitorInfo
- Publication number
- JP2586482Y2 JP2586482Y2 JP3686693U JP3686693U JP2586482Y2 JP 2586482 Y2 JP2586482 Y2 JP 2586482Y2 JP 3686693 U JP3686693 U JP 3686693U JP 3686693 U JP3686693 U JP 3686693U JP 2586482 Y2 JP2586482 Y2 JP 2586482Y2
- Authority
- JP
- Japan
- Prior art keywords
- capacitor
- dielectric
- frequency
- electrodes
- case
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Description
【0001】[0001]
【産業上の利用分野】本考案は、高圧高周波コンデンサ
として使用される放熱フィンを備えた高周波NHコンデ
ンサに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency NH capacitor having a radiation fin used as a high-voltage high-frequency capacitor.
【0002】[0002]
【従来の技術】産業用電源装置などに使用される高圧高
周波コンデンサは、低損失の誘電体を使用して電極の抵
抗損失による発熱を防止し、かつ高周波うず電流による
ケース発熱の対策を考慮することが設計上の必要条件と
されている。このような条件を満たすことは、電極構造
を蒸着電極としたSHコンデンサでは困難であり、電極
をアルミ電極としたNHコンデンサが基本とされてい
る。2. Description of the Related Art A high-voltage high-frequency capacitor used in an industrial power supply or the like uses a low-loss dielectric to prevent heat generation due to resistance loss of electrodes and to take measures against case heat generation due to high-frequency eddy current. Is a design requirement. It is difficult to satisfy such conditions with an SH capacitor using an electrode structure as a vapor deposition electrode, and an NH capacitor using an aluminum electrode as the electrode is basically used.
【0003】しかし、従来一般化している高圧高周波N
Hコンデンサは、図6及び図7に示す様に、誘電体61
とアルミ電極箔62を交互に重ねて、このアルミ電極箔
62を端面よりはみ出した状態で巻回してコンデンサ素
子63を構成し、このコンデンサ素子63を図8に示す
ように複数個直列並列に接続して構成されている。即
ち、図8は、コンデンサ素子63を2並列2直列とした
NHコンデンサであって、二つの素子63はその上下の
端部で誘電体61からはみ出しているアルミ電極箔62
部分で並列に接続され、この並列に接続された2組の素
子がリード線64で直列に接続されている。また、2並
列2直列された各素子の両端には、コンデンサを他の電
子部品に接続するためのリード線65が設けられてい
る。このように2並列2直列に接続された4個のコンデ
ンサ素子は、中央に隔離板66を挿入した状態で両側の
締付板67と共に、締付けバンド68によって一体に締
付け固定された状態で、図9に示すようにケース69内
に収納されている。However, the conventional high-frequency high-frequency N
The H capacitor is, as shown in FIGS.
And aluminum electrode foils 62 are alternately stacked, and the aluminum electrode foil 62 is wound in a state of protruding from the end face to form a capacitor element 63, and a plurality of the capacitor elements 63 are connected in series and parallel as shown in FIG. It is configured. That is, FIG. 8 shows an NH capacitor in which two parallel and two capacitor elements 63 are provided. The two elements 63 are aluminum electrode foils 62 protruding from the dielectric 61 at the upper and lower ends thereof.
Portions are connected in parallel, and the two sets of elements connected in parallel are connected in series by a lead wire 64. Further, lead wires 65 for connecting a capacitor to other electronic components are provided at both ends of each of the two parallel and two series elements. The four capacitor elements connected in two-parallel and two-series in this manner are fastened together with the fastening plates 67 on both sides together with the fastening plate 67 with the separator 66 inserted in the center, and fixed together by the fastening band 68 as shown in FIG. As shown in FIG.
【0004】しかしながら、最近の高周波化されたスイ
ッチング電源用に使用されるコンデンサは、小容量にし
て高周波のため、1μF当たりの電流密度が増大し、か
つ高圧の場合はシリーズ結線が多くなることから、1素
子に流れる電流が増大している。そのため、アルミ電極
箔62の抵抗損の増大、高周波によるうず電流損、更に
は誘電体損失が増大して、コンデンサ素子の発熱が増大
し、コンデンサを短寿命にする問題がある。However, capacitors used for recent high-frequency switching power supplies have a small capacity and a high frequency, so that the current density per 1 μF increases, and in the case of a high voltage, series connection increases. The current flowing through one element is increasing. Therefore, there is a problem that the resistance loss of the aluminum electrode foil 62, the eddy current loss due to the high frequency, and the dielectric loss also increase, thereby increasing the heat generation of the capacitor element and shortening the life of the capacitor.
【0005】特に、小容量のコンデンサでは素子は小さ
い設計となるが、放熱面積が小さいためにケース69か
らの熱放散が悪く、またケース69内の絶縁油の対流伝
導放熱にも限度がある。そのため、誘電体61を厚くす
るか、素子63の直並列の数を増やしてケースサイズを
大きくし、放熱面積を広くすることが必要である。しか
し、このような素子数の増大やケースの大型化は、NH
コンデンサそれ自体の大型化を招き、ひいてはこの種の
高周波コンデンサを使用した産業用電源装置の大型化を
招くという問題があった。[0005] In particular, although a small-capacity capacitor has a small element design, heat dissipation from the case 69 is poor due to a small heat dissipation area, and convection conduction heat dissipation of insulating oil in the case 69 is limited. Therefore, it is necessary to increase the thickness of the dielectric 61 or increase the number of elements 63 in series and parallel to increase the case size and increase the heat radiation area. However, such an increase in the number of elements and an increase in the size of the case are caused by NH
There has been a problem that the size of the capacitor itself has been increased, and as a result, the size of an industrial power supply device using such a high-frequency capacitor has been increased.
【0006】更に、コンデンサ素子63を直並列する場
合、従来のように個々の素子63をいったん並列接続
し、更にそれを直列接続する作業は、必要される直並列
数だけコンデンサ素子が必要で、しかも素子の接続数が
増えるとそれだけリード線64による素子結線作業も必
要となって、コンデンサの製造が複雑化する欠点もあっ
た。Further, when the capacitor elements 63 are connected in series and parallel, the operation of connecting the individual elements 63 once in parallel and then connecting them in series as in the prior art requires the required number of capacitor elements in series and parallel. In addition, as the number of connected elements increases, the element connection work using the lead wires 64 is also required, and there is a disadvantage that the manufacture of the capacitor is complicated.
【0007】[0007]
【考案が解決しようとする課題】上記のように従来の高
圧高周波コンデンサは、小容量の場合でも電流が大きく
なり、コンデンサの発熱が大きく、コンデンサの寿命を
短くする問題があった。As described above, the conventional high-voltage high-frequency capacitor has a problem that the current is increased even in the case of a small capacity, the capacitor generates a large amount of heat, and the life of the capacitor is shortened.
【0008】また、発生した熱の放散を良くするために
素子数を多くするなどの手段が考えられるが、その場合
にはケースサイズが大きくなり小型化が強く要求されて
いる現状の市場ニーズを満足することができなかった。Means for increasing the number of elements may be considered in order to improve the dissipation of generated heat. In this case, however, the case size is large and the current market needs for which miniaturization is strongly required are considered. I could not be satisfied.
【0009】本考案は、上記のような従来技術の問題点
を解決し、小形軽量化、長寿命化並びに高信頼性を図
り、しかも直並列接続数が増大してもその素子結線作業
が容易な高周波NHコンデンサを提供することを目的と
する。The present invention solves the above-mentioned problems of the prior art, achieves small size, light weight, long life and high reliability, and furthermore, the element connection work is easy even if the number of series-parallel connections increases. It is an object to provide a high-frequency NH capacitor.
【0010】[0010]
【課題を解決するための手段】上記の目的を達成するた
めに、本考案の高周波NHコンデンサは、それぞれ複数
枚のアルミ電極箔を重ね合わせて第1乃至第3の電極を
構成し、これら第1乃至第3の電極を誘電体に重ね合わ
せて巻回すると共に、前記第1乃至第3の電極を直列接
続してコンデンサ素子を構成し、このコンデンサ素子を
複数個並列接続し、これら複数個のコンデンサ素子を冷
却板と共に一体化し、これらコンデンサ素子と冷却板を
表面に放熱フィンを有するケース内に前記冷却板と放熱
フィンとを接続した状態で収納したことを特徴とする。In order to achieve the above object, the high frequency NH capacitor of the present invention comprises a plurality of aluminum electrode foils, each of which constitutes a first to a third electrode. The first to third electrodes are superposed and wound on a dielectric material, and the first to third electrodes are connected in series to form a capacitor element. And the cooling element is integrated with the cooling plate, and the capacitor element and the cooling plate are housed in a case having a radiation fin on the surface, with the cooling plate and the radiation fin connected.
【0011】[0011]
【作用】以上の構成を有する本考案によれば、アルミ電
極箔を複数枚重ね合わせて電極を構成したので、各電極
の抵抗は従来の1枚電極に比べて1/nになり(但しn
は1電極当たりのアルミ箔枚数)、高周波電流が流れて
もその抵抗損は大幅に低減される。According to the present invention having the above construction, the electrodes are formed by laminating a plurality of aluminum electrode foils, so that the resistance of each electrode is 1 / n as compared with the conventional single electrode (where n
Is the number of aluminum foils per electrode), and even if a high-frequency current flows, its resistance loss is greatly reduced.
【0012】しかも、素子と一体に冷却板を配置し、こ
の冷却板に接続した放熱フィンによって抵抗損、誘電体
損による発熱があっても効率良く熱を放散させコンデン
サ全体の発熱が抑制するすることができることから、コ
ンデンサの寿命化を図り、かつ信頼度を高める作用効果
が期待できる。In addition, a cooling plate is disposed integrally with the element, and heat is efficiently dissipated by the radiation fins connected to the cooling plate, even if there is resistance loss or dielectric loss, thereby suppressing heat generation of the entire capacitor. Therefore, the effect of extending the life of the capacitor and increasing the reliability can be expected.
【0013】更に、一つコンデンサ素子が第1乃至第3
の電極を直列に接続して構成された2直列巻構造になっ
ているために、高圧の場合に直列接続数を同じにしても
素子の並列数を増加させることができ、素子結線が容易
であり、配線の複雑さを回避できる。Further, one capacitor element includes first to third capacitors.
Are connected in series to form a two-series winding structure. Therefore, even if the number of series connections is the same in the case of high voltage, the number of parallel elements can be increased, and element connection is easy. Yes, the complexity of wiring can be avoided.
【0014】[0014]
【実施例】以下、本考案の一実施例を図面を参照して具
体的に説明する。なお、従来技術との比較のために、要
求される高圧高周波コンデンサの仕様を、定格が0.2
μF−1000VAC、16KHzで連続使用するもの
とすると、本実施例によるコンデンサの構成は、図1乃
至図5に示す通りとなる。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be specifically described below with reference to the drawings. For comparison with the prior art, the required specification of the high-voltage high-frequency capacitor was
Assuming that the capacitor is used continuously at μF-1000 VAC and 16 KHz, the configuration of the capacitor according to the present embodiment is as shown in FIGS.
【0015】図1に示すように、第1及び第3の電極
1,3はそれぞれ28mm幅×8μm厚さ×2枚重ねの
アルミ電極箔から構成し、第2の電極2は50mm幅×
8μm厚さ×2枚重ねのアルミ電極箔から構成する。こ
れら各電極1〜3と重ね合わされた第1及び第2の誘電
体4,5は、それぞれ70mm幅×15μm厚さ×3枚
重ねのポリプロレンフィルム(以下P.Pフィルム)を
使用する。前記第1及び第3の電極1,3は、その一方
の側縁1a,3aが誘電体4,5の側縁より3mmはみ
出した状態で、誘電体4,5の中央部において両電極
1,3の間に20mmの間隔が開くように配置されてい
る。その結果、28mm幅の第1及び第3の電極1,3
が、50mm幅の第2の電極2に対向する部分の幅は1
5mmになっている。As shown in FIG. 1, the first and third electrodes 1 and 3 are each composed of 28 mm width × 8 μm thickness × two laminated aluminum electrode foils, and the second electrode 2 is 50 mm width ×
It is composed of an aluminum electrode foil having a thickness of 8 μm × two layers. The first and second dielectrics 4 and 5 superimposed on each of the electrodes 1 to 3 use a 70 mm width × 15 μm thickness × three stacked polyprolene film (hereinafter referred to as PP film). The first and third electrodes 1 and 3 are arranged such that one side edge 1a thereof protrudes 3 mm from the side edge of the dielectric body 4 and 5 at a central portion of the dielectric body 4 and 5. 3 are arranged such that a distance of 20 mm is opened between them. As a result, the first and third electrodes 1 and 3 having a width of 28 mm
However, the width of the portion facing the second electrode 2 having a width of 50 mm is 1
5 mm.
【0016】これら第1乃至第3の電極1〜3と第1及
び第2の誘電体4,5は、図1及び図2に示すように重
ね合わされた状態で54回転巻回し、更に巻回後にその
両端部に露出している第1と第3の電極のアルミ電極箔
部分にアルミはんだめっき6を施すことにより、図3に
示す0.05μFの2直列巻構造のコンデンサ素子10
を形成する。その後、抵抗損の低減とtanδの改善を
考慮して、図3に示すコンデンサ素子10を4本並列に
結線し、0.05μF(2直列巻素子)×4並列接続の
0.2μF容量のコンデンサ20を得る。The first to third electrodes 1 to 3 and the first and second dielectrics 4 and 5 are wound 54 times in a superposed state as shown in FIGS. 1 and 2, and further wound. Thereafter, aluminum solder plating 6 is applied to the aluminum electrode foil portions of the first and third electrodes exposed at both ends thereof, thereby forming a 0.05 μF two-series wound capacitor element 10 shown in FIG.
To form Thereafter, in consideration of reduction of resistance loss and improvement of tan δ, four capacitor elements 10 shown in FIG. 3 are connected in parallel, and a 0.2 μF capacitor of 0.05 μF (two series winding elements) × 4 parallel connection is used. Get 20.
【0017】このように並列接続された4本のコンデン
サ素子10を、図4に示すようにその両側面並びに各素
子10の間にアルミ板からなる冷却板11を挟んで締付
バンド12で締め付けて固定する。更に、本実施例で
は、各コンデンサ素子10の間に挿入した冷却板11に
あらかじめ放熱フィン13が一体に設けられたものを使
用することで、各コンデンサ素子10からの発熱を効率
よく放熱できる構造としている。その後、このように一
体化された各コンデンサ素子10を、放熱フィン13が
外部に露出するような状態で、図5のようなケース14
内に収納することにより、本実施例のNHコンデンサを
得る。なお、本実施例において、このケース15の表面
積は、478cm2 である。As shown in FIG. 4, the four capacitor elements 10 connected in parallel as described above are tightened with a tightening band 12 with a cooling plate 11 made of an aluminum plate interposed between both sides and each element 10. And fix it. Further, in the present embodiment, a structure in which heat radiation from each capacitor element 10 can be efficiently radiated by using a cooling plate 11 inserted between each capacitor element 10 and a radiation fin 13 integrally provided in advance is used. And Thereafter, each of the integrated capacitor elements 10 is placed in a case 14 as shown in FIG.
The NH capacitor according to the present embodiment is obtained by being housed in the inside. In this embodiment, the surface area of the case 15 is 478 cm 2 .
【0018】前記のようにして得られた本実施例のコン
デンサの仕様は、その定格電流は約20A、片相電力は
20Kvarと大きくなり、誘電体損失はP.Pフィル
ムのtanδ=0.06%として算式すると12ワット
となる。1素子の等価抵抗は1.78×10-5Ωで、4
本並列結線で4.45×10-6Ωとなる。このようにア
ルミ電極箔を2枚重ねにした効果として素子の直列等価
抵抗値が小さくなり、その分tanδの改善も期待でき
る。例えば、従来のコンデンサ素子の直列等価抵抗は
2.285×10-5Ωであるので、本実施例では約1/
5になる。The specifications of the capacitor of this embodiment obtained as described above are such that the rated current is about 20 A, the single-phase power is as large as 20 Kvar, and the dielectric loss is P.P. When calculated as tan δ of the P film = 0.06%, it becomes 12 watts. The equivalent resistance of one element is 1.78 × 10 −5 Ω and 4
This parallel connection results in 4.45 × 10 −6 Ω. As a result of stacking two aluminum electrode foils in this manner, the series equivalent resistance value of the element is reduced, and an improvement in tan δ can be expected. For example, since the series equivalent resistance of the conventional capacitor element is 2.285 × 10 −5 Ω, in this embodiment, about 1 /
It becomes 5.
【0019】また、本実施例では、ケース15の表面積
は前記のように478cm2 であり、その場合前記のよ
うな放熱フィン13を設けないと、ケース14の温度上
昇値はケース上面部で31degあった。この温度上昇
値はコンデンサ素子の寿命を著しく短かくし、コンデン
サの性能を短時間で失うことになる。しかし、本実施例
のように放熱フィン13を設けた場合には温度上昇値が
改善され、例えばケース表面と同じ表面積(478cm
2 )を有する放熱フィン13を取付けることにより温度
上昇は半減し、約15deg程度で抑えられる。この結
果、コンデンサの寿命は設計目標値を期待でき、高信頼
性の高圧高周波NHコンデンサを得ることができる。In this embodiment, the surface area of the case 15 is 478 cm 2 as described above, and in this case, if the above-described heat radiation fins 13 are not provided, the temperature rise value of the case 14 is 31 deg at the upper surface of the case. there were. This temperature rise significantly shortens the life of the capacitor element, and the performance of the capacitor is lost in a short time. However, when the radiation fins 13 are provided as in the present embodiment, the temperature rise value is improved, and for example, the same surface area (478 cm
By mounting the radiation fins 13 having 2 ), the temperature rise is halved and can be suppressed to about 15 deg. As a result, the life of the capacitor can be expected to be a design target value, and a high-reliability high-frequency high-frequency NH capacitor can be obtained.
【0020】一方、従来の素子で同様の仕様を満足する
ため、図6に示す様に誘電体61よりアルミ電極箔62
をはみ出した状態で巻回した素子63を同じ4本で構成
するには、誘電体61として同じ(電位傾度を同一とす
る)P.Pフィルムの70mm幅×15μm×3枚重ね
を使用し、2枚のアルミ電極箔62として8μm厚さ×
1枚重ねを使用する。そして、2枚のアルミ電極箔62
が互いに誘電体61端部より10mm幅方向内側にずら
し、両者の有効対向幅が30mmとなるように58回転
巻回して0.2μFのコンデンサ素子63を得る。この
場合、1コンデンサ素子63の外形寸法は76mm×1
3mm×75mmとなる。これを2並列2直列にして、
図8に示す様に結線すると総合容量が0.2μFとなり
仕様を満足する。これを図9に示すようにケース69に
収納した場合、その外形寸法は90mm×60mm×1
10mm、ケース表面積は438cm2 となる。このコ
ンデンサを定格で連続使用した場合34degの温度上
昇となり、熱暴走によりコンデンサとしての機能は極め
て短時間に失われる。On the other hand, in order to satisfy the same specification with the conventional element, as shown in FIG.
In order to form the same four elements 63 wound in a state in which they protrude, the same P.I. Using a P film having a width of 70 mm × 15 μm × 3 sheets, a thickness of 8 μm × 2 as two aluminum electrode foils 62.
Use one stack. Then, two aluminum electrode foils 62
Are shifted from each other by 10 mm inward in the width direction from the end of the dielectric 61, and are wound 58 turns so that the effective opposing width between them is 30 mm, to obtain a 0.2 μF capacitor element 63. In this case, the outer dimension of one capacitor element 63 is 76 mm × 1
It is 3 mm x 75 mm. This is made into two parallel two series,
When the connection is made as shown in FIG. 8, the total capacitance becomes 0.2 μF, which satisfies the specification. When this is stored in a case 69 as shown in FIG. 9, its outer dimensions are 90 mm × 60 mm × 1.
10 mm and the case surface area is 438 cm 2 . When this capacitor is used continuously at a rated temperature, the temperature rises by 34 degrees, and the function as a capacitor is lost in a very short time due to thermal runaway.
【0021】この従来構造のコンデンサは、1素子が
0.2μFなので3並列3直列にすると同様に0.2μ
Fを得ることができるが、その場合には9本素子となり
ケースサイズは90mm×140mm×110mmと大
きくなる。ケースサイズの大型化に伴いそので表面積は
758cm2 となるため、温度上昇は約20degと前
記2並列2直列接続の従来技術よりも改善されるが、そ
れでも本実施例の15degよりも大きい値である。ま
た、コンデンサの体積は2倍であり、本考案の放熱フィ
ンを加えた寸法130mm×70mm×110mmと比
べても1.38倍と大きい。In this conventional capacitor, since one element is 0.2 μF, when three elements are connected in parallel and three series,
F can be obtained, but in this case, the number of elements is nine, and the case size is as large as 90 mm × 140 mm × 110 mm. As the case size increases, the surface area becomes 758 cm 2 , so that the temperature rise is about 20 deg, which is better than the conventional technique of the two-parallel two-series connection. However, it is still larger than the 15 deg of the present embodiment. is there. In addition, the volume of the capacitor is twice as large, which is 1.38 times as large as the size of 130 mm × 70 mm × 110 mm including the radiation fins of the present invention.
【0022】[0022]
【考案の効果】本考案によれば、コンデンサ全体の大型
化を招くことなくコンデンサ素子からの発熱を効率よく
放散できるため、コンデンサの長寿命化並びに信頼性の
向上が可能で、従来構造に比べてtanδ特性も同等以
上の性能を有する小型軽量化された高周波NHコンデン
サを得ることができ、その結果して高周波NHコンデン
サを使用したる電源装置等の機器の小形軽量化を実現で
きる。According to the present invention, since the heat generated from the capacitor element can be efficiently dissipated without increasing the size of the entire capacitor, the life of the capacitor can be extended and the reliability can be improved. As a result, it is possible to obtain a compact and lightweight high-frequency NH capacitor having a tan δ characteristic equal to or higher than that of the conventional high-frequency NH capacitor.
【図1】本考案の高周波NHコンデンサを構成するコン
デンサ素子の一実施例を示すもので、特にコンデンサ素
子を構成する誘電体とアルミ電極の配置を示す断面図。FIG. 1 is a cross-sectional view showing an embodiment of a capacitor element constituting a high-frequency NH capacitor according to the present invention, particularly showing an arrangement of a dielectric and an aluminum electrode constituting the capacitor element.
【図2】図1のコンデンサ素子の誘電体とアルミ電極箔
を巻きほぐした展開図。FIG. 2 is a developed view in which a dielectric and an aluminum electrode foil of the capacitor element of FIG. 1 are unwound.
【図3】図1のコンデンサ素子の巻回後の状態を示すも
ので、(A)は平面図、(B)は正面図。3A and 3B show a state after winding of the capacitor element of FIG. 1, wherein FIG. 3A is a plan view and FIG. 3B is a front view.
【図4】図1のコンデンサ素子を使用したNHコンデン
サの一例を示すもので、(A)は平面図、(B)は正面
図。4A and 4B show an example of an NH capacitor using the capacitor element shown in FIG. 1, wherein FIG. 4A is a plan view and FIG. 4B is a front view.
【図5】図4のNHコンデンサをケース内に収納した状
態を示すもので、(A)は平面図、(B)は正面図。5A and 5B show a state in which the NH capacitor of FIG. 4 is housed in a case, wherein FIG. 5A is a plan view and FIG. 5B is a front view.
【図6】従来の高周波NHコンデンサを構成するコンデ
ンサ素子の一例を示すもので、特にコンデンサ素子を構
成する誘電体とアルミ電極の配置を示す断面図。FIG. 6 is a cross-sectional view showing an example of a capacitor element constituting a conventional high-frequency NH capacitor, and particularly showing an arrangement of a dielectric and an aluminum electrode constituting the capacitor element.
【図7】図6のコンデンサ素子の誘電体とアルミ電極箔
を巻きほぐした展開図。FIG. 7 is a developed view in which the dielectric and aluminum electrode foil of the capacitor element of FIG. 6 are unwound.
【図8】図6の従来のコンデンサ素子を使用したNHコ
ンデンサの一例を示す平面図。FIG. 8 is a plan view showing an example of an NH capacitor using the conventional capacitor element of FIG.
【図9】図8のNHコンデンサをケース内に収納した状
態を示すもので、(A)は平面図、(B)は正面図。9A and 9B show a state in which the NH capacitor of FIG. 8 is housed in a case, wherein FIG. 9A is a plan view and FIG. 9B is a front view.
1〜3…第1〜第3の電極 4,5…誘電体 6…アルミ半田メッキ 10…コンデンサ素子 11…冷却板 12…締付バンド 13…放熱フィン 14…ケース 1-3: first to third electrodes 4, 5: dielectric 6: aluminum solder plating 10: capacitor element 11: cooling plate 12: fastening band 13: radiation fins 14: case
Claims (2)
わせて第1乃至第3の電極を構成し、これら第1乃至第
3の電極を誘電体に重ね合わせて巻回すると共に、前記
第1乃至第3の電極を直列接続してコンデンサ素子を構
成し、このコンデンサ素子を複数個並列接続し、これら
複数個のコンデンサ素子を冷却板と共に一体化し、これ
らコンデンサ素子と冷却板を、表面に放熱フィンを有す
るケース内に前記冷却板と放熱フィンとを接続した状態
で収納したことを特徴とする高周波NHコンデンサ。A first to third electrodes are formed by laminating a plurality of aluminum electrode foils, and the first to third electrodes are superposed on a dielectric and wound, and the first to third electrodes are wound. To the third electrode are connected in series to form a capacitor element, a plurality of these capacitor elements are connected in parallel, these capacitor elements are integrated with a cooling plate, and these capacitor elements and the cooling plate are radiated to the surface. A high-frequency NH capacitor, wherein the cooling plate and the radiation fin are connected and housed in a case having fins.
中央部において間隔を保ち、かつ誘電体の両側縁部にお
いては各電極箔の一方の側縁が誘電体の一方の側縁から
はみ出すように誘電体の片面に重ね合わされ、第2の電
極は、その両側縁が誘電体の両側縁の内側に入るように
して、前記誘電体を挟んで第1及び第3の電極の反対側
の面に重ね合わされている請求項1の高周波NHコンデ
ンサ。2. The first and third electrodes are spaced apart from each other at the center in the width direction of the dielectric, and at one side edge of the dielectric, one side edge of each electrode foil is connected to one side of the dielectric. The second electrode is overlapped on one surface of the dielectric so as to protrude from the side edge, and the first and third electrodes are sandwiched between the dielectrics such that both side edges are inside the both sides of the dielectric. 2. The high-frequency NH capacitor according to claim 1, wherein the high-frequency NH capacitor is superimposed on a surface on the opposite side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3686693U JP2586482Y2 (en) | 1993-06-10 | 1993-06-10 | High frequency NH capacitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3686693U JP2586482Y2 (en) | 1993-06-10 | 1993-06-10 | High frequency NH capacitor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH077128U JPH077128U (en) | 1995-01-31 |
JP2586482Y2 true JP2586482Y2 (en) | 1998-12-09 |
Family
ID=12481712
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3686693U Expired - Fee Related JP2586482Y2 (en) | 1993-06-10 | 1993-06-10 | High frequency NH capacitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2586482Y2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013214639A (en) * | 2012-04-03 | 2013-10-17 | Nissin Electric Co Ltd | Capacitor device |
-
1993
- 1993-06-10 JP JP3686693U patent/JP2586482Y2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH077128U (en) | 1995-01-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5113319B2 (en) | Storage cell package structure | |
WO2022051915A1 (en) | Electrode assembly, electrochemical device, and electronic device | |
US7646589B2 (en) | Solid electrolytic capacitor with first and second anode wires | |
JP4187184B2 (en) | Electronic components | |
JP2001513949A (en) | Flat type electrolytic capacitor | |
US4009425A (en) | Capacitor with intersecting lead plates | |
US11087925B2 (en) | Power capacitor module with cooling arrangement | |
JP2586482Y2 (en) | High frequency NH capacitor | |
JP3004000B2 (en) | Metallized film capacitors | |
JP4343649B2 (en) | Inverter device | |
JP4392530B2 (en) | Low inductance capacitor | |
JP2003047259A (en) | Power converter | |
JP3851197B2 (en) | Electric double layer capacitor | |
JP4803749B2 (en) | Metallized film capacitors | |
JP7241198B2 (en) | film capacitor element | |
JP2007059854A (en) | Solid electrolytic capacitor | |
JPH0778730A (en) | Low-impedance four-terminal solid electrolytic capacitor | |
JPS6320112Y2 (en) | ||
US9666365B2 (en) | Laminated film capacitor, film capacitor module, and power conversion system | |
JPH0342667Y2 (en) | ||
JP2003124059A (en) | Capacitor and power supply device | |
JPS6320114Y2 (en) | ||
JPH06176978A (en) | Solid electrolytic capacitor | |
JP2001297951A (en) | Flat capacitor | |
JP2008153265A (en) | Chip-type solid electrolytic capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |