JP2585719Y2 - Control circuit of DC stabilized power supply - Google Patents

Control circuit of DC stabilized power supply

Info

Publication number
JP2585719Y2
JP2585719Y2 JP2291192U JP2291192U JP2585719Y2 JP 2585719 Y2 JP2585719 Y2 JP 2585719Y2 JP 2291192 U JP2291192 U JP 2291192U JP 2291192 U JP2291192 U JP 2291192U JP 2585719 Y2 JP2585719 Y2 JP 2585719Y2
Authority
JP
Japan
Prior art keywords
power supply
control circuit
differential amplifier
circuit
output voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2291192U
Other languages
Japanese (ja)
Other versions
JPH0575816U (en
Inventor
勝 浜野
Original Assignee
日新ハイボルテージ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新ハイボルテージ株式会社 filed Critical 日新ハイボルテージ株式会社
Priority to JP2291192U priority Critical patent/JP2585719Y2/en
Publication of JPH0575816U publication Critical patent/JPH0575816U/en
Application granted granted Critical
Publication of JP2585719Y2 publication Critical patent/JP2585719Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Voltage And Current In General (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、安定度を改善した直流
安定化電源の制御回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control circuit for a stabilized DC power supply having improved stability.

【0002】[0002]

【従来の技術】図3は直流安定化電源の制御回路のブロ
ック図であり、高安定度の基準電源を有する出力電圧
(電流)設定器1は設定電圧信号Vsを発生し、この信
号と、直流安定化電源の出力電圧(電流)を検出する高
精度検出器2から得られる実際の出力電圧(電流)信号
Vrに制御回路内の差動増幅部3は応答する。差動増幅
部1の出力は所要の応答特性を付与する比例・積分演算
部4に導入され、同演算部から得られる制御信号によっ
て直流安定化電源の制御対象を調整し、直流安定化電源
の出力電圧(電流)を一定に保っている。
2. Description of the Related Art FIG. 3 is a block diagram of a control circuit of a stabilized DC power supply. An output voltage (current) setting device 1 having a highly stable reference power supply generates a set voltage signal Vs. The differential amplifier 3 in the control circuit responds to an actual output voltage (current) signal Vr obtained from the high-precision detector 2 that detects the output voltage (current) of the stabilized DC power supply. The output of the differential amplifying unit 1 is introduced into a proportional / integral operation unit 4 for giving a required response characteristic, and a control target of the DC stabilized power supply is adjusted by a control signal obtained from the operation unit, and a DC stabilized power supply is controlled. The output voltage (current) is kept constant.

【0003】[0003]

【考案が解決しようとする課題】直流安定化電源におい
て、高安定度、例えば10-5の安定度を得る(例えば、
1MV級のイオン加速器の電源において、出力電圧の変
動を10V程度に抑える)には、差動増幅部1の高精度
化が要求される。この差動増幅部は、通常、図4に示す
ように演算増幅器OPに抵抗Rs、Rfを接続して構成
するが、これには、高性能演算増幅器の使用、入力イン
ピーダンス、増幅率を決定する抵抗器に高安定化度のも
のを要し、制御回路全体を温度コントロールするとして
も、抵抗器にあってはPPMオーダ(10-6のオーダ)
の温度係数のものが必要となる。
SUMMARY OF THE INVENTION In a stabilized DC power supply, a high stability, for example, a stability of 10 -5 is obtained (for example,
In order to suppress the fluctuation of the output voltage to about 10 V in the power supply of the 1 MV class ion accelerator, the differential amplifier 1 needs to have higher accuracy. This differential amplifying section is usually constructed by connecting resistors Rs and Rf to an operational amplifier OP as shown in FIG. 4, which determines use of a high-performance operational amplifier, input impedance, and amplification factor. Even if a resistor with a high degree of stability is required and the temperature of the entire control circuit is controlled, the resistor is in the PPM order (10 -6 order).
Temperature coefficient is required.

【0004】また、比例・積分演算部4は、積分演算に
当り図5に示すように、演算増幅器OPに入力抵抗R、
積分コンデンサCを接続したミラー積分回路形式のもの
を利用するが、積分回路で10-5の安定度を得ようとす
る場合には、直流ゲインとして105オーダが必要とな
る。しかし、積分時定数が1〜10秒になるように設定
すると、一般に考えられる入力抵抗Rと積分コンデンサ
Cの値は、R=100kΩ〜1MΩ、C=10μF程度
となり、この場合、かなり高級なコンデンサを用いたと
しても内部抵抗は3000MΩどまりで、そうすると最
大直流ゲインは3000〜30000倍に抑えられ、1
5には及ばない。
[0005] In addition, the proportional / integral operation unit 4 performs an integral operation, as shown in FIG.
A Miller integrating circuit type to which an integrating capacitor C is connected is used. In order to obtain a stability of 10 -5 by the integrating circuit, a DC gain of the order of 10 5 is required. However, if the integration time constant is set so as to be 1 to 10 seconds, the values of the input resistance R and the integration capacitor C that can be generally considered are R = 100 kΩ to 1 MΩ and C = about 10 μF. , The internal resistance is limited to 3000 MΩ, so that the maximum DC gain is suppressed to 3000 to 30000 times,
It doesn't reach 0 5 .

【0005】本考案は、制御回路の差動増幅部及び演算
部に、特に高性能の増幅器、抵抗、コンデンサを用いる
ことなく、直流安定化電源の安定度を改善することがで
きる制御回路を提供することを目的とするものである。
The present invention provides a control circuit capable of improving the stability of a DC stabilized power supply without using a particularly high-performance amplifier, resistor, or capacitor in a differential amplifier and an operation unit of the control circuit. It is intended to do so.

【0006】[0006]

【課題を解決するための手段】本考案は、設定電圧信号
と実際の出力電圧信号に応答する差動増幅部と比例・積
分演算部を有する直流安定化電源の制御回路において、
前記設定電圧信号と実際の出力電圧信号に応答する差動
増幅器と、この増幅器の出力に応答し、前記差動増幅部
に補正信号を与える積分回路とを備えたことを特徴とす
るものである。
SUMMARY OF THE INVENTION The present invention is directed to a control circuit for a stabilized DC power supply having a differential amplifier and a proportional / integral calculator responsive to a set voltage signal and an actual output voltage signal.
A differential amplifier that responds to the set voltage signal and the actual output voltage signal; and an integrating circuit that responds to the output of the amplifier and supplies a correction signal to the differential amplifier. .

【0007】[0007]

【作用】通常、制御回路の差動増幅部、比例・積分演算
部に特に高性能の演算増幅器、抵抗、コンデンサを用い
ずとも、安定化電源は、外乱に対し0.1%(10-3
程度の安定度を充分に得ることができ、かかる安定度の
もとでも瞬時的(〜10秒以内)には10-5の安定度を
クリアする。設定電圧信号と実際の出力電圧信号に応答
する差動増幅器と同増幅器出力に応答する積分回路で、
安定化電源の出力電圧が0.1%の範囲でドリフトする
のを監視し、積分回路の出力を差動増幅部に与えて補正
する。
Normally, the stabilizing power supply is 0.1% (10 -3) with respect to disturbance without using particularly high-performance operational amplifiers, resistors and capacitors in the differential amplifier and the proportional / integral calculator of the control circuit. )
A sufficient degree of stability can be obtained, and even under such stability, the stability of 10 −5 is cleared instantaneously (within 〜1010 seconds). A differential amplifier that responds to the set voltage signal and the actual output voltage signal, and an integration circuit that responds to the output of the amplifier.
The output voltage of the stabilized power supply is monitored for drift in the range of 0.1%, and the output of the integrator is supplied to the differential amplifier for correction.

【0008】[0008]

【実施例】本考案の一実施例について図面を参照して説
明する。図1は制御回路のブロック図である。高安定度
の基準電源を有する出力電圧(電流)設定器1は設定電
圧信号Vsと、直流安定化電源の出力電圧(電流)を検
出する高精度検出器2からの実際の出力電圧(電流)信
号Vrは、制御回路内の差動増幅部3に導入される。差
動増幅部1の出力は所要の応答特性を付与する比例・積
分演算部4に導入され、同演算部の制御信号によって直
流安定化電源の制御対象を調整する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram of the control circuit. An output voltage (current) setting device 1 having a high-stability reference power supply has a set voltage signal Vs and an actual output voltage (current) from a high-precision detector 2 for detecting the output voltage (current) of the DC stabilized power supply. The signal Vr is introduced to the differential amplifier 3 in the control circuit. The output of the differential amplifying unit 1 is introduced to a proportional / integral calculating unit 4 for giving a required response characteristic, and a control target of the DC stabilized power supply is adjusted by a control signal of the calculating unit.

【0009】かかる制御回路にあっても、現在の技術水
準によれば、特に、高性能の演算増幅器、抵抗、コンデ
ンサを使用することなく、直流安定化電源において0.
1%(10-3)程度の安定度は容易に得られる。また、
0.1%の安定度であっても瞬時的(〜10秒以内)に
は10-5の安定度をクリアすることができる。補正回路
部5は直流安定化電源の出力電圧に応答し、上述の制御
回路に伴い安定化電源の出力電圧が0.1%の範囲でド
リフトするのを監視し、それを補正する。
[0009] Even in such a control circuit, according to the current state of the art, in particular, without using a high-performance operational amplifier, a resistor, and a capacitor, a DC stabilized power supply is required.
Stability of about 1% (10 -3 ) can be easily obtained. Also,
Even if the stability is 0.1%, the stability of 10-5 can be cleared instantaneously (within 10 seconds). The correction circuit unit 5 responds to the output voltage of the stabilized DC power supply, monitors the drift of the output voltage of the stabilized power supply in the range of 0.1% with the above-described control circuit, and corrects the drift.

【0010】補正回路部5の差動増幅器6は、図4に示
したものと同じ回路形式で構成されており、設定電圧信
号Vsと実出力電圧信号Vrに応答し、両信号の誤差を
増幅する。補正回路部5は0.1%分を補正することか
ら、差動増幅器6は高増幅率のものであり、誤差を例え
ば1000倍に増幅している。積分回路7は図5と同様
ミラー積分回路で構成され、オフセットをなくすように
誤差増幅出力を積分し、その出力を差動増幅部2に補正
入力として与える。補正信号注入態様の一例を図2に示
し、差動増幅部1の演算増幅器の非反転入力回路抵抗R
fを分割し、その分割点に積分回路7からの補正信号を
注入する。差動増幅器6の増幅率を決定する抵抗の値が
例えば1%変化した場合、出力信号は1%変化すること
になるが、誤差増幅出力をゼロとしたときには、入力側
に現れる誤差は10-5となる。そして積分回路7につい
ても、前段の増幅率が1000倍あるから、直流で10
0倍の増幅率があれば、10-5の安定度が実現でき、こ
れらは通常のコンデンサ、抵抗で容易に達成できる。
The differential amplifier 6 of the correction circuit 5 has the same circuit type as that shown in FIG. 4 and responds to the set voltage signal Vs and the actual output voltage signal Vr to amplify the error between the two signals. I do. Since the correction circuit unit 5 corrects 0.1%, the differential amplifier 6 has a high amplification rate and amplifies the error by, for example, 1000 times. The integrating circuit 7 is configured by a Miller integrating circuit as in FIG. 5, integrates the error amplification output so as to eliminate the offset, and supplies the output to the differential amplifier 2 as a correction input. FIG. 2 shows an example of the correction signal injection mode, in which the non-inverting input circuit resistance R of the operational amplifier of the differential amplifier unit 1 is shown.
f is divided, and the correction signal from the integration circuit 7 is injected into the division point. If the value of the resistor that determines the amplification factor of the differential amplifier 6 changes, for example, by 1%, the output signal changes by 1%. However, when the error amplification output is set to zero, the error that appears on the input side is 10 −. It becomes 5 . Also, as for the integration circuit 7, since the amplification factor of the preceding stage is 1000 times, the DC
If there is an amplification factor of 0, a stability of 10 -5 can be realized, and these can be easily achieved with ordinary capacitors and resistors.

【0011】[0011]

【考案の効果】本考案は以上説明したように構成したの
で、制御回路の差動増幅部と比例・積分演算部の出力に
応答する安定化電源の出力電圧がドリフトするのを、設
定電圧信号と実際の出力電圧信号に応答する差動増幅器
と同増幅器出力に応答する積分回路で監視し、積分回路
の出力を制御回路の差動増幅部に入力し補正するように
したから、差動増幅部及び比例・積分演算部に、特に高
性能の演算増幅器、抵抗、コンデンサを用いずとも、安
定化電源の安定度を10-5程度の高安定度のものとする
ことができる。
According to the present invention, as described above, the drift of the output voltage of the stabilized power supply responding to the outputs of the differential amplifier and the proportional / integral calculator of the control circuit is caused by the setting voltage signal. And a differential amplifier that responds to the actual output voltage signal and an integrating circuit that responds to the output of the amplifier, monitor the output, and input the output of the integrating circuit to the differential amplifier section of the control circuit to correct it. The stability of the stabilized power supply can be as high as about 10 -5 without using particularly high-performance operational amplifiers, resistors, and capacitors in the section and the proportional / integral operation section.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案の一実施例のブロック図である。FIG. 1 is a block diagram of an embodiment of the present invention.

【図2】補正信号の注入回路図である。FIG. 2 is a circuit diagram of an injection circuit of a correction signal.

【図3】従来の直流安定化電源の制御回路のブロック図
である。
FIG. 3 is a block diagram of a control circuit of a conventional stabilized DC power supply.

【図4】差動増幅部の構成回路図である。FIG. 4 is a configuration circuit diagram of a differential amplifier.

【図5】積分演算部の回路図である。FIG. 5 is a circuit diagram of an integral operation unit.

【符号の説明】[Explanation of symbols]

1 出力電圧設定器 2 出力電圧検出器 3 差動増幅部 4 比例・積分演算部 5 補正回路部 6 差動増幅器 7 積分回路 1 Output voltage setting unit 2 Output voltage detector 3 Differential amplifier unit 4 Proportional / integral operation unit 5 Correction circuit unit 6 Differential amplifier 7 Integrator circuit

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G05F 1/10 302 G05F 1/10──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) G05F 1/10 302 G05F 1/10

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 設定電圧信号と実際の出力電圧信号に応
答する差動増幅部と比例・積分演算部を有する直流安定
化電源の制御回路において、前記設定電圧信号と実際の
出力電圧信号に応答する差動増幅器と、この増幅器の出
力に応答し、前記差動増幅部に補正信号を与える積分回
路とを備えたことを特徴とする直流安定化電源の制御回
路。
1. A control circuit for a stabilized DC power supply having a differential amplifier and a proportional / integral calculator responsive to a set voltage signal and an actual output voltage signal, wherein the control circuit responds to the set voltage signal and an actual output voltage signal. 1. A control circuit for a stabilized DC power supply, comprising: a differential amplifier for performing the above operation; and an integrating circuit that responds to the output of the amplifier and supplies a correction signal to the differential amplifier.
JP2291192U 1992-03-18 1992-03-18 Control circuit of DC stabilized power supply Expired - Fee Related JP2585719Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2291192U JP2585719Y2 (en) 1992-03-18 1992-03-18 Control circuit of DC stabilized power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2291192U JP2585719Y2 (en) 1992-03-18 1992-03-18 Control circuit of DC stabilized power supply

Publications (2)

Publication Number Publication Date
JPH0575816U JPH0575816U (en) 1993-10-15
JP2585719Y2 true JP2585719Y2 (en) 1998-11-25

Family

ID=12095828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2291192U Expired - Fee Related JP2585719Y2 (en) 1992-03-18 1992-03-18 Control circuit of DC stabilized power supply

Country Status (1)

Country Link
JP (1) JP2585719Y2 (en)

Also Published As

Publication number Publication date
JPH0575816U (en) 1993-10-15

Similar Documents

Publication Publication Date Title
US4760347A (en) Controlled-output amplifier and power detector therefor
US5181420A (en) Hot wire air flow meter
JPH06194243A (en) Pulse-driving pressure sensor circuit and using method thereof
US4205327A (en) Two wire current transmitter with adjustable current control linearization
JP2585719Y2 (en) Control circuit of DC stabilized power supply
JP2001141757A (en) Sensor device using hall element
EP0816835A3 (en) Gas sensor and gas concentration controller
JPH0683264B2 (en) Optical receiver circuit
JP4001685B2 (en) Load disconnection detector
JPH03183967A (en) Voltage or current application current or voltage measuring instrument
JPH0635540Y2 (en) Differential amplifier
JPS58602B2 (en) Automatic zero compensation device
JPH07212139A (en) Detection circuit for sensor
JPH07109966B2 (en) Amplifier circuit
JPH03170073A (en) Hall element current detecting device
JP3345339B2 (en) Dual tracking circuit
JPH0115228Y2 (en)
KR20000046295A (en) Circuit for automatically controlling op amp input-offset-voltage
JP2000074867A (en) Input interface, amplification circuit, and gas detector
JPH0722901Y2 (en) Voltage amplifier circuit
JPH0519796Y2 (en)
JPH0212745Y2 (en)
JPH01205611A (en) Current amplifier for photodiode sensor
JPS5811058Y2 (en) Sadou Zoufuku Cairo
JPH0251143B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees