JP2585685B2 - Heat resistant electrical insulation paint - Google Patents

Heat resistant electrical insulation paint

Info

Publication number
JP2585685B2
JP2585685B2 JP63033214A JP3321488A JP2585685B2 JP 2585685 B2 JP2585685 B2 JP 2585685B2 JP 63033214 A JP63033214 A JP 63033214A JP 3321488 A JP3321488 A JP 3321488A JP 2585685 B2 JP2585685 B2 JP 2585685B2
Authority
JP
Japan
Prior art keywords
resin
acid
heat
added
insulating paint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63033214A
Other languages
Japanese (ja)
Other versions
JPH01207362A (en
Inventor
史郎 ▲真▼崎
俊英 岡本
博 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP63033214A priority Critical patent/JP2585685B2/en
Publication of JPH01207362A publication Critical patent/JPH01207362A/en
Application granted granted Critical
Publication of JP2585685B2 publication Critical patent/JP2585685B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Insulating Materials (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Paints Or Removers (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電気絶縁用および電線皮膜用に用いられ
る耐熱性電気絶縁塗料に関するものである。
Description: TECHNICAL FIELD The present invention relates to a heat-resistant electrical insulating paint used for electrical insulation and for coating electric wires.

〔従来の技術〕[Conventional technology]

多価アルコール成分としてトリス−2−ヒドロキシイ
ソシアヌレートを用いたポリエステル樹脂もしくはポリ
エステルイミド樹脂系電気絶縁塗料は、耐熱性,電気絶
縁性等に富む塗膜を形成する。この種の塗料が焼き付け
られた被覆電線は、計器の小形化に伴い、耐熱性,電気
絶縁性,機械的特性の優位性から民生用機器等に広く用
いられている。しかしながら、上記塗料を焼き付けた被
覆電線は、空気中で高温にさらされた場合、酸化による
被覆劣化のため耐破壊電圧性が著しく低下するという欠
点を有している。このために、従来から、フエノール樹
脂およびメラミン樹脂等のラジカル捕捉性のある第2,第
3の樹脂を電気絶縁塗料に添加して空気中での酸化劣化
を遅延させる方法が取られている。
A polyester resin or polyesterimide resin-based electric insulating paint using tris-2-hydroxyisocyanurate as a polyhydric alcohol component forms a coating film having excellent heat resistance, electric insulating properties, and the like. Insulated wires baked with this type of paint are widely used in consumer appliances and the like due to the advantages of heat resistance, electrical insulation, and mechanical properties with the downsizing of instruments. However, the coated electric wire baked with the paint has a disadvantage that when exposed to a high temperature in the air, the coating is deteriorated due to oxidation and the breakdown voltage resistance is significantly reduced. For this reason, conventionally, a method has been adopted in which second and third resins having radical scavenging properties, such as a phenol resin and a melamine resin, are added to an electric insulating paint to delay the oxidative deterioration in the air.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、上記のような方法によれば、皮膜の酸
化劣化を遅延させうる反面、上記第2,第3の樹脂自体の
硬くて脆い性質に起因して皮膜電線の可撓性,耐往復摩
耗性,導体との密着性等の著しい低下を招来る。
However, according to the method described above, the oxidation deterioration of the coating can be delayed, but the flexibility and the reciprocal wear resistance of the coated electric wire due to the hard and brittle properties of the second and third resins themselves. This leads to a remarkable decrease in adhesion to the conductor.

この発明は、このような事情に鑑みなされたもので、
皮膜の可撓性,耐摩耗性,密着性等の機械的特性を損な
わず、しかも酸化による被覆劣化に基づく耐破壊電圧性
の低下をも招くことのない耐熱性電気絶縁塗料の提供を
その目的とする。
The present invention has been made in view of such circumstances,
The object of the present invention is to provide a heat-resistant electrically insulating paint which does not impair the mechanical properties such as flexibility, abrasion resistance and adhesion of the film, and which does not cause a decrease in breakdown voltage resistance due to coating deterioration due to oxidation. And

〔問題点を解決するための手段〕[Means for solving the problem]

上記の目的を達成するため、この発明の耐熱性電気絶
縁塗料は、分子骨格中に多価アルコール成分であるトリ
ス−2−ヒドロキシイソシアヌレートから誘導させる構
造部分を含んでいるポリエステル樹脂もしくはポリエス
テルイミド樹脂の水酸基の一部が、下記の一般式(I)
で示されるテトラヒドロフタルイミド酸によりエステル
化されているという構成をとる。
In order to achieve the above object, a heat-resistant electric insulating paint according to the present invention is a polyester resin or a polyesterimide resin containing a structural portion derived from a polyhydric alcohol component, tris-2-hydroxyisocyanurate, in a molecular skeleton. A part of the hydroxyl groups of the following general formula (I)
Is esterified with tetrahydrophthalimidic acid represented by the formula:

〔Rは2価の有機基である。〕 〔作 用〕 すなわち、本発明者らは、塗膜の耐熱性および機械的
特性等を損なわずに酸化劣化後の耐破壊電圧性を充分保
持しうる方法の開発研究を行つた。その結果、分子骨格
中に多価アルコール成分のトリス−2−ヒドロキシイソ
シアヌレートから誘導される構造部分を含んでいるポリ
エステル樹脂もしくはポリエステルイミド樹脂の水酸基
の一部を前記の一般式(I)で示されるテトラヒドロフ
タルイミド酸によりエステル化すると所期の目的を達成
しうることを見いだしこの発明に到達した。
[R is a divalent organic group. [Operation] That is, the present inventors have conducted research on development of a method capable of sufficiently maintaining the breakdown voltage resistance after oxidative degradation without impairing the heat resistance and mechanical properties of the coating film. As a result, a part of the hydroxyl group of the polyester resin or the polyesterimide resin having a structural portion derived from the polyhydric alcohol component tris-2-hydroxyisocyanurate in the molecular skeleton is represented by the above-mentioned general formula (I). It has been found that the intended purpose can be achieved by esterification with tetrahydrophthalimidic acid.

この発明の耐熱性電気絶縁塗料は、分子骨格中にトリ
ス−2−ヒドロキシイソシアヌレートから誘導される構
造部分を含んでいるポリエステル樹脂もしくはポリエス
テルイミド樹脂と、テトラヒドロフタルイミド酸とを用
いて得られるものである。
The heat-resistant electric insulating paint of the present invention is obtained by using a polyester resin or a polyesterimide resin containing a structural portion derived from tris-2-hydroxyisocyanurate in a molecular skeleton, and tetrahydrophthalimidic acid. is there.

上記ポリエステル樹脂もしくはポリエステルイミド樹
脂は、多価アルコールと多塩基酸とを用いて従来公知の
方法により得られるものである。
The polyester resin or polyesterimide resin is obtained by a conventionally known method using a polyhydric alcohol and a polybasic acid.

上記多価アルコールとしては、トリス−2−ヒドロキ
シイソシアヌレート(以下「THEIC)と略す)が3価ア
ルコールとしてエチレングリコール等のその他の多価ア
ルコール成分と共に用いられる。
As the polyhydric alcohol, tris-2-hydroxyisocyanurate (hereinafter abbreviated as "THEIC") is used as a trihydric alcohol together with other polyhydric alcohol components such as ethylene glycol.

上記テトラヒドロフタルイミド酸は、前記の式(I)
で表されるものであり、例えばテトラヒドロ無水フタル
酸と、アミノカルボン酸を用いて得られる。
The above-mentioned tetrahydrophthalimidic acid is represented by the above formula (I)
And obtained by using, for example, tetrahydrophthalic anhydride and aminocarboxylic acid.

上記アミノカルボン酸としては、グリシン,グルタミ
ン酸,パラアミノ安息香酸およびメタアミノ安息香酸等
があげられる。
Examples of the aminocarboxylic acid include glycine, glutamic acid, paraaminobenzoic acid, and metaaminobenzoic acid.

このように前記の一般式(I)で表されるテトラヒド
ロフタルイミド酸は、テトラヒドロ無水フタル酸と上記
アミノカルボン酸を用いて合成されるものであり、両成
分を温度150〜200℃で等モル量反応させるよことにより
容易に合成される。なお、前記一般式(I)において、
Rは または−CH2−であることがより効果的の点で好まし
い。
As described above, the tetrahydrophthalimidic acid represented by the general formula (I) is synthesized using tetrahydrophthalic anhydride and the above-mentioned aminocarboxylic acid, and equimolar amounts of both components at a temperature of 150 to 200 ° C. It is easily synthesized by reacting. In the general formula (I),
R is Or -CH 2- is preferred in terms of more effectiveness.

このようにして得られたテトラヒドロフタルイミド酸
は、分子骨格中に多価アルコール成分のTHEICから誘導
される構造部分を含んでいるポリエステル樹脂もしくは
ポリエステルイミド樹脂の水酸基と反応しエステル結合
する。この場合、上記樹脂の全水酸基数の10〜30%とエ
ステル結合させるのが好ましい。すなわち、上記エステ
ル化が、全水酸基数の10%未満であれば酸化劣化後の耐
破壊電圧性の向上効果が見られず、30%を超えると酸化
劣化後の耐破壊電圧性は充分保持されるが、樹脂中の架
橋点の減少により塗料皮膜が軟質化し熱軟化温度が低下
するという問題が生ずるからである。
The tetrahydrophthalimidic acid thus obtained reacts with a hydroxyl group of a polyester resin or a polyesterimide resin containing a structural portion derived from the polyhydric alcohol component THEIC in the molecular skeleton to form an ester bond. In this case, it is preferable to form an ester bond with 10 to 30% of the total number of hydroxyl groups of the resin. That is, if the esterification is less than 10% of the total number of hydroxyl groups, the effect of improving the breakdown voltage after oxidative degradation is not seen, and if it exceeds 30%, the breakdown voltage after oxidative degradation is sufficiently maintained. However, this is because a decrease in the number of crosslinking points in the resin causes a problem that the coating film becomes soft and the heat softening temperature is lowered.

この発明の耐熱性電気絶縁塗料は、上記のような原料
を用い、例えばつぎのようにし製造することができる。
すなわち、まず前記のようにして予めテトラヒドロフタ
ルイミド酸を合成し、これを120℃以上の温度で溶融さ
れたポリエステル樹脂もしくはポリエステルイミド樹脂
に添加し、温度150〜230℃で2〜3時間反応を行う。そ
して、脱水縮合反応における水が溜出した点で反応を終
える。つぎに、このようにして得られた樹脂を、従来公
知の溶媒であるクレゾール,ナフサ類等で希釈後、テト
ラプロピルチタネート,テトラブチルチタネート等の従
来公知の架橋剤を添加し塗料化することにより製造する
ことができる。
The heat-resistant electric insulating paint of the present invention can be produced using the above-mentioned raw materials, for example, as follows.
That is, first, tetrahydrophthalimidic acid is synthesized in advance as described above, and this is added to a polyester resin or polyesterimide resin melted at a temperature of 120 ° C. or higher, and a reaction is performed at a temperature of 150 to 230 ° C. for 2 to 3 hours. . Then, the reaction is completed when water in the dehydration condensation reaction is distilled off. Next, the resin thus obtained is diluted with a conventionally known solvent such as cresol and naphtha, and then added with a conventionally known crosslinking agent such as tetrapropyl titanate and tetrabutyl titanate to form a coating. Can be manufactured.

なお、上記塗料の製造において、塗料の塗装性の改良
の目的で従来から広く用いられているフエノール樹脂、
メラミン樹脂,ウレタン樹脂およびポリアミド樹脂等の
熱硬化性樹脂、オクテン酸錫,オクテン酸亜鉛,ナフテ
ン酸錫およびナフテン酸亜鉛等の有機金属ドライヤー類
をこの発明の耐熱性電気絶縁塗料の特性を損なわない範
囲内で添加してもよい。
In the production of the paint, a phenolic resin that has been widely used in the past for the purpose of improving the paintability of the paint,
Thermosetting resins such as melamine resin, urethane resin and polyamide resin, and organic metal dryers such as tin octenoate, zinc octenoate, tin naphthenate and zinc naphthenate do not impair the properties of the heat-resistant electrically insulating paint of the present invention. You may add in the range.

〔発明の効果〕〔The invention's effect〕

以上のように、こ発明の耐熱性電気絶縁塗料は、分子
骨格中に多価アルコール成分であるTHEICから誘導され
る構造部分を含んでいるポリエステル樹脂もしくはポリ
エステルイミド樹脂の水酸基の一部が、前記の一般式
(I)で表されるテトラヒドロフタルイミド酸でエステ
ル化されているため、塗膜の可撓性,耐摩耗性および密
着性等の機械特性を損なうことなく、酸化劣化後の耐破
壊電圧性を保持することができる。
As described above, the heat-resistant electric insulating paint of the present invention has a part of the hydroxyl group of a polyester resin or a polyesterimide resin containing a structural part derived from THEIC which is a polyhydric alcohol component in a molecular skeleton. Since it is esterified with tetrahydrophthalimidic acid represented by the general formula (I), it does not impair the mechanical properties such as flexibility, abrasion resistance and adhesion of the coating film, and has a breakdown voltage after oxidative deterioration. Sex can be maintained.

つぎに、実施例について比較例と併せて説明する。 Next, examples will be described together with comparative examples.

まず、テトラヒドロフタルイミド酸をつぎのように合
成した。
First, tetrahydrophthalimidic acid was synthesized as follows.

≪テトラヒドロフタルイミド酸の製法A≫ 攪拌機,温度計およびコンデンサーを備えた反応容器
にテトラヒドロ無水フタル酸304g(2.0モル)とグリシ
ン150g(2.0モル)を入れ徐々に昇温させ、反応生成水
を留去しながら温度150〜160℃で2時間反応させて酸価
272の淡黄色結晶を得た(THEIC−A)。
<< Method A for producing tetrahydrophthalimidic acid >> In a reaction vessel equipped with a stirrer, a thermometer and a condenser, 304 g (2.0 mol) of tetrahydrophthalic anhydride and 150 g (2.0 mol) of glycine are gradually heated, and the reaction product water is distilled off. While reacting at a temperature of 150-160 ° C for 2 hours
272 pale yellow crystals were obtained (THEIC-A).

≪テトラヒドロフタルイミド酸の製法B≫ 作製Aと同様の反応容器にN−メチルピロリドン542g
(5.47モル)とテトラヒドロ無水フタル酸304g(2.0モ
ル)とパラアミノ安息香酸274g(2.0モル)を入れ徐々
に昇温させ、反応生成水を留去しながら温度190〜200℃
で3時間反応させた後、反応溶液に多量の水を加え生成
物を析出しメタノールで数回洗浄した後、温度80℃で3
時間減圧乾燥し、酸価210の黄色粉末を得た(THEIC−
B)。
{Method B for producing tetrahydrophthalimidic acid} N-methylpyrrolidone 542 g is placed in the same reaction vessel as in Preparation A.
(5.47 moles), 304 g (2.0 moles) of tetrahydrophthalic anhydride and 274 g (2.0 moles) of paraaminobenzoic acid were added, and the temperature was gradually raised.
After reacting for 3 hours, a large amount of water was added to the reaction solution to precipitate a product, which was washed several times with methanol.
After drying under reduced pressure for a time, a yellow powder having an acid value of 210 was obtained (THEIC-
B).

つぎに、樹脂組成物を下記のように作製した。 Next, a resin composition was prepared as follows.

≪作製C≫ 水分定量器付ガラスビーズ入りコンデンサー,温度計
および攪拌機を付設した5の4つ口フラスコに、テレ
フタル酸664g(4.0モル),エチレングリコール223.3g
(3.6モル),THEIC991.8g(3.8モル)およびジブチルチ
ンジラウレート0.27gをそれぞれ仕込み、攪拌しながら
加熱した。1時間で温度180℃まで昇温すると水が溜出
した。さらに、180℃から6時間かけて230℃まで昇温し
3時間反応を行つたところ148gの一部グリコールを含ん
だ水が溜出し、酸価14.6の樹脂を得た。つぎに、上記樹
脂に640gのクレゾールを添加し温度を130℃まで冷却
し、これにジアミノジフエニルメタン316.8g(1.6モ
ル),無水トリメリツト酸614.4g(3.2モル)を加えて2
20℃まで2時間かけて加熱昇温し4時間反応を行つたと
ころ120gの一部クレゾールを含んだ水が溜出し、茶褐色
透明の樹脂溶液が得られた。この樹脂溶液は、酸価9.8,
軟化点102℃,水酸基価132であつた(樹脂C)。
<< Preparation C >> In a four-necked flask equipped with a condenser containing glass beads with a moisture meter, a thermometer and a stirrer, 664 g (4.0 mol) of terephthalic acid and 223.3 g of ethylene glycol
(3.6 moles), 991.8 g (3.8 moles) of THEIC and 0.27 g of dibutyltin dilaurate were charged and heated with stirring. When the temperature was raised to 180 ° C. in one hour, water was distilled. Furthermore, the temperature was raised from 180 ° C. to 230 ° C. over 6 hours, and the reaction was carried out for 3 hours. As a result, 148 g of water containing a part of glycol was distilled off, and a resin having an acid value of 14.6 was obtained. Next, 640 g of cresol was added to the above resin, the temperature was cooled to 130 ° C., and 316.8 g (1.6 mol) of diaminodiphenylmethane and 614.4 g (3.2 mol) of trimellitic anhydride were added thereto.
When the temperature was raised to 20 ° C. over 2 hours and the reaction was carried out for 4 hours, 120 g of water partially containing cresol was distilled off, and a brown transparent resin solution was obtained. This resin solution has an acid value of 9.8,
It had a softening point of 102 ° C. and a hydroxyl value of 132 (resin C).

≪作製D≫ 作製Cと同様のフラスコに、テレフタル酸664g(4.0
モル),エチレングリコール198.4g(3.2モル),THIEC6
78.6g(2.6モル)およびジブチルチンジラウレート0.27
gを用い作製Cと同様の操作をしたところ、146gの一部
グリコールを含んだ水が溜出し、酸価16.8、軟化点78℃
の無色透明な樹脂を得た。つぎに、上記樹脂を210℃ま
で冷却し、減圧化720mmHgでさらに1時間反応を行つた
ところ、酸価6.7,軟化点108℃,水酸基価110の樹脂が得
られた(樹脂D)。
<< Preparation D >> In the same flask as Preparation C, 664 g of terephthalic acid (4.0
Mol), ethylene glycol 198.4 g (3.2 mol), THIEC6
78.6 g (2.6 mol) and dibutyltin dilaurate 0.27
g, the same operation as in Preparation C was carried out. As a result, 146 g of water containing a part of glycol was distilled off, and the acid value was 16.8 and the softening point was 78 ° C.
A colorless and transparent resin was obtained. Next, the above resin was cooled to 210 ° C. and further reacted for 1 hour at a reduced pressure of 720 mmHg. As a result, a resin having an acid value of 6.7, a softening point of 108 ° C. and a hydroxyl value of 110 was obtained (resin D).

〔実施例1〕 攪拌機,温度計およびコンデンサーを付設した1の
4つ口フラスコに作製Cで得られた樹脂C300gを仕込
み、温度130℃まで昇温後攪拌した。さらに、TEHIC−A3
6.5gを加え、温度180℃で2時間反応を行つたところ、
酸価8.6,水酸基価89.4の茶褐色透明の樹脂溶液を得た。
この樹脂溶液にクレゾール154gを加え、150℃まで冷却
した後ナフサII号を102g加え希釈した。つぎに、この希
釈された樹脂溶液を60℃まで冷却し、テトラブチルチタ
ネート8.2gとクレゾール24.0gの混合溶液を30分間かけ
て滴下し、赤褐色透明なエステル化が25.1%,不揮発分
45.2%(200℃,2時間)、粘度52.2ポイズ(30℃)の耐
熱性電気絶縁塗料が得られた。
Example 1 300 g of the resin C obtained in Preparation C was charged into a one-necked four-necked flask equipped with a stirrer, a thermometer, and a condenser. Furthermore, TEHIC-A3
When 6.5g was added and the reaction was carried out at 180 ° C for 2 hours,
A brown transparent resin solution having an acid value of 8.6 and a hydroxyl value of 89.4 was obtained.
To this resin solution was added 154 g of cresol, and after cooling to 150 ° C., 102 g of Naphtha II was added for dilution. Next, the diluted resin solution was cooled to 60 ° C., and a mixed solution of 8.2 g of tetrabutyl titanate and 24.0 g of cresol was added dropwise over 30 minutes.
A heat-resistant electrically insulating paint having a viscosity of 55.2 poise (30 ° C.) and a viscosity of 45.2% (200 ° C., 2 hours) was obtained.

〔実施例2〕 攪拌機,温度計およびコンデンサーを付設した1の
4つ口フラスコに作製Cで得られた樹脂C300gを仕込
み、温度130℃まで昇温後攪拌した。さらに、TEHIC−B2
8.5gを加え、温度200℃で2時間反応を行つたところ、
酸価7.6,水酸基価103の茶褐色透明の樹脂溶液を得た。
この樹脂溶液にクレゾール144gを加え、150℃まで冷却
した後ナフサII号を98g加え希釈した。つぎに、この希
釈された樹脂溶液を60℃まで冷却し、テトラブチルチタ
ネート8.0gとクレゾール24.0gの混合溶液を30分間かけ
て滴下し、赤褐色透明な不エステル化が15.1%,揮発分
44.8%(200℃,2時間)、粘度46.7ポイズ(30℃)の耐
熱性電気絶縁塗料が得られた。
Example 2 300 g of the resin C obtained in Preparation C was charged into one four-necked flask equipped with a stirrer, a thermometer and a condenser, heated to 130 ° C. and stirred. Furthermore, TEHIC-B2
After adding 8.5g and reacting for 2 hours at a temperature of 200 ° C,
A brown transparent resin solution having an acid value of 7.6 and a hydroxyl value of 103 was obtained.
144 g of cresol was added to this resin solution, and after cooling to 150 ° C., 98 g of Naphtha II was added for dilution. Next, the diluted resin solution was cooled to 60 ° C., and a mixed solution of 8.0 g of tetrabutyl titanate and 24.0 g of cresol was added dropwise over 30 minutes.
A heat-resistant electrically insulating coating material having a viscosity of 46.7% (30 ° C) and a viscosity of 46.7% (200 ° C, 2 hours) was obtained.

〔実施例3〕 作製Dで得られた樹脂D300g,THEIC−A18.8gを用いそ
れ以外は実施例1と同様にして酸価6.0,水酸基価88.2の
淡黄色透明の樹脂溶液を得た。この樹脂溶液にクレゾー
ル380gを加え希釈した後、温度60℃まで冷却し、テトラ
ブチルチタネート9.5gとクレゾール30.0gの混合溶液を3
0分間かけて滴下し、赤褐色透明なエステルが15.5%,
不揮発分43.3%(200℃,2時間)、粘度38.6ポイズ(30
℃)の耐熱性電気絶縁塗料が得られた。
Example 3 A light yellow transparent resin solution having an acid value of 6.0 and a hydroxyl value of 88.2 was obtained in the same manner as in Example 1 except that 300 g of Resin D and 18.8 g of THEIC-A obtained in Preparation D were used. After 380 g of cresol was added to the resin solution for dilution, the mixture was cooled to a temperature of 60 ° C., and a mixed solution of 9.5 g of tetrabutyl titanate and 30.0 g of cresol was added.
Drop over 0 minutes, 15.5% red-brown transparent ester,
Non-volatile content 43.3% (200 ° C, 2 hours), viscosity 38.6 poise (30
C.) was obtained.

〔実施例4〕 攪拌機,温度計およびコンデンサーを付設した1の
4つ口フラスコに作製Dで得られた樹脂D300gを仕込
み、温度130℃まで昇温後攪攪拌した。さらに、TEHIC−
B40.6gを加え、温度220℃で3時間反応を行つたとこ
ろ、酸価5.1,水酸基価72.9の茶褐色透明の樹脂溶液を得
た。この樹脂溶液にクレゾール410gを加え希釈し、60℃
まで冷却した。つぎに、この希釈された樹脂溶液に、テ
トラブチルチタネート10gとクレゾール30gの混合溶液を
30分間かけて滴下し、赤褐色透明なエステル化が25.8
%,不揮発分43.6%(200℃,2時間)、粘度41.0ポイズ
(30℃)の耐熱性電気絶縁塗料が得られた。
Example 4 300 g of the resin D obtained in Preparation D was charged into one four-necked flask equipped with a stirrer, a thermometer, and a condenser, heated to 130 ° C., and stirred. Furthermore, TEHIC-
After adding 40.6 g of B, the mixture was reacted at a temperature of 220 ° C. for 3 hours to obtain a brown transparent resin solution having an acid value of 5.1 and a hydroxyl value of 72.9. Add 410 g of cresol to this resin solution, dilute, and add
Cooled down. Next, a mixed solution of 10 g of tetrabutyl titanate and 30 g of cresol was added to the diluted resin solution.
Drop over 30 minutes, 25.8 red-brown transparent esterification
%, A nonvolatile content of 43.6% (200 ° C., 2 hours) and a viscosity of 41.0 poise (30 ° C.) were obtained.

〔比較例1〕 攪拌機,温度計およびコンデンサーを付設した2の
4つ口フラスコに作製Cで得られた樹脂C600gを仕込
み、温度130℃まで昇温後、この樹脂溶液にクレゾール2
48gとナフサII号176gを加えて希釈し60℃まで冷却し
た。つぎに、希釈された樹脂溶液に温度60℃のままでテ
トラブチルチタネート14.4gとクレゾール42.0gの混合溶
液を30分間かけて滴下し、赤褐色透明な不揮発分45.1%
(200℃,2時間)、粘度49.8ポイズ(30℃)の耐熱性電
気絶縁塗料が得られた。
[Comparative Example 1] 600 g of the resin C obtained in Preparation C was charged into a two-necked flask equipped with a stirrer, a thermometer, and a condenser, and heated to 130 ° C.
48 g and 176 g of Naphtha II were added to dilute and cooled to 60 ° C. Next, a mixed solution of 14.4 g of tetrabutyl titanate and 42.0 g of cresol was added dropwise to the diluted resin solution at a temperature of 60 ° C. over 30 minutes, and a red-brown transparent nonvolatile content of 45.1%
(200 ° C., 2 hours), a heat-resistant electric insulating paint having a viscosity of 49.8 poise (30 ° C.) was obtained.

〔比較例2〕 比較例1で得られた耐熱性電気絶縁塗料540gにレゾー
ル型フエノール樹脂(群栄化学社製,レジトツプPL−24
75)33.6gを加えて電気絶縁塗料を得た。
[Comparative Example 2] A resol type phenol resin (Resitop PL-24, manufactured by Gunei Chemical Co., Ltd.) was added to 540 g of the heat-resistant electric insulating paint obtained in Comparative Example 1.
75) 33.6 g was added to obtain an electrically insulating paint.

〔比較例3〕 攪拌機,温度計およびコンデンサーを付設した2の
4つ口フラスコに作製Dで得られた樹脂D600gを仕込
み、温度150℃まで昇温後、この樹脂溶液にクレゾール7
40gを加えて希釈し60℃まで冷却した。つぎに、希釈さ
れた樹脂溶液に温度60℃のままでテトラブチルチタネー
ト18gとクレゾール55gの混合溶液を30分間かけて滴下
し、赤褐色透明な不揮発分43.3%(200℃,2時間)、粘
度42.0ポイズ(30℃)の耐熱性電気絶縁塗料が得られ
た。
[Comparative Example 3] 600 g of the resin D obtained in Preparation D was charged into a two-necked four-necked flask equipped with a stirrer, a thermometer and a condenser, and the temperature was raised to 150 ° C.
It was diluted by adding 40 g, and cooled to 60 ° C. Next, a mixed solution of 18 g of tetrabutyl titanate and 55 g of cresol was added dropwise to the diluted resin solution at a temperature of 60 ° C. over 30 minutes, and a red-brown transparent nonvolatile matter of 43.3% (200 ° C., 2 hours) and a viscosity of 42.0% A poise (30 ° C.) heat-resistant electrically insulating paint was obtained.

〔比較例4〕 比較例3で得られた耐熱性電気絶縁塗料706gにレゾー
ル型フエノール樹脂(群栄化学社製,レジトツプPL−24
75)42gを加えて電気絶縁塗料を得た。
[Comparative Example 4] The resole type phenol resin (Resitop PL-24, manufactured by Gunei Chemical Co., Ltd.) was added to 706 g of the heat-resistant electric insulating paint obtained in Comparative Example 3.
75) 42 g was added to obtain an electrically insulating paint.

つぎに、得られた実施例品および比較例品を、炉長5m
の縦形炉を用いて温度450℃,引き取り速度15m/分の条
件により、電線の外周に焼き付け、得られた電気絶縁電
線の特性試験をJIS C−3210に準じて行つた。その結果
を下記の表に示した。
Next, the obtained example product and comparative product were furnace length 5 m.
The wire was baked on the outer periphery of the wire using a vertical furnace at a temperature of 450 ° C. and a take-up speed of 15 m / min, and a characteristic test of the obtained electrically insulated wire was performed according to JIS C-3210. The results are shown in the table below.

上記の表から明らかなように、実施例品は比較例品に
比べて初期の状態での絶縁破壊電圧は変わらないが、高
温,長時間での絶縁破壊電圧の低下が抑えられているこ
とから、実施例品は酸化劣化後の耐破壊電圧性に優れて
いることがわかる。
As is clear from the above table, the breakdown voltage of the example product in the initial state is not different from that of the comparison product, but the reduction of the breakdown voltage at high temperature and for a long time is suppressed. It can be seen that the example products are excellent in breakdown voltage resistance after oxidative deterioration.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C08G 73/16 NTK C08G 73/16 NTK NTM NTM ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C08G 73/16 NTK C08G 73/16 NTK NTM NTM

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】分子骨格中に多価アルコール成分であるト
リス−2−ヒドロキシイソシアヌレートから誘導される
構造部分を含んでいるポリエステル樹脂もしくはポリエ
ステルイミド樹脂の水酸基の一部が、下記の一般式
(I)で示されるテトラヒドロフタルイミド酸によりエ
ステル化されていることを特徴とする耐熱性電気絶縁塗
料。 〔Rは2価の有機基である。〕
1. A polyester resin or a polyesterimide resin having a structural portion derived from tris-2-hydroxyisocyanurate which is a polyhydric alcohol component in a molecular skeleton, and a part of the hydroxyl groups is represented by the following general formula ( A heat-resistant electrically insulating paint characterized by being esterified with tetrahydrophthalimidic acid represented by I). [R is a divalent organic group. ]
【請求項2】テトラヒドロフタルイミド酸によるエステ
ル化が、ポリエステル樹脂もしくはポリエステルイミド
樹脂の全水酸基数の10〜30%に設定されている請求項1
記載の耐熱性電気絶縁塗料。
2. The esterification with tetrahydrophthalimide acid is set to 10 to 30% of the total number of hydroxyl groups of the polyester resin or polyesterimide resin.
The heat-resistant electrical insulating paint as described.
【請求項3】一般式(I)で示されるテトラヒドロフタ
ルイミド酸中のRが または−CH2−である請求項1または2記載の耐熱性電
気絶縁塗料。
(3) R in the tetrahydrophthalimide acid represented by the general formula (I) is Or -CH 2 - in which according to claim 1 or 2, wherein the heat-resistant electrically insulating coating.
JP63033214A 1988-02-15 1988-02-15 Heat resistant electrical insulation paint Expired - Lifetime JP2585685B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63033214A JP2585685B2 (en) 1988-02-15 1988-02-15 Heat resistant electrical insulation paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63033214A JP2585685B2 (en) 1988-02-15 1988-02-15 Heat resistant electrical insulation paint

Publications (2)

Publication Number Publication Date
JPH01207362A JPH01207362A (en) 1989-08-21
JP2585685B2 true JP2585685B2 (en) 1997-02-26

Family

ID=12380196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63033214A Expired - Lifetime JP2585685B2 (en) 1988-02-15 1988-02-15 Heat resistant electrical insulation paint

Country Status (1)

Country Link
JP (1) JP2585685B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10066053B2 (en) * 2014-12-19 2018-09-04 Dsm Ip Assets B.V. Alkyd resin compositions

Also Published As

Publication number Publication date
JPH01207362A (en) 1989-08-21

Similar Documents

Publication Publication Date Title
JPS5836018B2 (en) Manufacturing method of heat-resistant resin
JP2585685B2 (en) Heat resistant electrical insulation paint
JPS5962662A (en) Heat-resistant resin composition
JPH05331367A (en) Resin composition and insulated wire produced using the same
JPH0554722A (en) Resin composition for electric insulation and insulated wire
JP2001214059A (en) Resin composition for electric insulation and insulated electric wire using the same
JP3345835B2 (en) Heat resistant insulating paint
JPS58145720A (en) Production of polyester-imide-urethane paint
JPH11228812A (en) Resin composition for electrical insulation and insulated wire produced by using the composition
JPH07166054A (en) Resin composition and insulated wire made by using it
JPH10120787A (en) Polyesterimide, heat-resistant resin composition and insulated electric wire
JPH0326757A (en) Resin composition and insulated wire
JPH06279675A (en) Resin composition and insulated wire
JPS58174441A (en) Heat-resistant resin composition
JPS63189456A (en) Resin composition having solderability
JPH08134215A (en) Production of polyester-imide, heat-resistant resin composition and insulated wire
JP2000276948A (en) Electric insulation resin composition and insulated electric wire using it
JP2004127542A (en) Resin composition for electrical insulation, and enameled wire
JPH111538A (en) Electric insulating resin composition and insulated wire
JPS5855191B2 (en) Self-bonding insulated wire
JPS5927921A (en) Production of heat-resistant resin
JPS6220568A (en) Electrical insulating coating compound of polyurethane
JPH08188713A (en) Resin composition and insulating electric wire using the same
JPS59155477A (en) Electrical insulating coating and its preparation
JPH07278302A (en) Production of polyesterimide, heat-resistant resin composition and insulated wire