JP2585308Y2 - Omnidirectional measurement receiver - Google Patents

Omnidirectional measurement receiver

Info

Publication number
JP2585308Y2
JP2585308Y2 JP3072093U JP3072093U JP2585308Y2 JP 2585308 Y2 JP2585308 Y2 JP 2585308Y2 JP 3072093 U JP3072093 U JP 3072093U JP 3072093 U JP3072093 U JP 3072093U JP 2585308 Y2 JP2585308 Y2 JP 2585308Y2
Authority
JP
Japan
Prior art keywords
receiver
stacks
vibrator
signal
piezoelectric vibrators
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3072093U
Other languages
Japanese (ja)
Other versions
JPH072984U (en
Inventor
文昭 阿部
明 亀山
芳典 浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Tokin Corp
Original Assignee
NEC Corp
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Tokin Corp filed Critical NEC Corp
Priority to JP3072093U priority Critical patent/JP2585308Y2/en
Publication of JPH072984U publication Critical patent/JPH072984U/en
Application granted granted Critical
Publication of JP2585308Y2 publication Critical patent/JP2585308Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、水中で使用する超音波
機器、特に音源方向を全方位に亘って計測する受波器に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ultrasonic device used underwater, and more particularly to a receiver for measuring the direction of a sound source in all directions.

【0002】[0002]

【従来の技術】従来、この種の受波器は、図6に示すよ
うに、4個の円筒状圧電振動子と、2個の導電リング
と、シャフト及び2個の負荷質量とからなる4組の受波
素子31a,31b,31c,31dを1枚の支持板6
で正四角形状に配置し、各面で4個の受波素子31a,
31b,31c,31dの負荷質量を嵌合して挿入でき
る貫通孔を有する筐体30a,30bで支持板6の両面
を覆うとともに、筐体30a,30bの内部に電子回路
34を組み込んで構成されている。
2. Description of the Related Art Conventionally, this type of receiver comprises four cylindrical piezoelectric vibrators, two conductive rings, a shaft and two load masses, as shown in FIG. One set of the receiving plates 31a, 31b, 31c, 31d
Are arranged in a square shape, and four receiving elements 31a,
Both sides of the support plate 6 are covered with housings 30a, 30b having through holes into which the load masses of 31b, 31c, 31d can be fitted and inserted, and an electronic circuit 34 is incorporated inside the housings 30a, 30b. ing.

【0003】電子回路34は、図7に示すように、1次
側に中性点をもつ4個のトランス41a,41b,41
c,41dと、2個の加算回路42a,42b、及び2
個の減算回路43a,43bとで構成されており、各ト
ランス41a,41b,41c,41dの1次側はこれ
らに対応する各受波素子31a,31b,31c,31
dの2個の導電リングにそれぞれ接続され、全トランス
の2次側は一方の加算回路42aに、また、全トランス
41a,41b,41c,41dの中性点は他方の加算
回路42bそれぞれ接続されるとともに、互いに対向す
る受波素子31a,31c及び31b,31dに対応す
る各トランス41a,41c及び41b,41dの各中
性点が各減算回路43a及び43bにそれぞれ接続され
ている。
As shown in FIG. 7, an electronic circuit 34 comprises four transformers 41a, 41b, 41 having a neutral point on the primary side.
c, 41d and two adder circuits 42a, 42b, and 2
The primary side of each of the transformers 41a, 41b, 41c, and 41d is provided with a corresponding one of the receiving elements 31a, 31b, 31c, and 31d.
d are connected respectively to the two conductive rings, the secondary side of all the transformers is connected to one adder circuit 42a, and the neutral point of all the transformers 41a, 41b, 41c, 41d is connected to the other adder circuit 42b. The neutral points of the transformers 41a, 41c, 41b, 41d corresponding to the wave receiving elements 31a, 31c, 31b, 31d facing each other are connected to the subtraction circuits 43a, 43b, respectively.

【0004】この従来の受波器は、次のように動作す
る。図6及び図7において、受波器に組み込まれたXY
平面状の受波素子31a,31b,31c,31dの負
荷質量に、音圧P0 がZ軸からの角度ψで入射したと
き、表面と裏面の各負荷質量に加わる音圧に、音波の経
路長による位相差が生じる。音波による振動は両面の負
荷質量を経由して振動子に伝達され、振動子は2個の導
電リングを正極性に、負荷質量と支持板6を負極性とす
る電気信号を発生する。ここで、2個の導電リングの間
から見た圧電振動子の極性は逆接続となっており、その
出力信号は受波素子31a,31b,31c,31dの
表面からの振動と裏面からの振動の差の信号、すなわ
ち、図6におけるZ軸方向を最大感度とするダイポール
指向性の信号となってトランス41a,41c,41
b,41dに送られる。
[0004] This conventional receiver operates as follows. In FIGS. 6 and 7, XY incorporated in the receiver
When the sound pressure P 0 is incident on the load masses of the planar wave receiving elements 31a, 31b, 31c, and 31d at an angle か ら from the Z axis, the sound pressure is applied to the sound pressures applied to the load masses on the front surface and the back surface. A phase difference occurs due to the length. The vibration caused by the sound wave is transmitted to the vibrator via the load mass on both sides, and the vibrator generates an electric signal in which the two conductive rings have a positive polarity and the load mass and the support plate 6 have a negative polarity. Here, the polarity of the piezoelectric vibrator viewed from between the two conductive rings is reversely connected, and the output signal is the vibration from the front surface of the wave receiving elements 31a, 31b, 31c, 31d and the vibration from the back surface. , Ie, a dipole directivity signal having the maximum sensitivity in the Z-axis direction in FIG.
b, 41d.

【0005】また、2個の導電リングを短絡し、これと
負荷質量と支持板6とが接続されたアースとの間から見
た圧電振動子の極性は順接続となり、その出力信号は受
波素子31a,31b,31c,31dの表面からの振
動と裏面からの振動の和の信号、すなわち、経路差が波
長に比べて十分に小さいという条件のもとで無指向性の
信号となる。そこで、図6においてX軸方向に配置した
受波素子31a,31cの出力をトランス41a.41
cの1次側に接続し、それらの1次側の中性点から得る
各々無指向性の信号を減算回路43aに入力して得る差
信号から、X軸方向のダイポール指向性の信号を得ると
ともに、Y軸方向に配置した受波素子31b,31dに
よって、上記のX軸の場合と同様に、Y軸方向のダイポ
ール指向性の信号を得る。
Further, the two conductive rings are short-circuited, and the polarity of the piezoelectric vibrator viewed from between this and the load mass and the ground to which the support plate 6 is connected becomes forward connection, and the output signal of the piezoelectric vibrator is received. The signal is a signal of the sum of the vibration from the front surface and the vibration from the rear surface of the elements 31a, 31b, 31c, 31d, that is, a non-directional signal under the condition that the path difference is sufficiently smaller than the wavelength. Therefore, the outputs of the wave receiving elements 31a and 31c arranged in the X-axis direction in FIG. 41
c, connected to the primary side of C, and the omnidirectional signal obtained from the neutral point of the primary side is input to the subtraction circuit 43a to obtain a dipole directional signal in the X-axis direction from the difference signal obtained. At the same time, a signal of dipole directivity in the Y-axis direction is obtained by the wave receiving elements 31b and 31d arranged in the Y-axis direction, as in the case of the X-axis.

【0006】また、Z軸方向のダイポール指向性の信号
は、各々の受波素子31a,31b,31c,31dに
接続された各トランス41a,41c,41b,41d
の出力として得られるが、無指向性の信号との位相差精
度を高くするために全トランスの出力を加算回路42a
で加算して得る。無指向性の信号は、各軸方向のダイポ
ール指向性の信号との位相差精度を高くするために全ト
ランス41a,41c,41b,41dの中性点の出力
を加算回路42bで加算して得る。
[0006] Signals of dipole directivity in the Z-axis direction are transmitted to transformers 41a, 41c, 41b, 41d connected to the respective receiving elements 31a, 31b, 31c, 31d.
The output of all the transformers is added to the summation circuit 42a in order to increase the phase difference accuracy with the omnidirectional signal.
To obtain the sum. The non-directional signal is obtained by adding the outputs of the neutral points of all the transformers 41a, 41c, 41b, and 41d by an adder circuit 42b in order to increase the phase difference accuracy with the dipole directivity signal in each axial direction. .

【0007】[0007]

【考案が解決しようとする課題】しかしながら、前記従
来の全方位計測用受波器は、平面で信号を受けるため、
Z軸方向のダイポール指向性の信号は容易に得られる
が、X軸及びY軸方向のダイポール指向性の信号は電子
回路で計算して得なければならず、その受波原理が複雑
になる不具合がある。また、この従来の全方位計測用受
波器の受波原理では、多くの受波素子やトランスが必要
となり、その電子回路も複雑化する欠点があった。
However, the conventional omnidirectional measurement receiver receives a signal in a plane,
Although the signal of the dipole directivity in the Z-axis direction can be easily obtained, the signal of the dipole directivity in the X-axis and Y-axis directions must be calculated and obtained by an electronic circuit, and the wave receiving principle becomes complicated. There is. In addition, the conventional receiving principle of the omnidirectional measurement receiver requires a large number of receiving elements and transformers, and has a drawback that its electronic circuit is complicated.

【0008】本考案の課題は、直交3方向のそれぞれに
受波素子を配置して受波素子とトランスの数の低減及び
電子回路の簡素化を図り、全方位に亘る計測を可能にし
た実用的な構造の全方位計測用受波器を提供することに
ある。
An object of the present invention is to reduce the number of wave receiving elements and transformers and simplify the electronic circuit by arranging the wave receiving elements in each of the three orthogonal directions, thereby enabling practical measurement in all directions. An object of the present invention is to provide an omnidirectional measurement receiver having a simple structure.

【0009】[0009]

【課題を解決するための手段】本考案によれば、端面に
電極をもつ2個の円筒状圧電振動子とこれらの圧電振動
子の間に位置する導電リングとを同心状でかつ極性を反
転して積層した6組の振動子積層と、正六面体の各面の
中央にシャフトを設けた支持体と、各シャフトに設けら
れたねじ部に嵌合するねじ穴を有し上記各振動子積層の
端面に圧接して上記各シャフトと各々の振動子積層とを
同心状に固定する6個の負荷質量とからなり、上記支持
体の中心部を原点とした直交3方位6方向に上記振動子
積層と上記負荷質量を有する受波器と、各方位における
2組の振動子積層の2個の導電リングが接続された1次
側に中性点をもつ3個のトランスと、全トランスの中性
点が接続される加算回路と、これらの受波器及び加算回
路を収納する筐体とから構成されることを特徴とする全
方位計測用受波器が得られる。
According to the present invention, two cylindrical piezoelectric vibrators having electrodes on the end faces and a conductive ring located between these piezoelectric vibrators are concentric and have inverted polarities. Vibrator laminations, a support having a shaft provided at the center of each face of a regular hexahedron, and a screw hole fitted into a screw portion provided on each shaft. And six load masses concentrically fixing the shafts and the respective oscillator stacks by pressing against the end faces of the oscillators, and the oscillators in three orthogonal directions and six directions with the center of the support as the origin. A receiver having the stack and the load mass, three transformers having a neutral point on the primary side to which two conductive rings of two sets of transducer stacks in each direction are connected, and Adder circuit to which the characteristic point is connected, and a housing for accommodating these receivers and the adder circuit Omnidirectional measurement receivers can be obtained, characterized in that they are composed of.

【0010】[0010]

【実施例】次に、本考案の実施例を図面に基いて詳細に
説明する。
Next, an embodiment of the present invention will be described in detail with reference to the drawings.

【0011】図1は、本考案の受波器の実施例を示す一
部切欠斜視図である。本実施例の受波器の断面を図2に
示し、また、本実施例の6組の振動子積層のうちの2組
の振動子積層の部分断面を図3に示す。
FIG. 1 is a partially cutaway perspective view showing an embodiment of the receiver according to the present invention. FIG. 2 shows a cross section of the receiver according to the present embodiment, and FIG. 3 shows a partial cross section of two sets of the oscillator stacks out of the six sets of the oscillator stacks of the present embodiment.

【0012】本実施例の振動子積層は、6組の振動子積
層の各々2組の振動積層が互いに対向して対をなすよう
に配置される。例えば、図3に示すように、2個の圧電
振動子1a,1bと導電リング2aからなる振動子積層
10aと、これと同様に2個の圧電振動子1c,1dと
導電リング2bからなる振動子積層10bとは、正六面
体(立方体)からなる支持体60の対向面上の対称位置
にそれぞれ積層され、この状態で、シャフト4a,4b
及び負荷質量3a,3bにより支持体60の両面にそれ
ぞれ固定される。ここで、各シャフト4a,4bは、支
持体60の各面の中央にそれぞれ螺合されている。ま
た、各負荷質量3a,3bは、各シャフト4a,4bの
延出端部に設けられたねじ部に嵌合するねじ穴を有して
おり、各振動子積層10a,10bの端面に圧接して、
各シャフト4a,4bと各々の振動子積層10a,10
bとを同心状に固定している。
The vibrator stack of this embodiment is arranged so that two sets of vibrator stacks of the six sets of vibrator stacks are opposed to each other and form a pair. For example, as shown in FIG. 3, a vibrator stack 10a including two piezoelectric vibrators 1a and 1b and a conductive ring 2a, and a vibration including two piezoelectric vibrators 1c and 1d and a conductive ring 2b similarly. The child laminations 10b are laminated at symmetrical positions on the opposing surface of the support 60 made of a regular hexahedron (cube). In this state, the shafts 4a, 4b
And are fixed to both surfaces of the support 60 by the load masses 3a and 3b, respectively. Here, the shafts 4a and 4b are screwed to the centers of the respective surfaces of the support 60, respectively. Further, each of the load masses 3a, 3b has a screw hole that fits into a screw portion provided at the extending end of each of the shafts 4a, 4b, and presses against the end face of each of the oscillator stacks 10a, 10b. hand,
Each shaft 4a, 4b and each oscillator lamination 10a, 10
b is fixed concentrically.

【0013】本実施例の受波器は、上記のように、各々
2組の振動子積層10aと10b,10cと10d,1
0eと10fが、支持体60の中心部を原点とした直交
3方位6方向にそれぞれ配置されることによって構成さ
れる。また、各負荷質量3a,3b,3c,3d,3
e,3fは、図1及び図2に示すように、各々の端面が
筐体11のそれぞれの外側面11a,11b,11c,
11d,11e,11fと同一平面をなすように、各外
側面に穿たれた貫通孔にそれぞれ埋まるように嵌合され
ている。この筐体11の外側面は止めねじ13で固定さ
れており、その表面には水密被覆体15による防水処理
が施されている。
As described above, the receiver according to the present embodiment has two sets of transducer stacks 10a and 10b, 10c and 10d, 1
0e and 10f are respectively arranged in three orthogonal directions and six directions with the center of the support 60 as the origin. In addition, each load mass 3a, 3b, 3c, 3d, 3
e and 3f, as shown in FIGS. 1 and 2, each end face has a respective outer side face 11a, 11b, 11c,
Fitted so as to be buried in through holes formed in each outer surface so as to form the same plane as 11d, 11e, and 11f. The outer surface of the housing 11 is fixed with a set screw 13, and its surface is waterproofed by a watertight covering 15.

【0014】また、筐体11の内部には、各振動子積層
10a,10b,10c,10d,10e,10fに接
続される電子回路14が内蔵されている。本実施例の電
子回路14は、図4に示すように、3個のトランス21
a,21b,21cと、1個の加算回路22とで構成さ
れており、その入力側に各振動子積層10a,10b,
10c,10d,10e,10fの各導電リング2a,
2b,2c,2d,2e,2dが、出力側にケーブル1
2(図1)がそれぞれ接続されている。
Further, an electronic circuit 14 connected to each of the transducer stacks 10a, 10b, 10c, 10d, 10e, and 10f is built in the housing 11. The electronic circuit 14 of the present embodiment includes three transformers 21 as shown in FIG.
a, 21b, and 21c and one adder circuit 22, and each of the oscillator stacks 10a, 10b,
Each conductive ring 2a of 10c, 10d, 10e, 10f
2b, 2c, 2d, 2e and 2d are connected to the cable 1 on the output side.
2 (FIG. 1) are respectively connected.

【0015】図5は、本実施例の動作原理を示してお
り、各組の振動子積層(ここでは10a,10b)はリ
ード線5a,5bによりトランス21a1次側に接続さ
れ、各負荷質量(ここでは3a,3b)はリード線5c
によってアースとなる支持体60に接続されている。
FIG. 5 shows the principle of operation of the present embodiment. Each set of transducer layers (here, 10a and 10b) is connected to the primary side of a transformer 21a by leads 5a and 5b, and each load mass ( Here, 3a, 3b) are the lead wires 5c.
Is connected to the support body 60 which becomes the ground.

【0016】図5において、受波器に組み込まれた振動
子積層10a,10bの負荷質量3a,3bに加わった
音波P0 は、縦振動となって圧電振動子1a,1b,1
c,1dに伝達され支持体60で終端される。圧電振動
子1a,1b,1c,1dは分極の極性が交互に反転し
て積層されており、その正極性側の出力は2個の導電リ
ング2a,2bにより引き出され、負極性側の出力はシ
ャフト4a,4bを介して接続された2個の負荷質量3
a,3bと支持体60とで引き出される。
In FIG. 5, the sound waves P 0 applied to the load masses 3a, 3b of the transducer stacks 10a, 10b incorporated in the receiver become longitudinal vibrations and become piezoelectric vibrators 1a, 1b, 1.
c, 1d and terminated at the support 60. The piezoelectric vibrators 1a, 1b, 1c, and 1d are stacked with their polarities alternately inverted. The output on the positive side is extracted by two conductive rings 2a and 2b, and the output on the negative side is Two load masses 3 connected via shafts 4a, 4b
a, 3b and the support 60.

【0017】ここで、2個の導電リング2a,2bの間
から見た圧電振動子1a,1b,1c,1dの接続は、
圧電振動子1aと1b,1cと1dとの間で逆接続とな
り、その出力は負荷質量3a,3bで受ける音圧の差信
号、すなわち、Z軸方向のダイポール指向性の信号とな
ってトランス21aに接続される。
Here, the connection of the piezoelectric vibrators 1a, 1b, 1c, 1d viewed from between the two conductive rings 2a, 2b is as follows.
The piezoelectric vibrators 1a and 1b and 1c and 1d are reversely connected, and the output is a difference signal of the sound pressure received by the load masses 3a and 3b, that is, a signal of the dipole directivity in the Z-axis direction, and becomes a transformer 21a. Connected to.

【0018】また、2個の導電リング2a,2bを短絡
し、これと負荷質量3a,3bと支持体60とが接続さ
れたアースとの間から見た圧電振動子1a,1b,1
c,1dの接続は全圧電振動子1a,1b,1c,1d
の順接続となり、その出力は、負荷質量3a,3bで受
ける音圧の和信号、すなわち、無指向性の信号となっ
て、差信号と同時に出力が得られるようにトランス21
aの中性点から引き出される。この無指向性の信号は、
各軸方向のダイポール指向性の信号との位相差精度を高
くするために、図4に示すように、全トランスの中性点
の出力を加算回路22で加算して得る。
Further, the two conductive rings 2a, 2b are short-circuited, and the piezoelectric vibrators 1a, 1b, 1 viewed from between this and the ground to which the load masses 3a, 3b and the support 60 are connected.
The connections of c and 1d are made of all the piezoelectric vibrators 1a, 1b, 1c and 1d.
And the output is a sum signal of the sound pressures received by the load masses 3a and 3b, that is, a non-directional signal.
a is derived from the neutral point. This omnidirectional signal is
As shown in FIG. 4, the outputs of the neutral points of all the transformers are added by an adder circuit 22 in order to increase the accuracy of the phase difference with the signal of the dipole directivity in each axis direction.

【0019】従って、本実施例によれば、各軸方向に2
組の振動子積層からなる受波素子を配置したので、精度
のよい信号が得られ、その方位精度が向上される。
Therefore, according to the present embodiment, two axial directions are required.
Since the wave receiving element composed of a pair of transducer laminations is arranged, an accurate signal is obtained, and the azimuth accuracy is improved.

【0020】[0020]

【考案の効果】上述したように、本考案によれば、受波
器の方位精度を向上できるとともに、圧電振動子の数量
の低減、及び電子回路の簡素化を実現できる。
As described above, according to the present invention, the azimuth accuracy of the receiver can be improved, the number of piezoelectric vibrators can be reduced, and the electronic circuit can be simplified.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案の実施例の一部切欠斜視図である。FIG. 1 is a partially cutaway perspective view of an embodiment of the present invention.

【図2】本考案の実施例の概略断面図である。FIG. 2 is a schematic sectional view of an embodiment of the present invention.

【図3】上記実施例における2組の振動子積層の部分破
断斜視図である。
FIG. 3 is a partially cutaway perspective view of two sets of transducer layers in the embodiment.

【図4】本考案の実施例における電子回路の接続状態を
示す回路図である。
FIG. 4 is a circuit diagram showing a connection state of the electronic circuit in the embodiment of the present invention.

【図5】本考案の実施例における2組の振動子積層の動
作原理を示す概略断面図である。
FIG. 5 is a schematic cross-sectional view illustrating the principle of operation of two sets of transducer laminations in the embodiment of the present invention.

【図6】従来の受波器の部分破断斜視図である。FIG. 6 is a partially cutaway perspective view of a conventional receiver.

【図7】従来の受波器における電子回路の接続状態を示
す回路図である。
FIG. 7 is a circuit diagram showing a connection state of an electronic circuit in a conventional receiver.

【符号の説明】[Explanation of symbols]

1a,1b,1c,1d 圧電振動子 2a,2b 導電リング 3a,3b,3c,3d,3e,3f 負荷質量 4a,4b シャフト 5a,5b リード線 10a,10b,10c,10d,10e,10f
振動子積層 11 筐体 12 ケーブル 13 止めねじ 14 電子回路 15 水密被覆 21a,21b,21c トランス 22 加算回路
1a, 1b, 1c, 1d Piezoelectric vibrator 2a, 2b Conductive ring 3a, 3b, 3c, 3d, 3e, 3f Load mass 4a, 4b Shaft 5a, 5b Lead wire 10a, 10b, 10c, 10d, 10e, 10f
Oscillator stack 11 Housing 12 Cable 13 Set screw 14 Electronic circuit 15 Watertight coating 21a, 21b, 21c Transformer 22 Addition circuit

フロントページの続き (72)考案者 浜 芳典 東京都港区芝五丁目7番1号 日本電気 株式会社内 (56)参考文献 特開 平4−185099(JP,A) 特開 昭61−230599(JP,A) 特開 昭62−163776(JP,A) 特開 平3−238380(JP,A) 特開 平2−303299(JP,A) 特開 昭62−174677(JP,A) 特開 昭55−72879(JP,A) 実開 平2−6281(JP,U) 実開 昭63−163098(JP,U) 実開 平6−51888(JP,U) (58)調査した分野(Int.Cl.6,DB名) G01S 3/803 G01S 7/521Continuation of the front page (72) Inventor Yoshinori Hama 5-7-1 Shiba, Minato-ku, Tokyo NEC Corporation (56) References JP-A-4-185099 (JP, A) JP-A-61-230599 ( JP, A) JP-A-62-163776 (JP, A) JP-A-3-238380 (JP, A) JP-A-2-303299 (JP, A) JP-A-62-174677 (JP, A) JP 55-72879 (JP, A) Japanese Utility Model 26281 (JP, U) Japanese Utility Model 63-163098 (JP, U) Japanese Utility Model 6-51888 (JP, U) (58) Field surveyed (Int) .Cl. 6 , DB name) G01S 3/803 G01S 7/521

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 端面に電極をもつ2個の円筒状圧電振動
子とこれらの圧電振動子の間に位置する導電リングとを
同心状でかつ極性を反転して積層した6組の振動子積層
と、正六面体の各面の中央にシャフトを設けた支持体
と、各シャフトに設けられたねじ部に嵌合するねじ穴を
有し上記各振動子積層の端面に圧接して上記各シャフト
と各々の振動子積層とを同心状に固定する6個の負荷質
量とからなり、上記支持体の中心部を原点とした直交3
方位6方向に上記振動子積層と上記負荷質量を有する受
波器と、各方位における2組の振動子積層の2個の導電
リングが接続された1次側に中性点をもつ3個のトラン
スと、全トランスの中性点が接続される加算回路と、こ
れらの受波器及び加算回路を収納する筐体とから構成さ
れることを特徴とする全方位計測用受波器。
1. Six sets of vibrator laminates in which two cylindrical piezoelectric vibrators having electrodes on the end faces and a conductive ring located between these piezoelectric vibrators are laminated concentrically and with reversed polarity. And a support provided with a shaft at the center of each surface of the regular hexahedron, and a screw hole that fits into a threaded portion provided on each shaft. Each of the vibrator stacks is concentrically fixed with six load masses.
A receiver having the above-mentioned oscillator stack and the above-mentioned load mass in six directions, and three neutral-point neutral points on the primary side to which two conductive rings of two sets of oscillator stacks in each direction are connected. An omnidirectional measurement receiver comprising: a transformer; an adder circuit to which neutral points of all the transformers are connected; and a housing for housing the receiver and the adder circuit.
JP3072093U 1993-06-08 1993-06-08 Omnidirectional measurement receiver Expired - Fee Related JP2585308Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3072093U JP2585308Y2 (en) 1993-06-08 1993-06-08 Omnidirectional measurement receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3072093U JP2585308Y2 (en) 1993-06-08 1993-06-08 Omnidirectional measurement receiver

Publications (2)

Publication Number Publication Date
JPH072984U JPH072984U (en) 1995-01-17
JP2585308Y2 true JP2585308Y2 (en) 1998-11-18

Family

ID=12311487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3072093U Expired - Fee Related JP2585308Y2 (en) 1993-06-08 1993-06-08 Omnidirectional measurement receiver

Country Status (1)

Country Link
JP (1) JP2585308Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434153B2 (en) * 2009-03-09 2014-03-05 日本電気株式会社 Three-dimensional array type transducer, and apparatus provided with three-dimensional array type transducer

Also Published As

Publication number Publication date
JPH072984U (en) 1995-01-17

Similar Documents

Publication Publication Date Title
US4184093A (en) Piezoelectric polymer rectangular flexural plate hydrophone
US4490640A (en) Multi-frequency ultrasonic transducer
US4446544A (en) Small diameter, low frequency multimode hydrophone
US3890591A (en) Grouping of electro-acoustic transducers particularly for use in underwater detection systems
JP5434153B2 (en) Three-dimensional array type transducer, and apparatus provided with three-dimensional array type transducer
JP2585308Y2 (en) Omnidirectional measurement receiver
US3584243A (en) Acoustic transducer
JP2575314Y2 (en) Omnidirectional measurement receiver
JPH0730362A (en) Surface acoustic wave device
JPH02309799A (en) Transmitter-receiver
RU2110888C1 (en) Doppler log phased antenna transducer
JP5249901B2 (en) Condenser microphone
JPS6357999B2 (en)
CN108549072B (en) Full angle sensor and method of manufacturing the same
US5274608A (en) Sonar transducer
JP3748358B2 (en) Ultrasonic phased array transducer
JPH0452677B2 (en)
JP2009008425A (en) Transducer for acoustic simulation signal target
JPH0562706B2 (en)
JP2539799Y2 (en) Electrostrictive transducer laminated type transducer
JP2567872Y2 (en) Receiver
JP2003046156A (en) Laminated electro-mechanical energy transducer and oscillatory wave drive device
JP4979007B2 (en) Simultaneous bidirectional transmitter / receiver
JP2569748B2 (en) Electroacoustic transducer
JP2571175Y2 (en) Acoustic transducer

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980812

LAPS Cancellation because of no payment of annual fees