JP2584828B2 - Electrolytic fluorination method - Google Patents

Electrolytic fluorination method

Info

Publication number
JP2584828B2
JP2584828B2 JP63141525A JP14152588A JP2584828B2 JP 2584828 B2 JP2584828 B2 JP 2584828B2 JP 63141525 A JP63141525 A JP 63141525A JP 14152588 A JP14152588 A JP 14152588A JP 2584828 B2 JP2584828 B2 JP 2584828B2
Authority
JP
Japan
Prior art keywords
electrolytic
organic compound
nickel
electrolytic bath
fluorination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63141525A
Other languages
Japanese (ja)
Other versions
JPH01312095A (en
Inventor
保彦 平井
伸二 徳永
孝二 浅田
正直 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP63141525A priority Critical patent/JP2584828B2/en
Publication of JPH01312095A publication Critical patent/JPH01312095A/en
Application granted granted Critical
Publication of JP2584828B2 publication Critical patent/JP2584828B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ニッケルを含む金属よりなる陽極を用いて
電気化学的に有機化合物をフッ素化する電解フッ素化方
法に関する。
Description: TECHNICAL FIELD The present invention relates to an electrolytic fluorination method for electrochemically fluorinating an organic compound using an anode made of a metal containing nickel.

(従来技術) 有機化合物を電気化学的にフッ素化する電解フッ素化
方法はよく知られている。例えば、特開昭47−18775号
公報には、有機化合物を含む電解浴液を循環させなが
ら、有機化合物のフッ素化を行なうことが示されてい
る。
(Prior Art) Electrochemical fluorination methods for electrochemically fluorinating organic compounds are well known. For example, Japanese Patent Application Laid-Open No. 47-18775 discloses that an organic compound is fluorinated while circulating an electrolytic bath containing the organic compound.

(発明が解決しようとする課題) しかしながら、上記した方法で長期にわたって連続し
て電解フッ素化を行なった場合、原料の有機化合物に対
応するパーフルオロ有機化合物の収率が低下するという
問題がある。
(Problems to be Solved by the Invention) However, when electrolytic fluorination is performed continuously for a long time by the above-described method, there is a problem that the yield of a perfluoro organic compound corresponding to an organic compound as a raw material is reduced.

(課題を解決するための手段) そこで、本発明者らは、上記のパーフルオロ有機化合
物の収率の低下の原因を種々検討した。その結果、ニッ
ケルを含む金属を陽極として使用した場合、陽極が腐食
されてフッ化ニッケルが生成し、このフッ化ニッケルが
上記した問題点の原因であることを見い出し、本発明を
提案するに至った。
(Means for Solving the Problems) Therefore, the present inventors have studied various causes of the decrease in the yield of the above-mentioned perfluoro organic compound. As a result, when a metal containing nickel is used as the anode, the anode is corroded and nickel fluoride is generated, and it has been found that this nickel fluoride is the cause of the above-mentioned problems, and the present invention has been proposed. Was.

即ち、本発明は、ニッケルを含む金属よりなる陽極を
用いて電解浴中で有機化合物を電解フッ素化する方法に
於いて、陽極の腐食によって生じるフッ化ニッケルを電
解浴から除去することを特徴とする電解フッ素化方法で
ある。
That is, the present invention provides a method for electrolytically fluorinating an organic compound in an electrolytic bath using an anode made of a metal containing nickel, wherein nickel fluoride generated by corrosion of the anode is removed from the electrolytic bath. Electrolytic fluorination method.

本発明においては、更に上記の方法に於いて、電解浴
中のフッ化ニッケルの濃度を好ましくは100g/以下に
保つようにフッ化ニッケルを除去して電解フッ素化を行
う方法である。
In the present invention, furthermore, in the above method, nickel fluoride is removed so that the concentration of nickel fluoride in the electrolytic bath is preferably kept at 100 g / or less, and electrolytic fluorination is performed.

本発明に於いて、フッ素化の対象となる有機化合物
は、炭素原子に直接結合した水素原子を有するか、又は
炭素−炭素2重結合を有する有機化合物が何ら制限され
ず使用し得る。例えば、これまで電解フッ素化の対象と
して知られている脂肪族炭化水素、芳香族炭化水素等の
炭化水素類;直鎖若しくは環状の脂肪族第一アミン、第
二アミン若しくは第三アミン、芳香族アミン等のアミン
類;直鎖若しくは環状の脂肪族エーテル、芳香族エーテ
ル、ポリエーテル等のエーテル類;直鎖若しくは環状の
脂肪族アルコール、芳香族アルコール等のアルコール
類;フェノール類;脂肪族カルボン酸、芳香族カルボン
酸等及びこれらから誘導される酸クロライド、酸フルオ
ライド等の酸ハライド、或いは酸無水物、エステル等の
カルボン酸及びその誘導体類;ケトン類;アルデヒド
類;脂肪族スルホン酸、芳香族スルホン酸及びこれらか
ら誘導される酸クロライド、酸フルオライド等の酸ハラ
イド、或いはエステル等のスルホン酸及びその誘導体
類;チオエーテル等の含硫黄化合物等を挙げることがで
きる。これらの中でも電解フッ素化で用いるフッ化水素
への溶解性を勘案すると、分子中に酸素原子又は窒素原
子を有する有機化合物が好ましい。勿論、上記した有機
化合物の水素原子が一部フッ素原子で置換された有機化
合物、例えば、水素原子とフッ素原子の数の比(H/F)
が1/2以上であるような一部フッ素化された有機化合物
も、本発明に於ける原料として用い得ることは言うまで
もない。
In the present invention, as the organic compound to be fluorinated, an organic compound having a hydrogen atom directly bonded to a carbon atom or having a carbon-carbon double bond can be used without any limitation. For example, hydrocarbons such as aliphatic hydrocarbons and aromatic hydrocarbons which have hitherto been known as subjects of electrolytic fluorination; linear or cyclic aliphatic primary amines, secondary amines or tertiary amines, aromatics Amines such as amines; ethers such as linear or cyclic aliphatic ethers, aromatic ethers and polyethers; alcohols such as linear or cyclic aliphatic alcohols and aromatic alcohols; phenols; aliphatic carboxylic acids Carboxylic acids such as acid chlorides and acid fluorides derived therefrom, and carboxylic acids such as acid anhydrides and esters, and derivatives thereof; ketones; aldehydes; aliphatic sulfonic acids and aromatics Sulfonic acids and acid halides such as acid chlorides and acid fluorides derived therefrom, or sulfonic acids such as esters Beauty its derivatives; sulfur-containing compounds such as thioether can be mentioned. Among these, an organic compound having an oxygen atom or a nitrogen atom in a molecule is preferable in consideration of solubility in hydrogen fluoride used in electrolytic fluorination. Of course, organic compounds in which hydrogen atoms of the above organic compounds are partially substituted with fluorine atoms, for example, the ratio of the number of hydrogen atoms to the number of fluorine atoms (H / F)
It is needless to say that a partially fluorinated organic compound having a ratio of at least 1/2 can also be used as a raw material in the present invention.

上記した有機化合物の中でも、本発明に於いては特に
炭素原子の数が4〜50個、さらには6〜25個、特に10〜
18個である有機化合物が好適である。また、アミン類、
更にはトリアルキルアミン類を原料として用いた場合に
は目的とするパーフルオロ有機化合物が高収率で得られ
る。上記したアミン類としては、トリプロピルアミン、
トリブチルアミン、トリペンチルアミン、トリヘキシル
アミン、ジペンチルブチルアミン、ジプチルプロピルア
ミン等を挙げることができる。
Among the above-mentioned organic compounds, in the present invention, the number of carbon atoms is particularly 4 to 50, further 6 to 25, particularly 10 to 10
18 organic compounds are preferred. Also, amines,
Further, when a trialkylamine is used as a raw material, a target perfluoro organic compound can be obtained in a high yield. The above amines include tripropylamine,
Examples thereof include tributylamine, tripentylamine, trihexylamine, dipentylbutylamine, and dibutylpropylamine.

本発明の電解フッ素化では、上記の有機化合物のフッ
化水素に溶解又は分散させて通電される。フッ化水素と
しては、市販されている無水フッ化水素酸がそのまま、
或いは必要に応じて微量含まれている水分を予め低電流
密度での電解等の公知の方法で除去した後に用いられ
る。
In the electrolytic fluorination of the present invention, an electric current is supplied by dissolving or dispersing the organic compound in hydrogen fluoride. As hydrogen fluoride, commercially available hydrofluoric anhydride as it is,
Alternatively, it is used after a small amount of water is removed by a known method such as electrolysis at a low current density if necessary.

本発明に於いては、パッチ式及び連続式のいずれの方
法で電解フッ素化を行なっても良いが、特に原料となる
有機化合物とフッ化水素とをそれぞれ連続的に又は間欠
的に電解浴液中に補給して、電解浴液中における原料の
有機化合物および中間生成物である種々のフッ素化有機
化合物の濃度および組成をほぼ定常状態に維持しつつ、
また、電解フッ素化によって生成し、電解浴液の下部に
沈降してくるパーフルオロ有機化合物を連続的あるいは
間欠的に抜き出しつつ、長期に連続して反応を行なう連
続式の場合に効果が顕著である。この時、これら原料の
有機化合物及び種々のフッ素化有機化合物の合計の濃度
が一般には2〜40重量%、更には、3〜30重量%の範囲
内になるように選択することが好ましい。
In the present invention, the electrolytic fluorination may be performed by any of a patch system and a continuous system. In particular, the organic compound and the hydrogen fluoride as the raw materials may be continuously or intermittently mixed with the electrolytic bath solution. While maintaining the concentration and composition of the raw material organic compound and various fluorinated organic compounds as intermediate products in the electrolytic bath solution in a substantially steady state,
In addition, the effect is remarkable in the case of a continuous system in which the reaction is continuously performed for a long period of time while continuously or intermittently extracting the perfluoro organic compound generated by electrolytic fluorination and settling at the lower part of the electrolytic bath solution. is there. At this time, it is preferable that the total concentration of the raw material organic compound and various fluorinated organic compounds is generally selected to be in the range of 2 to 40% by weight, more preferably 3 to 30% by weight.

本発明に於いて使用されるニッケルを含む金属よりな
る陽極は、ニッケル、又はモネル等のニッケル合金が用
いられる。陽極と陰極との極間距離は、一般には0.5〜5
mm程度とすることが好ましい。
As the anode made of a metal containing nickel used in the present invention, nickel or a nickel alloy such as Monel is used. The distance between the anode and the cathode is generally 0.5 to 5
It is preferable to set it to about mm.

本発明に於いては、電解フッ素化中に陽極に含まれる
ニッケルの一部が腐食されてフッ化ニッケルが生成す
る。フッ化ニッケルは電解浴には溶解せずに微粒状で存
在する。このフッ化ニッケルが、電解フッ素化の長期的
継続により電解浴中に蓄積し、電極間に滞在するように
なると、目的とするパーフルオロ有機化合物の収率が低
下する。この現象は、本発明者らが長期にわたる電解フ
ッ素化反応を行なった中で初めて見出されたものであ
る。
In the present invention, part of nickel contained in the anode is corroded during electrolytic fluorination to produce nickel fluoride. Nickel fluoride is present in fine particles without being dissolved in the electrolytic bath. When the nickel fluoride accumulates in the electrolytic bath due to long-term electrolytic fluorination and stays between the electrodes, the yield of the target perfluoro organic compound decreases. This phenomenon was first discovered by the present inventors after a long-term electrolytic fluorination reaction.

本発明に於いて、電解浴中からフッ化ニッケルを除去
する方法は特に制限されないが、次のような方法が採用
される。フッ化ニッケルの真比重は、電解浴液及び生成
するパーフルオロ有機化合物より大きいが、見掛比重は
これらの中間の値となる。このため、フッ化ニッケル
は、電解槽の下部に沈降するが、同じく沈降する生成パ
ーフルオロ有機化合物より上層に蓄積する。従って、電
解槽の下部に静定のための空間を設け、フッ化ニッケル
を該空間に沈降せしめ、これを定期的に電解槽から抜き
出す方法が挙げられる。また、電解フッ素化方法として
一般には電解槽と循環槽とを設置して、それらの間で電
解浴を循環する方法が電解フッ素化を安定して行なうた
めに好ましく採用される。この方法によると電解フッ素
化反応の継続に伴って蓄積するフッ化ニッケルが、循環
される電解浴とともに電解槽と循環槽との間を循環する
ようになる。このような場合には、電解槽と循環槽との
間に公知の固液分離器、例えば、フィルター、サイクロ
ン又は沈降槽等を設置する方法が好適である。また、循
環槽自体にサイクロン或いは沈降槽の機能を持たせるこ
とも好適に採用される。
In the present invention, the method for removing nickel fluoride from the electrolytic bath is not particularly limited, but the following method is employed. The true specific gravity of nickel fluoride is larger than the electrolytic bath solution and the produced perfluoro organic compound, but the apparent specific gravity is an intermediate value between these. For this reason, nickel fluoride sediments at the lower part of the electrolytic cell, but accumulates in the upper layer than the generated sedimented perfluoro organic compound. Therefore, there is a method in which a space for stabilization is provided in the lower part of the electrolytic cell, nickel fluoride is settled in the space, and this is periodically extracted from the electrolytic cell. In general, as an electrolytic fluorination method, a method in which an electrolytic cell and a circulation tank are provided and an electrolytic bath is circulated between them is preferably employed in order to stably perform electrolytic fluorination. According to this method, nickel fluoride that accumulates as the electrolytic fluorination reaction continues is circulated between the electrolytic cell and the circulation tank together with the circulated electrolytic bath. In such a case, a method of installing a known solid-liquid separator, for example, a filter, a cyclone, or a sedimentation tank between the electrolytic tank and the circulation tank is suitable. It is also preferable to provide the circulation tank itself with the function of a cyclone or a sedimentation tank.

上記したような方法によって、陰陽極間に於ける電解
浴中のフッ化ニッケルの含量が常に100g/以下、さら
に好ましくは50g/以下となるようにフッ化ニッケルを
除去することが好ましい。
It is preferable to remove nickel fluoride by the above-described method so that the content of nickel fluoride in the electrolytic bath between the negative and positive electrodes is always 100 g / or less, more preferably 50 g / or less.

尚、フッ化ニッケルの含量は次の方法により測定する
ことができる。
The content of nickel fluoride can be measured by the following method.

電解浴液を電極間から、あるいは実質的にフッ化ニッ
ケル含量が電極間と同じとみなせるその他の適当な箇所
から、例えば電解浴液を循環している場合には電解槽近
傍の循環ラインからサンプリングする。
Electrolyte solution is sampled from between the electrodes or from any other suitable location where the nickel fluoride content can be considered substantially the same as between the electrodes, for example, from the circulation line near the electrolyzer if the electrolysis solution is circulating. I do.

サンプリング液に含まれるフッ化ニッケルの量の測定
は種々の方法で行うことができる。例えば、まずチッ素
ガスパージ等により大部分のフッ化水素を除去する。そ
の後、エタノールとトリクロロトリフルオロエタンで洗
浄しフッ素樹脂製の多孔膜を用いて吸引過するか、あ
るいは大量のエタノールとトリクロロトリフルオロエタ
ンで希釈し、これを遠心分離することによりフッ化ニッ
ケルを分離し、その重量を測定する。
The amount of nickel fluoride contained in the sampling liquid can be measured by various methods. For example, most of the hydrogen fluoride is first removed by nitrogen gas purging or the like. After that, wash with ethanol and trichlorotrifluoroethane and aspirate using a fluororesin porous membrane, or dilute with a large amount of ethanol and trichlorotrifluoroethane, and centrifuge to separate nickel fluoride. And measure its weight.

本発明の電解フッ素化方法で使用される電解槽は、公
知のものが何ら制限されず使用し得る。電解槽の材質
は、通常ニッケル又はその合金の他に鉄、ステンレスス
チール、銅等が用いられる。また、陰極も上記の電解槽
の材質と同様のものが使用し得る。
As the electrolytic cell used in the electrolytic fluorination method of the present invention, a known electrolytic cell can be used without any limitation. As the material of the electrolytic cell, iron, stainless steel, copper or the like is usually used in addition to nickel or its alloy. The cathode may be the same as the material of the electrolytic cell described above.

電解の条件も公知の範囲から適宜選択すれば良いが、
通常は温度−15〜20℃、電流密度0.3〜6A/dm2、槽電圧
4〜9Vの範囲で採用される。本発明は、1.0A/dm2以上更
には2.5A/dm2以上の比較的高い電流密度を採用し、ま
た、電解浴液を循環させつつ電解フッ素化を行なう場合
に特に好ましい結果を得ることができる。
Electrolysis conditions may be appropriately selected from a known range,
Usually a temperature -15~20 ℃, current density 0.3~6A / dm 2, is employed in a range of cell voltage 4~9V. The present invention employs a relatively high current density of 1.0 A / dm 2 or more, and more preferably 2.5 A / dm 2 or more, and obtains a particularly preferable result when performing electrolytic fluorination while circulating an electrolytic bath solution. Can be.

本発明に於いては、電解浴液中の鉄の濃度を1.5ppm以
下、さらには0.45ppm以下とすることが、安定に長期の
電解フッ素化を行なうために好適である。この場合の鉄
の濃度とは、鉄イオン、鉄化合物等に含まれる鉄原子の
総量の電解浴液に対する濃度である。
In the present invention, the concentration of iron in the electrolytic bath solution is preferably 1.5 ppm or less, more preferably 0.45 ppm or less, in order to stably perform long-term electrolytic fluorination. The concentration of iron in this case is the concentration of the total amount of iron atoms contained in iron ions, iron compounds and the like in the electrolytic bath solution.

電解フッ素化反応において陰極で発生する水素は、有
機化合物の分解により発生した沸点の低い低分子量の化
合物と共に通常、電解槽の、場合によっては前述した循
環槽の上部に設けられた還流冷却器をとおして排出され
る。
Hydrogen generated at the cathode in the electrolytic fluorination reaction, together with a low-molecular-weight compound having a low boiling point generated by the decomposition of the organic compound, is usually provided with a reflux condenser provided at the top of the electrolytic cell, and in some cases, the above-described circulation tank. It is discharged through.

有機化合物の電解フッ素化により生成するパーフルオ
ロ有機化合物は、電解フッ素化に於ける電解浴液から層
分離して沈降し、完全にフッ素化された分離生成物や分
子中に少量の水素原子が残存した不完全フッ素化物を含
む混合物として通常、電解槽又は循環槽の下部から得ら
れる。
The perfluoro organic compound formed by electrolytic fluorination of an organic compound is separated from the electrolytic bath solution in the electrolytic fluorination and sediments, and a small amount of hydrogen atoms are present in the completely fluorinated separated product or molecule. It is usually obtained as a mixture containing residual incomplete fluorinated substances from the lower part of the electrolytic cell or the circulation tank.

目的とするパーフルオロ有機化合物の沸点が低い場
合、電解槽から気体となって排出されることもあり、こ
れを冷却して回収することもできる。
When the boiling point of the target perfluoro organic compound is low, it may be discharged as a gas from the electrolytic cell, and may be recovered by cooling.

(効果) 本発明の方法によると、長期にわたる電解フッ素化を
行なった場合にも原料である有機化合物に対応したパー
フルオロ有機化合物の収率の低下を防止することができ
る。従って、長期にわたって高収率で安定した電解フッ
素化反応が可能である。
(Effect) According to the method of the present invention, it is possible to prevent a decrease in the yield of the perfluoro organic compound corresponding to the organic compound as the raw material even when the electrolytic fluorination is performed for a long time. Therefore, a stable electrolytic fluorination reaction with a high yield over a long period of time is possible.

実施例1. 面積5.6dm2(巾8cm,高さ70cm)、厚さ3mmの一対のニ
ッケル製陰陽極が2mmの間隔で配置されているニッケル
製の電解槽を用いてトリペンチルアミンの電解フッ素化
を行った。ニッケル製の循環槽(容量4)に2の水
不含のフッ化水素とトリペンチルアミンをトリペンチル
アミンの濃度が6.5重量%となるように供給した。この
混合液をポンプにより40/時間の速度で電解槽の下部
より電極間に流し、電極上部よりオーバーフローで再び
循環槽にもどしながら電解を開始した。なお、この循環
ライン中にはバイパスを設け、バイパスに孔径10μmの
ポリ四フッ化エチレン製の多孔膜を設置した。徐々に電
流を上げてゆき、40時間後より16A(電流密度2.86A/d
m2)で定電流電解を行った。電解浴液の温度は、電解槽
および循環層を外部から冷却することにより、−5℃附
近に保った。電解フッ素化によって発生する水素ガス
は、電解槽の上部に設けられた−35℃の還流冷却器をと
おして排出した。電解開始後、電解浴液量を一定に保つ
ようにフッ化水素を連続的に補給した。又、トリペンチ
ルアミンの供給も開始し、その量を調節して、電解浴液
中における全アミン(種々の程度にフッ素化されたアミ
ンを含む)の濃度が約13重量%で定常となるようにし
た。生成するパーフルオロ化合物は循環槽において沈降
分離させ、下部より間欠的に抜き出した。水洗後、その
量を測定すると共に組成をガスクロマトグラフィーによ
り求めた。電解浴液中のフッ化ニッケルを除去する為
に、電解槽と循環槽との間を循環させる電解浴液の一部
をバイパス側に通した。この場合、バイパス側を通す時
間割合を変えることにより循環させる電解浴液中に含ま
れるフッ化ニッケルの濃度を所定の値以下となるように
した。多孔膜に捕捉されたフッ化ニッケルは、必要に応
じて系外に除去した。なお、いずれの場合においても、
電解浴液中の鉄の濃度は0.1ppm以下となるように管理し
た。
Example 1. Electrolytic fluorine of tripentylamine using a nickel electrolytic cell in which a pair of nickel negative anodes having an area of 5.6 dm 2 (width 8 cm, height 70 cm) and thickness 3 mm are arranged at intervals of 2 mm. Was performed. Water-free hydrogen fluoride and tripentylamine were supplied to a nickel circulation tank (capacity 4) so that the concentration of tripentylamine was 6.5% by weight. This mixed solution was flowed between the electrodes from the lower part of the electrolytic cell at a rate of 40 / hour by a pump, and the electrolysis was started while returning to the circulation tank again from the upper part of the electrode by overflow. A bypass was provided in the circulation line, and a porous membrane made of polytetrafluoroethylene having a pore diameter of 10 μm was provided in the bypass. Gradually increase the current, and after 40 hours, 16A (current density 2.86A / d
m 2 ), constant current electrolysis was performed. The temperature of the electrolytic bath was kept close to -5 ° C by cooling the electrolytic bath and the circulating layer from the outside. Hydrogen gas generated by the electrolytic fluorination was discharged through a −35 ° C. reflux condenser provided at the top of the electrolytic cell. After the start of electrolysis, hydrogen fluoride was continuously supplied so as to keep the amount of the electrolytic bath constant. Also, the supply of tripentylamine was started, and the amount was adjusted so that the concentration of all amines (including amines fluorinated to various degrees) in the electrolytic bath became steady at about 13% by weight. I made it. The produced perfluoro compound was settled and separated in the circulation tank, and was intermittently extracted from the lower part. After washing with water, the amount was measured and the composition was determined by gas chromatography. In order to remove nickel fluoride in the electrolytic bath, a part of the electrolytic bath circulating between the electrolytic bath and the circulation bath was passed to the bypass side. In this case, the concentration of nickel fluoride contained in the circulated electrolytic bath solution was adjusted to a predetermined value or less by changing the time ratio of passage through the bypass side. Nickel fluoride captured by the porous membrane was removed outside the system as necessary. In each case,
The concentration of iron in the electrolytic bath was controlled so as to be 0.1 ppm or less.

第1表に、2000時間後における電圧と収率を示した。
同表には比較の為に本発明によらず、電解浴液中のフッ
化ニッケルを除去しなかった場合の結果も併せて示し
た。
Table 1 shows the voltage and yield after 2000 hours.
The table also shows, for comparison, the results when nickel fluoride in the electrolytic bath solution was not removed regardless of the present invention.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ニッケルを含む金属よりなる陽極を用い
て、電解浴中で有機化合物を電解フッ素化する方法に於
いて、陽極の腐食によって生じるフッ化ニッケルを電解
浴から除去することを特徴とする電解フッ素化方法。
1. A method for electrolytically fluorinating an organic compound in an electrolytic bath using an anode made of a metal containing nickel, wherein nickel fluoride produced by corrosion of the anode is removed from the electrolytic bath. Electrolytic fluorination method.
【請求項2】電解浴中のフッ化ニッケルの濃度を100g/
以下に保つことを特徴とする請求項1に記載の方法。
2. The concentration of nickel fluoride in an electrolytic bath is 100 g /
The method of claim 1, wherein:
JP63141525A 1988-06-10 1988-06-10 Electrolytic fluorination method Expired - Lifetime JP2584828B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63141525A JP2584828B2 (en) 1988-06-10 1988-06-10 Electrolytic fluorination method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63141525A JP2584828B2 (en) 1988-06-10 1988-06-10 Electrolytic fluorination method

Publications (2)

Publication Number Publication Date
JPH01312095A JPH01312095A (en) 1989-12-15
JP2584828B2 true JP2584828B2 (en) 1997-02-26

Family

ID=15293996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63141525A Expired - Lifetime JP2584828B2 (en) 1988-06-10 1988-06-10 Electrolytic fluorination method

Country Status (1)

Country Link
JP (1) JP2584828B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1460736A (en) * 1973-04-11 1977-01-06 Electricity Council Electrochemical fluorination and plant for use therein

Also Published As

Publication number Publication date
JPH01312095A (en) 1989-12-15

Similar Documents

Publication Publication Date Title
JPS60500218A (en) Molten salt electrowinning method, anode and its manufacturing method
US5340447A (en) Process for the selective electrofluorination of alloys or metallic mixtures based on uranium
JP2584828B2 (en) Electrolytic fluorination method
US4416743A (en) Electrolysis using two electrolytically conducting phases
US5100639A (en) Process for purifying hydrogen fluoride
JP3078126B2 (en) Electrolytic fluorination method
JP2006348381A (en) Method for producing organic compound by electrolytic fluoridation
JPH05504754A (en) Hydrogen fluoride purification method
JP2553628B2 (en) Electrolytic fluorination method
JPH0230785A (en) Method for electrolytic fluorination
US3616336A (en) Method of conditioning anodes
US3617453A (en) Temperature control in electrochemical conversion process
JPS588286B2 (en) Improvement of uranium isotope enrichment method
JP2002038288A (en) Method for producing completely fluorinated organic compound with electrochemical fluorination
JP2766845B2 (en) Electrolytic cell
JP3040209B2 (en) Electrolytic fluorination method
JPH10110284A (en) Electrolytic fluorination method
JP3115434B2 (en) Method for producing perfluoro compound
JP2755494B2 (en) Method for producing perfluoro organic compound
JPH01283397A (en) Method for electrolytic fluorination
JPH03236486A (en) Production of nitrogen trifluoride by electrolysis of molten salt
US3321387A (en) Electrochemical synthesis of cyclopropane ring compounds
SU1713958A1 (en) Method of processing lithium containing aluminum alloy scrap
JPH0213034B2 (en)
EP0130250A1 (en) Electrolysis using two electrolytically conducting phases