JP2584823B2 - Pavement thickness measuring device - Google Patents

Pavement thickness measuring device

Info

Publication number
JP2584823B2
JP2584823B2 JP63099974A JP9997488A JP2584823B2 JP 2584823 B2 JP2584823 B2 JP 2584823B2 JP 63099974 A JP63099974 A JP 63099974A JP 9997488 A JP9997488 A JP 9997488A JP 2584823 B2 JP2584823 B2 JP 2584823B2
Authority
JP
Japan
Prior art keywords
road surface
pavement thickness
pavement
sensor
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63099974A
Other languages
Japanese (ja)
Other versions
JPH01271504A (en
Inventor
一哉 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokimec Inc
Original Assignee
Tokimec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokimec Inc filed Critical Tokimec Inc
Priority to JP63099974A priority Critical patent/JP2584823B2/en
Publication of JPH01271504A publication Critical patent/JPH01271504A/en
Application granted granted Critical
Publication of JP2584823B2 publication Critical patent/JP2584823B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C19/00Machines, tools or auxiliary devices for preparing or distributing paving materials, for working the placed materials, or for forming, consolidating, or finishing the paving
    • E01C19/004Devices for guiding or controlling the machines along a predetermined path
    • E01C19/006Devices for guiding or controlling the machines along a predetermined path by laser or ultrasound

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Repair (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Road Paving Machines (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、アスファルトフィニッシャにより施工した
舗装路面の舗装厚を測定する舗装厚測定装置に関する。
Description: TECHNICAL FIELD The present invention relates to a pavement thickness measuring device for measuring a pavement thickness of a pavement road surface constructed by an asphalt finisher.

[従来の技術] アスファルトフィニッシャにより道路の舗装を行なう
場合、舗装厚が設計値より薄くなれば舗装強度が弱くな
って路面の耐久性が低下し、逆に設計値より厚くなれば
アスファルト混合物の消費量が増えて経済的な損失とな
る。従って、道路の舗装に当っては、舗装厚が設計値通
りになっているか否かを随時確認しながら作業しなけれ
ばならない。
[Prior Art] When paving a road with an asphalt finisher, if the pavement thickness is thinner than a design value, the pavement strength is weakened and the durability of the road surface is reduced. Conversely, if the pavement thickness is thicker than the design value, consumption of the asphalt mixture is consumed. The amount increases, resulting in an economic loss. Therefore, when paving a road, it is necessary to check the pavement thickness as required to see if the thickness is as designed.

従来、舗装厚の確認は、差し込み代が設計目標値に調
整された棒状のシックネスゲージを作業者が施工された
舗装面中に差し込んで確認している。
Conventionally, pavement thickness is confirmed by inserting a rod-shaped thickness gauge with an insertion margin adjusted to a design target value into a pavement surface on which an operator has constructed.

[発明が解決しようとする課題] しかしながら、シックネスエージによる舗装厚の測定
にあっては、施工済みの舗装路面に傷が付くと同時に、
舗装厚を連続して確認することができず、しかもシック
ネスゲージによる確認作業自体に熟練を要し、高精度で
舗装厚を測定することが非常に困難であるという問題が
あった。
[Problems to be Solved by the Invention] However, in the measurement of the pavement thickness by the thickness age, at the same time as the pavement road surface that has been constructed is damaged,
There was a problem that the pavement thickness could not be checked continuously, and the checking operation itself with a thickness gauge required skill, and it was very difficult to measure the pavement thickness with high accuracy.

そこで、例えば特開昭61−951030号に示されるよう
に、アスファルトフィニッシャに設けているレベリング
アームの角度を検出すると共に、レベリングアームの回
転中心からアスファルトを路面に敷きならすスクリード
までの水平距離を検出し、これらの検出値に基づいて舗
装厚を測定する装置も提案されている。しかし、一般に
舗装工事を行なう路面は緩かなうねりをもっており、路
面のうねりによって車体の姿勢が変化すると測定誤差が
大きくなり、依然として正確な舗装厚の測定は困難であ
った。
Therefore, as shown in, for example, JP-A-61-951030, the angle of the leveling arm provided on the asphalt finisher is detected, and the horizontal distance from the center of rotation of the leveling arm to the screed for spreading the asphalt on the road surface is detected. An apparatus for measuring the pavement thickness based on these detected values has also been proposed. However, in general, the road surface on which pavement work is performed has a gentle undulation, and when the attitude of the vehicle body changes due to the undulation of the road surface, a measurement error increases, and it is still difficult to accurately measure the pavement thickness.

本発明は、このような従来の問題点に鑑みてなされた
もので、舗装厚を自動的に連続して高精度で計測するこ
とのできる舗装厚測定装置を提供することを目的とす
る。
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a pavement thickness measuring device capable of automatically and continuously measuring a pavement thickness with high accuracy.

[課題を解決するための手段] この目的を達成するため本発明にあっては、走行車体
にレベリングアームが走行方向に向かう鉛直面内で揺動
自在に取付けられ、該レベリングアームの後部にアスフ
ァルト混合物を敷きならすスクリードが装着され、該ス
クリードによる舗装厚を測定する舗装厚測定装置に於い
て、スクリードの前方に等間隔に設置されて舗装前の路
面高さを測定する第1、第2及び第3の路面センサと;
スクリードの後方に設置されて舗装済みの路面高さを測
定する第4の路面センサと;前記第1乃至第4の路面セ
ンサの測定結果に基づいて舗装厚を演算する舗装厚演算
手段と;を設けるようにしたものである。
Means for Solving the Problems In order to achieve this object, according to the present invention, a leveling arm is attached to a traveling vehicle body so as to be swingable in a vertical plane in a traveling direction, and asphalt is provided at a rear portion of the leveling arm. A screed for laying the mixture is mounted, and in a pavement thickness measuring device for measuring a pavement thickness by the screed, first, second and first and second and second roads are installed at equal intervals in front of the screed to measure the road surface height before pavement. A third road surface sensor;
A fourth road surface sensor installed behind the screed to measure the paved road surface height; and a pavement thickness calculating means for calculating the pavement thickness based on the measurement results of the first to fourth road surface sensors. It is provided.

舗装厚演算手段は、スクリードの手前に等間隔に設置
した第1乃至第3の路面センサの各設置距離間隔をl、
第3の路面センサからスクリードの後方に設置した第4
の路面センサまでの設置距離をnl、第1の路面センサの
測定出力をSf、第2の路面センサの測定出力をSc、第3
の面センサの測定出力をSr、更に第4の路面センサの測
定出力をSeとすると、現在位置の舗装厚さT(X)を、 但し、nは1,2,3,・・・の整数 として演算する。
The pavement thickness calculating means sets the distances between the installation distances of the first to third road surface sensors installed at equal intervals before the screed as 1,
From the third road surface sensor, the fourth installed behind the screed
The installation distance to the road surface sensor is nl, the measurement output of the first road surface sensor is Sf, the measurement output of the second road surface sensor is Sc, and the third is
Assuming that the measurement output of the surface sensor is Sr and the measurement output of the fourth road surface sensor is Se, the pavement thickness T (X) at the current position is However, n is calculated as an integer of 1,2,3, ...

より具体的には、スクリード前方に設置した第3の目
論センサからスクリード後方に設置した第4の路面セン
サまでの設置距離を2l(n=2の時)とすると、舗装厚
T(X)は、 T(X)=Se(x)+2Sc(X+l)+4Sc(X+2l) +2Sc(X+3l)−Sr(X)−2Sr(X+l) −3Sr(X+2l)−Sf(X+2l)−2Sf(X+3l) として演算できる。
More specifically, assuming that the installation distance from the third intended sensor installed in front of the screed to the fourth road surface sensor installed behind the screed is 2l (when n = 2), the pavement thickness T (X) Is calculated as T (X) = Se (x) + 2Sc (X + 1) + 4Sc (X + 2l) + 2Sc (X + 3l) -Sr (X) -2Sr (X + 1) -3Sr (X + 2l) -Sf (X + 2l) -2Sf (X + 3l) it can.

[作用] このような構成を備えた本発明の舗装厚測定装置にあ
っては、スクリードの前方に設置した舗装前の面高さを
測定する第1乃至第3の路面センサの測定出力Sf,Sc,Sr
と、スクリードの後方に設置した舗装済みの路面高さを
測定する第4の路面センサの測定出力Seのみによって現
在位置における舗装厚T(X)を自動的に連続して計測
することができる。
[Operation] In the pavement thickness measuring device of the present invention having such a configuration, the measurement outputs Sf, of the first to third road surface sensors for measuring the surface height before pavement installed in front of the screed are provided. Sc, Sr
And the pavement thickness T (X) at the current position can be automatically and continuously measured only by the measurement output Se of the fourth road surface sensor that measures the height of the paved road surface installed behind the screed.

その結果、本発明による舗装厚の測定結果を使用して
レベリングアームの駆動などにより自動的に舗装厚を一
定厚さに保つフィードバック制御が可能となり、舗装工
事を高精度で行なうことができる。
As a result, feedback control for automatically keeping the pavement thickness constant by driving the leveling arm or the like using the measurement result of the pavement thickness according to the present invention becomes possible, and the pavement work can be performed with high precision.

[実施例] 第1図は本発明の一実施例を示したブロック図であ
る。
FIG. 1 is a block diagram showing an embodiment of the present invention.

第1図において、10,12,14は舗装前の路面の高さをス
クリード前方の等間隔の3ケ所で測定する第1、第2及
び第3の路面センサとしての舗装前高さセンサ、16はス
クリードの後方となる舗装後の路面高さを測定する第4
の路面センサとしての舗装後高さセンサである。舗装前
高さセンサ10,12,14及び舗装後高さセンサ16としては、
例えばレーザ高さ計を使用することができ、レーザ高さ
計以外に非接触方式、接触方式の如何に係わらず適宜の
高さセンサを使用することができる。
In FIG. 1, reference numerals 10, 12, and 14 denote height sensors before pavement as first, second and third road surface sensors for measuring the height of the road surface before paving at three equally spaced locations in front of the screed. Measures the height of the pavement behind the screed.
Is a height sensor after paving as a road surface sensor. As the height sensor before paving 10, 12, 14 and the height sensor 16 after paving,
For example, a laser height meter can be used. In addition to the laser height meter, an appropriate height sensor can be used regardless of a non-contact type or a contact type.

更に18はアスファルトフィニッシャの移動距離を測定
する走行距離センサである。
Further, reference numeral 18 denotes a traveling distance sensor for measuring a moving distance of the asphalt finisher.

20は舗装厚演算部であり、後の説明で明らかにするよ
うに、最先端に設置した舗装前高さセンサ10の測定出力
Sf、次に設置した舗装前高さセンサ12の測定出力Sc、ス
クリードの直前に設置した舗装前高さセンサ14の測定出
力Sr、及びスクリードの後方に設置した舗装後高さセン
サ16の測定出力Se、更に走行距離センサ18の検出出力に
基づいて舗装後高さセンサ16の設置位置で決まる舗装済
み路面の舗装厚T(X)を演算する。舗装厚演算部20で
演算された舗装厚T(X)は表示部22に与えられて、例
えばデジタル数値表示されると共に、舗装厚制御部24に
与えられ、舗装厚を目標値に保つようにアスファルトフ
ィニッシャに設けているレベリングアーム等の駆動制御
を行なう。
Reference numeral 20 denotes a pavement thickness calculation unit, as will be clarified later, the measurement output of the pre-paved height sensor 10 installed at the forefront.
Sf, the measured output Sc of the pre-paved height sensor 12 installed next, the measured output Sr of the pre-paved height sensor 14 installed immediately before the screed, and the measured output of the post-paved height sensor 16 installed behind the screed Se, and further calculates a pavement thickness T (X) of the paved road surface determined by the installation position of the post-paving height sensor 16 based on the detection output of the traveling distance sensor 18. The pavement thickness T (X) calculated by the pavement thickness calculation unit 20 is provided to the display unit 22 and is displayed, for example, in digital numerical value, and is also provided to the pavement thickness control unit 24 so that the pavement thickness is maintained at the target value. Drive control of a leveling arm and the like provided in the asphalt finisher is performed.

第2図は第1図に示した舗装前高さセンサ10,12,14及
び舗装後高さセンサ16のアスファルトフィニッシャに対
する設置状態を示した説明図である。
FIG. 2 is an explanatory diagram showing the installation state of the pre-paved height sensors 10, 12, 14 and the post-paved height sensor 16 shown in FIG. 1 with respect to the asphalt finisher.

第2図において、26はアスファルトフィニッシャの走
行車体であり、走行車体26は例えばキャタビラ30により
走行することができる。走行車体26には回転軸32を中心
にレベリングアーム34が取り付けられている。レベリン
グアーム34はキャタビラ30の後方に延出され、レベリン
グアーム34の先端下部に路面に対しアスファルト混合物
を敷きならすスクリード36を装着している。
In FIG. 2, reference numeral 26 denotes a traveling vehicle body of an asphalt finisher, and the traveling vehicle body 26 can travel by a caterpillar 30, for example. A leveling arm 34 is attached to the traveling body 26 around a rotation shaft 32. The leveling arm 34 extends to the rear of the caterpillar 30, and has a screed 36 at the lower end of the leveling arm 34 for spreading the asphalt mixture on the road surface.

このような構造を持ったアスファルトフィニッシャの
詳細は例えば特開昭62−29606号で周知である。
Details of the asphalt finisher having such a structure are well known in, for example, Japanese Patent Application Laid-Open No. 62-29606.

第2図において、第1乃至第3の路面センサとしての
舗装前高さセンサ10,12,14は、スクリード36の前方に設
置間隔距離lをもって等間隔に設置される。一方、第4
の路面センサとしての舗装後高さセンサ14は走行車体26
より後方に取り出されたセンサアームの先端に装着さ
れ、少なくともスクリード36をはずれる後方位置に設置
される。この実施例にあっては、スクリード36の前方に
等間隔に設置された舗装前高さセンサ10,12,14のうち、
スクリード36の直前に位置する舗装前高さセンサ14から
設置距離2lだけ離れたスクリード36の後方位置に舗装後
高さセンサ16を設置している。
In FIG. 2, pre-paved height sensors 10, 12, and 14 as first to third road surface sensors are installed at equal intervals in front of a screed 36 with an installation interval distance l. Meanwhile, the fourth
The post-paved height sensor 14 as a road surface sensor of the traveling vehicle body 26
It is attached to the tip of a sensor arm that is taken out further rearward, and is installed at a rearward position where at least the screed 36 comes off. In this embodiment, of the pre-paving height sensors 10, 12, 14 installed at equal intervals in front of the screed 36,
The post-paved height sensor 16 is installed at a position behind the screed 36, which is located at a distance of 2 l from the pre-paved height sensor 14 located immediately before the screed 36.

尚、舗装前高さセンサ10,12,14及び舗装後高さセンサ
16の設置位置としては次の2つの条件を満足すればよ
い。
In addition, the height sensors 10, 12, 14 before and after paving and the height sensors after paving
The 16 installation positions may satisfy the following two conditions.

第1に、舗装前高さセンサ10,12,14はスクリード36に
よる作業位置の前方に等間隔に設ける。
First, the pre-paving height sensors 10, 12, and 14 are provided at equal intervals in front of the work position by the screed.

第2に舗装後高さセンサ16はスクリード36の後方でか
つ舗装前高さセンサ10,12,14の各設置距離lの整数倍と
なる設置距離に設ける。
Second, the post-paved height sensor 16 is provided behind the screed 36 and at an installation distance that is an integral multiple of each installation distance 1 of the pre-paved height sensors 10, 12, 14.

従って、舗装前高さセンサ10,12,14の設置距離lに対
し舗装後高さセンサ16の設置距離はスクリード直前の舗
装前高さセンサ14から後方にn×l(但し、n=1,2,3,
・・・の整数)となる設置距離をもつ関係にある。
Accordingly, the installation distance of the post-paving height sensor 16 is n × 1 (where n = 1, rearward from the pre-paving height sensor 14 immediately before the screed) with respect to the installation distance 1 of the pre-paving height sensors 10, 12, and 14. 2,3,
(Integer of...).

次に、第2,3図を参照して第1図の実施例における舗
装厚演算部20による測定原理を説明する。
Next, the principle of measurement by the pavement thickness calculating section 20 in the embodiment of FIG. 1 will be described with reference to FIGS.

第3図は第2図に示す舗装前高さセンサ10,12,14及び
舗装後高さセンサ16の設置状態で、図示のようなうねり
を持った路面38上をアスファルトフィニッシャが走行し
て舗装厚T(X)を持つ舗装40を行なった状態を示す。
FIG. 3 shows a state in which the pre-paved height sensors 10, 12, 14 and the post-paved height sensor 16 shown in FIG. 2 are installed, and the asphalt finisher runs on a undulating road surface 38 as shown in FIG. The state in which the pavement 40 having the thickness T (X) is performed is shown.

また第3図にあっては、うねりを持った路面38に対し
高さ測定の基準となる仮想基準面42を設定している。更
にうねりを持った路面38に対し第2図の舗装後高さセン
サ16の位置が仮想基準面42のX位置にあり、舗装前高さ
センサ14が仮想基準面42の(X+2l)にあり、舗装前高
さセンサ12が仮想基準面42の(X+3l)位置にあり、更
に舗装前高さセンサ10が仮想基準面42の(X+4l)にあ
る状態を示しており、この時、走行車体26は車体基準線
26aに示す傾いた状態となっている。
Further, in FIG. 3, a virtual reference plane 42 serving as a reference for height measurement is set for a undulating road surface 38. Further, the position of the post-paved height sensor 16 in FIG. 2 is at the X position of the virtual reference plane 42 with respect to the undulating road surface 38, the pre-paved height sensor 14 is at (X + 2l) of the virtual reference plane 42, This shows a state in which the pre-paved height sensor 12 is at the position (X + 3l) on the virtual reference plane 42 and the pre-paved height sensor 10 is at the position (X + 4l) on the virtual reference plane 42. Body reference line
It is in the inclined state shown in 26a.

第3図に示すようなうねりを持った路面38上におい
て、まず仮想基準面42の(X+3l)位置にある舗装前高
さセンサ12は路面38と車体基準線26aとの間の高さSe
(X+3l)を測定出力として生じ、また仮想基準面42の
(X)位置にある舗装後高さセンサ16は車体基準線26a
と舗装40の舗装面までの高さに応じた測定出力Se(X)
を生ずる。
On the undulating road surface 38 as shown in FIG. 3, first, the pre-paving height sensor 12 located at the position (X + 3l) of the virtual reference surface 42 has a height Se between the road surface 38 and the vehicle body reference line 26a.
(X + 3l) is generated as a measurement output, and the post-paved height sensor 16 at the position (X) of the virtual reference plane 42 detects the vehicle body reference line 26a.
Output Se (X) according to the height up to the pavement surface of pavement 40
Is generated.

また、舗装前高さセンサ10センサ14は第3図の仮想基
準面42の(X+4l)位置における車体基準線26aと路面3
8との間の間隔で決まる測定出力Sf(X+4l)を生じ、
一方、舗装前高さセンサ14は仮想基準面42における(X
+2l)位置の車体基準線26aと路面38との間隔で決まる
測定出力Sr(X+2l)を生ずる。
The pre-paved height sensor 10 and the sensor 14 are connected to the vehicle body reference line 26a at the position (X + 4l) of the virtual reference plane 42 in FIG.
8 produces a measurement output Sf (X + 4l) determined by the interval between
On the other hand, the height sensor 14 before pavement
The measured output Sr (X + 2l) is determined by the distance between the vehicle body reference line 26a at the position + 2l) and the road surface 38.

更に、第3図における仮想基準面42に対する各位置X,
X+2l,X+3l,X+4lの路面38の高さをH(X),H(X+2
l),H(X+3l)及びH(X+4l)とする。
Further, each position X, with respect to the virtual reference plane 42 in FIG.
The height of the road surface 38 of X + 2l, X + 3l, X + 4l is H (X), H (X + 2
l), H (X + 31) and H (X + 41).

このような第3図の関係において、まずX地点に第2
図の舗装前高さセンサ12が位置した時の測定出力Sc
(X)は、 Sc(X)= H(X)−[{H(X−l)−Sr(X−l)} +{H(X+l)−Sf(X+l)}]/2 ・・・(1) 但し、H(X);X位置の高さ H(X−l);(X−l)位置の路面高さ Sr(X−l);(X−l)位置の路面高さ H(X+l);(X+l)位置の路面高さ Sf(X+l);(X+l)位置の路面高さ で与えられる。逆にX地点における路面38の高さH
(X)は、 H(X)= −2Sc(X−l)+2H(X−l)−H(X−2l) +Sr(X−2l)+Sf(X) ・・・(2) である。
In the relationship shown in FIG.
Measurement output Sc when height sensor 12 before paving shown in the figure is positioned
(X) is Sc (X) = H (X)-[{H (X-1) -Sr (X-1)} + {H (X + 1) -Sf (X + 1)}] / 2 ... 1) However, H (X); height at X position H (X-1); road surface height at (X-1) position Sr (X-1); road surface height H at (X-1) position (X + 1); road surface height at (X + 1) position Sf (X + 1); road surface height at (X + 1) position Conversely, the height H of the road surface 38 at the point X
(X) is as follows: H (X) = − 2Sc (X−1) + 2H (X−1) −H (X−21) + Sr (X−21) + Sf (X) (2)

次に、第3図の状態において、(X+4l)地点の高さ
H(X+4l)の値を舗装後高さセンサ16の測定出力Se及
び舗装前高さセンサ12の測定出力Scを用いて表わすと次
のようになる。
Next, in the state of FIG. 3, the value of the height H (X + 4l) at the point (X + 4l) is expressed by using the measurement output Se of the height sensor 16 after paving and the measurement output Sc of the height sensor 12 before paving. It looks like this:

H(X+4l)−Sf(X+4l) =2{H(X+2l)−Sr(X+2l)} −{T(X)+H(X)−Se(X)} ・・・(3) H(X+4l)−Sf(X+4l) =2{H(X+3l)−Sc(X+3l)} −{H(X+2l)−Sr(X+2l)} ・・・(4) 従って、前記第(3),(4)式及び第(2)式より
X地点における舗装厚T(X)は、 T(X)= Se(X)+2Sc(X+3l)−3Sr(X+2l)−H(X) +3H(X+2l)−2H(X+3l) ・・・(5) ここで、第(5)式における右辺最終項の(X+3l)
地点の高さH(X+3l)を前記第(2)式と同様にして
求めて代入すると、 T(X)= Se(X)+2Sc(X+3l)+4Sc(X+2l) −3Sr(X+2l)−2Sr(X+l)−2S(X+3l) −H(X)+2H(X+l)−H(X+2l)・・・(6) が得られる。この第(6)式について同様に右辺最終項
の(X+2l)地点における高さH(X+2l)を前記第
(2)式と同様に求めて代入すると、最終的に仮想基準
面42に対する高さ成分Hを含まないセンサ測定出力Sc,S
e,Sf及びSrのみをパラメータとした次式が得られる。
H (X + 4l) -Sf (X + 4l) = 2 {H (X + 2l) -Sr (X + 2l)}-{T (X) + H (X) -Se (X)} (3) H (X + 4l) -Sf (X + 4l) = 2 {H (X + 3l) -Sc (X + 3l)}-{H (X + 2l) -Sr (X + 2l)} (4) Therefore, the above equations (3), (4) and (2) From equation (3), the pavement thickness T (X) at point X is given by: T (X) = Se (X) + 2Sc (X + 3l) -3Sr (X + 2l) -H (X) + 3H (X + 2l) -2H (X + 3l) 5) Here, (X + 3l) of the last term on the right side in equation (5)
T (X) = Se (X) + 2Sc (X + 3l) + 4Sc (X + 2l) −3Sr (X + 2l) −2Sr (X + 1) ) -2S (X + 3l) -H (X) + 2H (X + 1) -H (X + 2l) (6) Similarly, when the height H (X + 2l) at the (X + 2l) point of the last term on the right side of this equation (6) is obtained and substituted in the same manner as in the above equation (2), the height component with respect to the virtual reference plane 42 is finally obtained. Sensor measurement output Sc, S not including H
The following equation is obtained using only e, Sf and Sr as parameters.

T(X)= Se(X)+2Sc(X+l)+4Sc(X+2l) +2Sc(X+3l)−Sr(X)−2Sr(X+l) −3Sr(X+2l)−Sf(X+2l)−2Sf(X+3l)・・・
(7) ここで、上記の実施例は第3図に示す仮想基準面42に
おける位置X〜(X+4l)を関数として表すものであっ
たが、前記第(7)式を時間の関数として表わすと、現
在時刻tにおける舗装厚T(t)は、 T(t)=Se(t)+2Sc(t) +4Sc(t−t1)+2Sc(t−t2) −3Sr(t)−2Sr(t−t1)−Sr(t−t2) −2Sf(t−t1)−Sf(t−t2) ・・・(8) 但し、t;現在時刻の位置の時刻 t−t1;現在位置からlだけ手前にいた時刻 t−t2;現在位置から2lだけ手前にいた時刻 となる。
T (X) = Se (X) + 2Sc (X + 1) + 4Sc (X + 2l) + 2Sc (X + 3l) -Sr (X) -2Sr (X + 1) -3Sr (X + 2l) -Sf (X + 2l) -2Sf (X + 3l) ...
(7) Here, in the above embodiment, the positions X to (X + 4l) on the virtual reference plane 42 shown in FIG. 3 are represented as a function. The pavement thickness T (t) at the current time t is as follows: T (t) = Se (t) + 2Sc (t) + 4Sc (t−t1) + 2Sc (t−t2) −3Sr (t) −2Sr (t−t1) −Sr (t−t2) −2Sf (t−t1) −Sf (t−t2) (8) where, t; time at the current time position t−t1; time at which the current position is 1 before the current position t−t2; time at which the current position is 2l before the current position.

前記第(7)(8)式のそれぞれは、第2図に示した
ように後輪30に対する舗装前高さセンサ10,12,14の設置
距離をl、舗装後高さセンサ16の設置距離を2倍の設置
距離2lとした場合を例にとるものであったが、舗装前高
さセンサ10,12,14の設置距離lに対し舗装後高さセンサ
16の設置距離を整数n倍(但し、n=1,2,3,・・・の整
数)として一般化した場合の一般式は、前記第(7)式
については、 として表わすことができる。一方、前記第(8)式の時
間関数で表わした式については、 但し、t−tn+1-i;現在位置から(n+1−i)・lだ
け手前にいた時刻 として表わすことができる。
The equations (7) and (8) respectively denote the installation distance of the pre-paved height sensors 10, 12, and 14 with respect to the rear wheel 30, and the installation distance of the post-paved height sensor 16 as shown in FIG. Is set as 2l, the installation distance of which is twice as much as the example. However, the height sensor after pavement is different from the installation distance 1 of the height sensors 10, 12, 14 before pavement.
The general formula when the installation distance of 16 is generalized as an integer n times (where n is an integer of 1, 2, 3,...) Can be represented as On the other hand, with respect to the expression expressed by the time function of the expression (8), However, it can be expressed as t−t n + 1−i ; the time at which the position is (n + 1−i) · l before the current position.

次に、第1図の実施例の動作を説明する。 Next, the operation of the embodiment shown in FIG. 1 will be described.

今、舗装厚演算部20には前記第(7)式による演算機
能が設定されていたとする。この状態でアスファルトフ
ィニッシャによる舗装作業を開始すると、舗装厚演算部
20は走行距離センサ18より得られる単位走行距離の検出
出力に基づいて単位走行距離毎の各センサの測定値Sc,S
e,Sf及びSrを順次単位距離情報を指示パラメータとして
記憶保持する。舗装厚演算部20は所定の演算周期で舗装
後高さセンサ16が位置する現在地点Xにおける舗装厚T
(X)を前記第(7)式に基づいて演算する。
Now, it is assumed that the pavement thickness calculation unit 20 has been set to the calculation function according to the equation (7). When pavement work with the asphalt finisher is started in this state, the pavement thickness calculation unit
20 is a measured value Sc, S of each sensor per unit traveling distance based on the detection output of the unit traveling distance obtained from the traveling distance sensor 18.
e, Sf, and Sr are sequentially stored and held with unit distance information as an instruction parameter. The pavement thickness calculating section 20 has a pavement thickness T at the current point X where the post-paving height sensor 16 is located at a predetermined calculation cycle.
(X) is calculated based on the above equation (7).

具体的には現在地点Xにおける測定出力Se(X),Sc
(X+3l)及びSr(X+2l)、現在地点Xからlだけ手
前にいた時の測定出力Sc(X+2l)、Sr(X+l)、Sf
(X+3l)、更に現在地点Xから2lだけ手前にいた時の
測定出力Sc(X+l)、Sr(X)及びSf(X+2l)を読
み出して第(7)式の演算を行なう。
Specifically, the measurement output Se (X), Sc at the current point X
(X + 3l) and Sr (X + 2l), measurement output Sc (X + 2l), Sr (X + l), Sf when the current point X is 1 in front of you
(X + 3l), and further, the measurement outputs Sc (X + 1), Sr (X) and Sf (X + 2l) at the time of being 2l before the current point X are read, and the calculation of the formula (7) is performed.

以下同様に走行距離センサ18より単位距離パルスが得
られる毎に各測定出力の記憶保持とすると共に記憶保持
した測定出力に基づく第(7)式の演算を繰り返し行な
うことで、連続的に現在地点における舗装厚T(X)を
求めることができ、表示部22に出力されたT(X)の値
をリアルタイムで表示すると共に、舗装厚制御部24に測
定された舗装厚T(X)を出力して舗装厚を一定厚さに
保つようなレベリングアーム34の駆動制御を行なう。
Similarly, every time a unit distance pulse is obtained from the traveling distance sensor 18, each measurement output is stored and held, and the calculation of the equation (7) based on the stored and held measurement output is repeated, thereby continuously obtaining the current position. Can be determined, the value of T (X) output to the display unit 22 is displayed in real time, and the measured pavement thickness T (X) is output to the pavement thickness control unit 24. Then, drive control of the leveling arm 34 is performed so as to keep the pavement thickness at a constant thickness.

勿論、第1図の舗装演算部20による演算は前記第
(7)式の他に、第(8)式の演算機能を設定すること
で同様に行なうことができる。
Of course, the calculation by the pavement calculation unit 20 in FIG. 1 can be performed in the same manner by setting the calculation function of the expression (8) in addition to the expression (7).

尚、上記の実施例は第2図に示したようにキャタピラ
走行方式のアスファルトフィニッシャを例にとるもので
あったが、特開昭61−294005号に示されるような車輪走
行方式につていも、そのまま適用することができる。
In the above embodiment, as shown in FIG. 2, a track running asphalt finisher is used as an example, but a wheel running system as disclosed in JP-A-61-294005 is also used. , Can be applied as is.

[発明の効果] 以上説明してきたように本発明によれば、スクリード
による作業位置に対し所定の位置関係を持って前後に設
置された4つの路面センサによる3ケ所の舗装前の路面
高さと1ケ所の舗装後の路面高さの検出出力に基づい
て、路面にうねりがあってもうねりの影響を受けること
なく高精度に舗装厚を連続測定することができる。
[Effects of the Invention] As described above, according to the present invention, the road surface height before paving at three places by four road surface sensors installed before and after with a predetermined positional relationship with the work position by the screed is 1 Based on the detection output of the road surface height after paving at a plurality of places, the pavement thickness can be continuously measured with high accuracy without being affected by the swell even if the swell is present on the road surface.

更に、本発明の舗装センサにあっては、高さ測定の基
準となる仮想基準面を設定する必要がなく、路面センサ
による高さの測定出力のみによって舗装厚を測定するこ
とができ、高さ測定の基準となる仮想基準面を設定した
場合に予想される累積的な誤差の発生がなく、より精度
の高い路面厚の測定を行なうことができる。
Furthermore, in the pavement sensor of the present invention, it is not necessary to set a virtual reference plane serving as a reference for height measurement, and the pavement thickness can be measured only by the output of the height measurement by the road surface sensor. Accumulation errors expected when a virtual reference plane serving as a measurement reference is set do not occur, and the road surface thickness can be measured with higher accuracy.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示したブロック図; 第2図はアスファルトフィニッシャのセンサ設置状態を
示した説明図; 第3図は本発明の測定原理を示した説明図である。 10,12,14:舗装前高さセンサ(第1乃至第3の路面セン
サ) 16:舗装後高さセンサ(第4の路面センサ) 18:走行距離センサ 20:舗装厚演算部 22:表示部 24:舗装厚制御部
FIG. 1 is a block diagram showing an embodiment of the present invention; FIG. 2 is an explanatory diagram showing a sensor installation state of an asphalt finisher; FIG. 3 is an explanatory diagram showing a measurement principle of the present invention. 10, 12, 14: Height sensor before pavement (first to third road surface sensors) 16: Height sensor after pavement (fourth road surface sensor) 18: Travel distance sensor 20: Pavement thickness calculation unit 22: Display unit 24: Pavement thickness control unit

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】走行車体にレベリングアームが走行方向に
向かう鉛直面内で上下に揺動自在に取り付けられ、該レ
ベリングアームの後部に路面にアスファルト混合物を敷
きならすスクリードが装着され、該スクリードによる舗
装圧を測定する舗装厚測定装置に於いて、 前記スクリードの前方に等間隔に設置されて舗装前の路
面の高さを測定する第1、第2及び第3の路面センサ
と; 前記スクリードの後方に設置されて舗装済みの路面高さ
を測定する第4の路面センサと; 前記第1乃至第4の路面センサの測定結果に基づいて舗
装厚を演算する舗装厚演算手段とから構成され; 前記舗装厚演算手段は、前記スクリードの前方に等間隔
に設置した前記第1乃至第3の路面センサの設置間隔を
l、前記第3の路面センサからスクリードの後方に設置
した第4の路面センサまでの設置距離をnl、第1の路面
センサの測定出力をSf、第2の路面センサの測定出力を
Sc、第3の路面センサの測定出力をSr、更に第4の路面
センサの測定出力をSeとした時、現在位置の舗装厚T
(X)を、 但し、nは1,2,3,・・・の整数 として演算することを特徴とする舗装厚測定装置。
A leveling arm is mounted on a traveling vehicle body so as to be vertically swingable in a vertical plane in a traveling direction, and a screed for laying an asphalt mixture on a road surface is mounted at a rear portion of the leveling arm. In a pavement thickness measuring device for measuring pressure, first, second and third road surface sensors installed at equal intervals in front of the screed to measure the height of a road surface before pavement; A fourth road surface sensor that is installed in the vehicle and measures a paved road surface height; and a pavement thickness calculating unit that calculates a pavement thickness based on a measurement result of the first to fourth road surface sensors; The pavement thickness calculating means sets an installation interval of the first to third road surface sensors installed at equal intervals in front of the screed, and installs the rear surface of the screed from the third road surface sensor. The installation distance to the fourth road surface sensor is nl, the measurement output of the first road surface sensor is Sf, and the measurement output of the second road surface sensor is nl.
Sc, the measured output of the third road surface sensor is Sr, and the measured output of the fourth road surface sensor is Se, the pavement thickness T at the current position.
(X) However, the pavement thickness measuring device is characterized in that n is calculated as an integer of 1, 2, 3,...
【請求項2】前記舗装厚演算手段は、前記スクリードの
前方と後方に設置した第3の路面センサと第4の路面セ
ンサとの設置距離を2lとした時、現在位置の舗装厚T
(X)を、 T(X)=Se(x)+2Sc(X+l)+4Sc(X+2l) +2Sc(X+3l)−Sr(X)−2Sr(X+l) −3Sr(X+2l)−Sf(X+2l)−2Sf(X+3l) 但し、Se(x)は現在位置の舗装済み路面の測定出力; Sc(X+l)は現在位置(X)よりl先の未舗装路面測
定出力; Sc(X+2l)は現在位置(X)より2l先の未舗装路面の
測定出力; Sc(X+3l)は現在位置(X)より3l先の未舗装路面の
測定出力 として演算する事を特徴とする請求項1記載の舗装厚測
定装置。
2. The pavement thickness calculating means, when an installation distance between a third road surface sensor and a fourth road surface sensor installed in front of and behind the screed is 2 l, a pavement thickness T at a current position.
(X) is calculated as follows: T (X) = Se (x) + 2Sc (X + 1) + 4Sc (X + 21) + 2Sc (X + 31) -Sr (X) -2Sr (X + 1) -3Sr (X + 21) -Sf (X + 21) -2Sf (X + 31) However, Se (x) is the measurement output of the paved road surface at the current position; Sc (X + 1) is the measurement output of the unpaved road one point ahead of the current position (X); Sc (X + 2l) is 2l from the current position (X) 2. The pavement thickness measuring apparatus according to claim 1, wherein the measurement output of the previous unpaved road surface; Sc (X + 3l) is calculated as the measurement output of the unpaved road surface 3l ahead of the current position (X).
JP63099974A 1988-04-22 1988-04-22 Pavement thickness measuring device Expired - Fee Related JP2584823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63099974A JP2584823B2 (en) 1988-04-22 1988-04-22 Pavement thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63099974A JP2584823B2 (en) 1988-04-22 1988-04-22 Pavement thickness measuring device

Publications (2)

Publication Number Publication Date
JPH01271504A JPH01271504A (en) 1989-10-30
JP2584823B2 true JP2584823B2 (en) 1997-02-26

Family

ID=14261638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63099974A Expired - Fee Related JP2584823B2 (en) 1988-04-22 1988-04-22 Pavement thickness measuring device

Country Status (1)

Country Link
JP (1) JP2584823B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69126017T2 (en) * 1990-11-14 1997-11-06 Niigata Engineering Co Ltd Device for regulating the road surface thickness
JPH0743130Y2 (en) * 1990-11-19 1995-10-04 株式会社新潟鐵工所 Laying machine
JP2612666B2 (en) * 1993-05-14 1997-05-21 日本無線株式会社 Asphalt finisher
US7172363B2 (en) 2004-08-31 2007-02-06 Caterpillar Paving Products Inc Paving machine output monitoring system
KR100671819B1 (en) * 2006-09-28 2007-01-19 주식회사동일기술공사 Sensor line of guard base for bridge
DE102011106139B4 (en) 2011-06-10 2015-04-02 Wirtgen Gmbh Method and device for determining a surface milled by at least one construction machine or mining machine with a milling drum
PL2535458T5 (en) 2011-06-15 2020-09-07 Joseph Vögele AG Road finisher with coating measuring device
EP2535456B1 (en) 2011-06-15 2013-12-18 Joseph Vögele AG Road finisher with coating measuring device
US9121146B2 (en) 2012-10-08 2015-09-01 Wirtgen Gmbh Determining milled volume or milled area of a milled surface
EP3228981B1 (en) 2014-03-18 2018-10-17 MOBA Mobile Automation AG Road finisher with layer thickness detection device and method for detecting the thickness of an installed material layer
CN106400662B (en) * 2016-10-14 2018-12-21 天津大学 A kind of pavement spread thickness real-time monitoring device balancing beam type
DE102019104850A1 (en) 2019-02-26 2020-08-27 Wirtgen Gmbh Paver
EP3739122B1 (en) * 2019-05-14 2021-04-28 Joseph Vögele AG Road finisher and method for determining a thickness of a layer of an established installation layer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60194159A (en) * 1984-03-15 1985-10-02 旭化成株式会社 Polyester long fiber nonwoven fabric and its production

Also Published As

Publication number Publication date
JPH01271504A (en) 1989-10-30

Similar Documents

Publication Publication Date Title
JP2584823B2 (en) Pavement thickness measuring device
US7044680B2 (en) Method and apparatus for calculating and using the profile of a surface
EP0575327B1 (en) A method and an apparatus for measuring curvature and crossfall of ground surfaces
JP5390100B2 (en) Method and apparatus for monitoring road paving machine
AU2012266566B2 (en) Method and device for determining an area cut with a cutting roll by at least one construction machine or mining machine
US6336064B1 (en) Magnetic apparatus for detecting position of vehicle
JP3850875B2 (en) Method and apparatus for non-contact measurement of road or rail distortion
JP5579785B2 (en) Road paver with layer thickness measuring device and method for determining layer thickness of laying material
US8070385B2 (en) Paving machine control and method
US20080087447A1 (en) Control and method of control for an earthmoving system
US5075772A (en) Method and an apparatus for the surveying of road properties as to the length of the axis, the width and the height or the ascent
KR20090129467A (en) Method and machine for lowering a track
JP2530000B2 (en) Pavement leveling thickness measurement management system
JP2598805B2 (en) Pavement thickness measuring device
JPH1030919A (en) Device and method for measuring road longitudinal profile
JP3124780B2 (en) Shield surveying method
JP2000319815A (en) Road face information-systematizing method for pavement
JP3864277B2 (en) Road shape measurement method
JP7210184B2 (en) Road profile measuring instrument
JP3219204B2 (en) Road surface unevenness measurement vehicle
JP2912497B2 (en) Shield surveying method
KR100642281B1 (en) Road distance measuring apparatus for road register and method thereof
JP2515424B2 (en) Shield survey method
JPH04272303A (en) Operation of leveling machine
JPS6354087B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees