JP2583989Y2 - Fluidized bed heat exchanger - Google Patents

Fluidized bed heat exchanger

Info

Publication number
JP2583989Y2
JP2583989Y2 JP1990081769U JP8176990U JP2583989Y2 JP 2583989 Y2 JP2583989 Y2 JP 2583989Y2 JP 1990081769 U JP1990081769 U JP 1990081769U JP 8176990 U JP8176990 U JP 8176990U JP 2583989 Y2 JP2583989 Y2 JP 2583989Y2
Authority
JP
Japan
Prior art keywords
amount
water supply
water
heat
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1990081769U
Other languages
Japanese (ja)
Other versions
JPH0441975U (en
Inventor
秀雄 田坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miura Co Ltd
Original Assignee
Miura Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miura Co Ltd filed Critical Miura Co Ltd
Priority to JP1990081769U priority Critical patent/JP2583989Y2/en
Publication of JPH0441975U publication Critical patent/JPH0441975U/ja
Application granted granted Critical
Publication of JP2583989Y2 publication Critical patent/JP2583989Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 この考案は、流動層式熱交換器の給水制御装置に関
し、さらに詳しくは、熱回収効率が高く、給水処理を効
率よく行い得る流動層式熱交換器の給水制御装置に関す
るものである。
[Detailed description of the invention] [Industrial application field] This invention relates to a feedwater control device for a fluidized bed heat exchanger, and more specifically, a fluidized bed type with high heat recovery efficiency and capable of efficiently performing feedwater treatment. The present invention relates to a water supply control device for a heat exchanger.

〔従来の技術〕[Conventional technology]

近年、各種熱機器の排ガスから熱回収を行う装置とし
て流動層式熱交換器が多用されている。この流動層式熱
交換器のうち小型のものについては、伝熱管の過熱を防
ぐために給水量を多めに設定し、余剰の給水分は発生蒸
気から気水分離器等によって分離し、給水側に回収して
いる。また、この種の流動層式熱交換器においても、内
部腐食やスケール付着を防止し、耐久性の向上と高効率
運転を図るために、一般のボイラと同様の給水処理が行
われている。
2. Description of the Related Art In recent years, fluidized bed heat exchangers have been widely used as devices for recovering heat from exhaust gas from various types of thermal equipment. For small fluidized bed heat exchangers, the amount of water supply is set large to prevent overheating of the heat transfer tubes, and excess water is separated from the generated steam by a steam separator, etc. We are collecting. Also, in this type of fluidized bed heat exchanger, the same water supply treatment as that of a general boiler is performed in order to prevent internal corrosion and scale adhesion, improve durability, and achieve high-efficiency operation.

〔考案が解決しようとする課題〕[Problems to be solved by the invention]

ところで、上述した従来の流動層式熱交換器において
は、伝熱管への供給水量を多めに設定して過熱防止を行
っているが、流動層式熱交換器に導入される排ガスの温
度(熱量)によっては、給水量に過不足が生じ、伝熱管
の過熱や、取り出し蒸気の乾き度の低下、熱回収効率の
低下等の問題が生じる。
By the way, in the above-mentioned conventional fluidized-bed heat exchanger, overheating is prevented by setting a large amount of water supplied to the heat transfer tube, but the temperature (heat amount) of exhaust gas introduced into the fluidized-bed heat exchanger is reduced. In some cases, the amount of supplied water may be excessive or insufficient, causing problems such as overheating of the heat transfer tubes, a decrease in the dryness of the extracted steam, and a decrease in the heat recovery efficiency.

さらに、上述の給水処理のうち、給水に所定比率で薬
注を注入してシリカ分および缶体腐食の原因となる溶存
酸素等を除去する内部処理に関しては、次のような問題
がある。すなわち、起動時等、給水温度が低く溶存酸素
量が多い場合には、薬液による溶存酸素の除去処理が不
充分であるため、これにより伝熱缶が腐蝕するすること
があった。
Further, of the above-mentioned water supply processing, there is the following problem with respect to the internal processing for injecting a chemical injection into the water supply at a predetermined ratio to remove silica and dissolved oxygen causing corrosion of the can body. That is, when the water supply temperature is low and the amount of dissolved oxygen is large, such as at the time of startup, the removal of dissolved oxygen by the chemical solution is insufficient, which may cause corrosion of the heat transfer can.

〔課題を解決するための手段〕[Means for solving the problem]

この考案は、上述の如き課題を解決するためになされ
たもので、流動層式熱交換器の伝熱管の入口に、給水ポ
ンプを備えた給水ラインを接続するとともに、前記伝熱
管の出口に、気水分離器を備えた給蒸ラインを接続し、
前記給水ラインと前記気水分離器とをドレンラインで接
続し、前記伝熱管における熱回収量,前記伝熱管に対す
る供給熱量または前記ドレンラインから前記給水ライン
への還流水量に基づいて、前記熱回収量が多いとき,前
記供給熱量が多いときまたは前記還流水量が少ないとき
は、前記給水ポンプの吐出量を増大させ、前記熱回収量
が少ないとき,前記供給熱量は少ないときまたは前記還
流水量が多いときは、前記給水ポンプの吐出量を減少さ
せる機能を有する制御装置を備えたことを特徴としてい
る。
This invention was made in order to solve the problems as described above, and at the inlet of the heat transfer tube of the fluidized bed heat exchanger, a water supply line equipped with a water supply pump was connected, and at the outlet of the heat transfer tube, Connect a steam supply line with a steam separator,
The water supply line and the steam-water separator are connected by a drain line, and the heat recovery is performed based on the amount of heat recovered in the heat transfer tube, the amount of heat supplied to the heat transfer tube, or the amount of reflux water from the drain line to the water supply line. When the amount is large, when the amount of supplied heat is large, or when the amount of reflux water is small, the discharge amount of the water supply pump is increased. When the amount of heat recovery is small, when the amount of supplied heat is small, or when the amount of reflux water is large, In some cases, a control device having a function of reducing the discharge amount of the water supply pump is provided.

〔作用〕[Action]

この考案によれば、伝熱管における熱回収量,伝熱管
に対する供給熱量またはドレンラインから給水ラインへ
の還流水量を算出し、その算出値に対応して、前記熱回
収量が多いとき,前記供給熱量が多いときまたは前記還
流水量が少ないときは、前記給水ポンプの吐出量を増大
させ、前記熱回収量が少ないとき,前記供給熱量が少な
いときまたは前記還流水量が多いときは、前記給水ポン
プの吐出量を減少させて、運転状況に応じて適切な給水
量に調整する。
According to this invention, the amount of heat recovery in the heat transfer tube, the amount of heat supplied to the heat transfer tube, or the amount of reflux water from the drain line to the water supply line is calculated. When the amount of heat is large or when the amount of reflux water is small, the discharge amount of the water supply pump is increased. When the amount of heat recovery is small, when the amount of heat supplied is small, or when the amount of reflux water is large, the amount of the water supply pump is increased. Reduce the discharge amount and adjust to an appropriate water supply amount according to the operating conditions.

〔実施例〕〔Example〕

第1図は、この発明に係る流動層式熱交換器の第一実
施例を示すものである。流動層式熱交換器Aは、給蒸ラ
インB、薬注ラインC、ドレンラインD、給水ライン
E、制御装置Fを備えている。
FIG. 1 shows a first embodiment of a fluidized bed heat exchanger according to the present invention. The fluidized bed heat exchanger A includes a steam supply line B, a chemical injection line C, a drain line D, a water supply line E, and a control device F.

前記流動層式熱交換器Aは、下方にガス入口1a、上方
にガス出口1bを備え、ほぼ垂直に延びるケーシング1
と、このケーシング1内のガス流路に水平に配置され、
多数の通気孔を形成した多孔板2と、この多孔板2上に
適当な厚さに形成された砂層3とを有している。また、
前記ケーシング1内には被加熱流体としての水を移送す
る伝熱管4が、流動状態の砂層3中に埋没し得るように
配設されている。
The fluidized bed heat exchanger A has a gas inlet 1a below and a gas outlet 1b above, and a casing 1 extending substantially vertically.
And horizontally arranged in the gas flow path in the casing 1,
It has a perforated plate 2 having a large number of ventilation holes, and a sand layer 3 formed on the perforated plate 2 to have an appropriate thickness. Also,
A heat transfer tube 4 for transferring water as a fluid to be heated is disposed in the casing 1 so as to be buried in the sand layer 3 in a flowing state.

前記給蒸ラインBは、前記伝熱管4の上方側ヘッダ4a
から蒸気を取り出し、外部の蒸気利用機器に蒸気を供給
するためのもので、その途中に気水分離器5を設けてい
る。
The steam supply line B includes an upper header 4a of the heat transfer tube 4.
For extracting steam and supplying steam to an external steam utilization device, and a steam separator 5 is provided in the middle of the steam.

前記給水ラインEは、外部から水の供給を受ける給水
タンク6と、この給水タンク6から前記伝熱管4の下方
側ヘッダ4bへ給水する給水ポンプ7とを備えている。こ
の給水タンク6には、前記気水分離器5から延びるドレ
ンラインDを接続してあり、前記気水分離器5によって
分離された蒸気中の液滴分が給水側に還流するようにし
ている。前記給水タンク6内の水位は、一定の範囲とな
るように自動的に制御される。
The water supply line E includes a water supply tank 6 that receives supply of water from the outside, and a water supply pump 7 that supplies water from the water supply tank 6 to the lower header 4b of the heat transfer tube 4. A drain line D extending from the water / water separator 5 is connected to the water supply tank 6, so that the liquid droplets in the steam separated by the water / water separator 5 return to the water supply side. . The water level in the water supply tank 6 is automatically controlled to be within a certain range.

前記薬注ラインCは、吐出量を調整可能な薬注ポンプ
8を備えており、この薬注ポンプ8により薬液タンク9
内の薬液を前記給水ポンプ7の上流側に供給する。
The chemical injection line C includes a chemical injection pump 8 capable of adjusting a discharge amount.
The liquid chemical in the inside is supplied to the upstream side of the water supply pump 7.

前記ケーシング1のガス入口1a側およびガス出口1b側
と、前記給水タンク6の出口側には夫々第一温度検出器
T1,第二温度検出器T2,第三温度検出器T3を取り付けて
あり、これらの各温度検出器T1,T2,T3からの信号は制
御装置Fに入力される。
A first temperature detector is provided at the gas inlet 1a side and the gas outlet 1b side of the casing 1 and at the outlet side of the water supply tank 6, respectively.
T 1 , a second temperature detector T 2 , and a third temperature detector T 3 are attached, and signals from these temperature detectors T 1 , T 2 , and T 3 are input to the control device F.

前記制御装置Fは、前記各温度検出器T1,T2,T3から
の信号をもとに前記給水ポンプ7並びに前記薬注ポンプ
8の動作を制御するもので、以下、この制御装置Fの制
御動作をシステム全体の動作説明とともに詳述する。
The control device F controls the operation of the water supply pump 7 and the chemical injection pump 8 based on signals from the temperature detectors T 1 , T 2 , and T 3. Will be described in detail together with an explanation of the operation of the entire system.

前記流動層式熱交換器Aの通常運転時には、高温の排
ガスが、ケーシング1内をガス入口1aからガス出口1bに
向かって通過するが、このとき、排ガスが多孔板2の下
側から砂層3内に噴出するため、この砂層3が激しく攪
拌および加熱されて流動状態となり、いわゆる流動層が
形成される。伝熱管4は、その受熱部がこの流動層内に
あってこれと接触しており、給水ポンプ7によって前記
伝熱管4内に流入した水は、前記伝熱管4内を通過しな
がら流動層によって加熱された後、蒸気として気水分離
器5に流入する。この蒸気は、前記気水分離器5内に
て、液滴分が除去され、さらに乾き度を高められた状態
で、系外の蒸気利用機器に供給される。前記気水分離器
5内にて分離された液滴分は、ドレンラインDを経て給
水タンク6内に流入し、給水温度を上昇させる。
During normal operation of the fluidized-bed heat exchanger A, high-temperature exhaust gas passes through the casing 1 from the gas inlet 1a to the gas outlet 1b. The sand layer 3 is vigorously stirred and heated to be in a fluidized state, so that a so-called fluidized bed is formed. The heat transfer tube 4 has a heat receiving portion inside and in contact with the fluidized bed, and water flowing into the heat transfer tube 4 by the water supply pump 7 is passed through the heat transfer tube 4 by the fluidized bed. After being heated, it flows into the steam separator 5 as steam. This steam is supplied to a steam utilization device outside the system in a state where the droplets are removed and the dryness is further increased in the steam separator 5. The liquid droplet separated in the steam separator 5 flows into the water supply tank 6 via the drain line D, and raises the temperature of the water supply.

すなわち、給水ラインE内を流れる給水の一部を、前
記伝熱管4と前記給水タンク6との間で循環させてお
り、これにより、前記伝熱間4の過熱を防止している。
給水の循環量は、前記給水ポンプ7の吐出量を制御する
ことによって調整している。
That is, a part of the feedwater flowing in the feedwater line E is circulated between the heat transfer pipe 4 and the feedwater tank 6, thereby preventing the heat transfer section 4 from being overheated.
The circulation amount of the water supply is adjusted by controlling the discharge amount of the water supply pump 7.

前記流動層式熱交換器Aの起動時には、制御装置F
は、給水ポンプ7を作動させるとともに、第一温度検出
器T1および第二温度検出器T2により、ガス入口1aおよび
ガス出口1bにおける排ガス温度を測定し始める。同時
に、前記制御装置Fは、前記給水ポンプ7の作動と連動
して薬注ポンプ8を作動させるとともに、第三温度検出
器T3により給水温度を測定し始める。
When the fluidized bed heat exchanger A is started, the controller F
, Along with operating the water supply pump 7, the first temperature detector T 1 and the second temperature detector T 2, it starts to measure the exhaust gas temperature at the gas inlet 1a and a gas outlet 1b. At the same time, the control unit F, along with operating the dosing pump 8 in conjunction with the operation of the water supply pump 7 begins to measure the water temperature by the third temperature detector T 3.

このとき、前記制御装置Fは、ガス入口1aとガス出口
1bとにおける排ガス温度の差から前記伝熱管4における
熱回収量を算出し、この熱回収量が多ければ、前記給水
ポンプ7の吐出量を増大させるべく機能し、前記伝熱管
4の過熱を防止する。一方、熱回収量が少なければ、前
記給水ポンプ7の吐出量を減少させるべく機能し、前記
伝熱管4内への過剰な給水を防止して、熱の回収効率の
低下を防止する。
At this time, the control device F has a gas inlet 1a and a gas outlet 1a.
The heat recovery amount in the heat transfer tube 4 is calculated from the difference between the exhaust gas temperature in the heat transfer tube 1b and the heat transfer amount. I do. On the other hand, if the heat recovery amount is small, it functions to reduce the discharge amount of the water supply pump 7, prevents excessive water supply into the heat transfer tube 4, and prevents a decrease in heat recovery efficiency.

前記給水ポンプ7の動作中、薬注ポンプ8も同時に作
動状態にあり、前記給水ポンプ7の吐出量に対して一定
の比率で薬液を供給する。前記流動層式熱交換器Aの起
動初期時等、前記伝熱管4への給水温度が低い場合、前
記制御装置Fは第三温度検出器T3からの信号により給水
温度に応じて前記薬注ポンプ8の吐出量を増加させる。
したがって、給水温度が低く、腐食の原因となる溶存酸
素の量が多い場合においても、給水中の薬液濃度を上昇
させるべく前記薬注ポンプ8の吐出量を制御し、前記伝
熱管4の腐食を防止することができる。
During the operation of the water supply pump 7, the chemical injection pump 8 is also in the operating state, and supplies the chemical at a constant ratio to the discharge amount of the water supply pump 7. Start the initial time such as the fluidized bed heat exchangers A, feed water when the temperature is lower to the heat transfer tube 4, the control device F the chemical feed according to the water supply temperature by a signal from the third temperature detector T 3 The discharge amount of the pump 8 is increased.
Therefore, even when the supply water temperature is low and the amount of dissolved oxygen causing corrosion is large, the discharge amount of the chemical injection pump 8 is controlled to increase the concentration of the chemical solution in the supply water, and the corrosion of the heat transfer tube 4 is reduced. Can be prevented.

第2図は、この考案に係る流動層式熱交換器の第二実
施例を示すもので、前述の第一実施例からガス出口1b側
の第二温度検出器T2を省略した構成としている。この実
施例において、制御装置Fは、ガス入口1a側にて測定し
た排ガス温度と給水タンク6下流にて測定した給水温度
により、伝熱管4への供給熱量を算出し、この値に応じ
て給水ポンプ7の吐出量を制御する。薬注ポンプ8の吐
出量の制御は、上述と同様、通常状態では前記給水ポン
プ7の吐出量に対して一定比率となるように行われ、流
動層式熱交換器Aの起動時等、給水温度が低い場合に
は、給水量に対して薬液量の比率を増加させるべく前記
薬注ポンプ8の吐出量を増加させるように行われる。
Figure 2 is shows a second embodiment of a fluidized bed heat exchanger according to this invention has a configuration in which the first embodiment described above is omitted second temperature detector T 2 of the gas outlet 1b side . In this embodiment, the control device F calculates the amount of heat supplied to the heat transfer tube 4 based on the exhaust gas temperature measured at the gas inlet 1a side and the water supply temperature measured downstream of the water supply tank 6, and supplies water according to this value. The discharge amount of the pump 7 is controlled. As described above, the discharge amount of the chemical injection pump 8 is controlled so as to have a fixed ratio to the discharge amount of the water supply pump 7 in the normal state, and the water supply amount is controlled when the fluidized bed heat exchanger A is started. When the temperature is low, the discharge amount of the chemical injection pump 8 is increased so as to increase the ratio of the chemical liquid amount to the water supply amount.

第3図は、この考案に係る流動層式熱交換器の第三の
実施例を示すもので、第三温度検出器T3′を給水タンク
6に設けた構成としている。この第三実施例において、
制御装置Fは、前記給水タンク6内の液温が通常運転時
より高ければ、その液温に応じて前記給水ポンプ6の吐
出量を減少させ、低ければ前記給水ポンプ6の吐出量を
増大させる。同時に、薬注ポンプ8も上述と同様、前記
給水ポンプ7に関連して制御し、前記液温が通常運転時
より大幅に低い場合(例えば、起動時等)は、給水量に
対する注入薬液量の比率を増加させるべく、前記薬注ポ
ンプ8の吐出量を制御する。前記給水タンク6には、気
水分離器5にて発生蒸気から分離した高温の液滴分が流
入するため、前記給水タンク6内の温度を監視すること
により、前記液滴分の量(すなわち、還流水量)を判断
することができる。
FIG. 3 shows a third embodiment of the fluidized bed heat exchanger according to the present invention, in which a third temperature detector T 3 ′ is provided in the water supply tank 6. In this third embodiment,
The control device F decreases the discharge amount of the water supply pump 6 according to the liquid temperature in the water supply tank 6 if the liquid temperature in the water supply tank 6 is higher than that in the normal operation, and increases the discharge amount of the water supply pump 6 if the liquid temperature is low. . At the same time, the chemical injection pump 8 is also controlled in relation to the water supply pump 7 in the same manner as described above, and when the liquid temperature is significantly lower than during normal operation (for example, at startup), the amount of the injected chemical liquid relative to the water supply amount is reduced. In order to increase the ratio, the discharge amount of the chemical pump 8 is controlled. Since the high-temperature liquid droplets separated from the generated steam in the water / water separator 5 flow into the water supply tank 6, by monitoring the temperature in the water supply tank 6, the amount of the liquid droplets (ie, , The amount of reflux water) can be determined.

〔考案の効果〕[Effect of the invention]

以上説明したように、この考案に係る流動層式熱交換
器の給水制御装置によれば、伝熱管における熱回収量,
伝熱管に対する供給熱量またはドレンラインから給水ラ
インへの還流水量に基づいて、前記熱回収量が多いと
き、前記供給熱量が多いときまたは前記還流水量が少な
いときは、前記給水ポンプの吐出量を増大させ、前記熱
回収量が少ないとき,前記供給熱量が少ないときまたは
前記還流水量が多いときは、前記給水ポンプの吐出量を
減少させて、運転状況に応じて適切な給水量に調整する
ことができ、常時、効率よく熱回収を行って蒸気を得る
ことができ、伝熱管の過熱を防止することができる。
As described above, according to the water supply control device for a fluidized bed heat exchanger according to the present invention, the heat recovery amount in the heat transfer tube,
Based on the amount of heat supplied to the heat transfer tube or the amount of reflux water from the drain line to the water supply line, when the heat recovery amount is large, when the supplied heat amount is large, or when the amount of reflux water is small, the discharge amount of the water supply pump is increased. When the heat recovery amount is small, when the supplied heat amount is small, or when the reflux water amount is large, the discharge amount of the water supply pump may be reduced to adjust the water supply amount to an appropriate amount according to an operation situation. It is possible to always efficiently recover heat and obtain steam, thereby preventing overheating of the heat transfer tube.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、この考案に係る流動層式熱交換器の給水制御
装置の第一実施例を示す概略構造図である。第2図は、
この考案に係る流動層式熱交換器の給水制御装置の第二
実施例を示す概略構造図である。第3図は、この考案に
係る流動層式熱交換器の給水制御装置の第三実施例を示
す概略構造図である。 A…流動層式熱交換器 B…給蒸ライン C…薬注ライン D…ドレンライン E…給水ライン F…制御装置 T1…第一温度検出器 T2…第二温度検出器 T3…第三温度検出器 1a…ガス入口 1b…ガス出口 4…伝熱管 6…給水タンク 7…給水ポンプ 8…薬注ポンプ
FIG. 1 is a schematic structural view showing a first embodiment of a water supply control device for a fluidized bed heat exchanger according to the present invention. Fig. 2
FIG. 4 is a schematic structural view showing a second embodiment of the water supply control device for a fluidized bed heat exchanger according to the present invention. FIG. 3 is a schematic structural view showing a third embodiment of a water supply control device for a fluidized bed heat exchanger according to the present invention. A: Fluidized bed heat exchanger B: Steam supply line C: Chemical injection line D: Drain line E: Water supply line F: Controller T 1 : First temperature detector T 2 : Second temperature detector T 3 : First Three temperature detectors 1a… Gas inlet 1b… Gas outlet 4… Heat transfer tube 6… Water supply tank 7… Water supply pump 8… Pump

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】流動層式熱交換器Aの伝熱管4の入口に、
給水ポンプ7を備えた給水ラインEを接続するととも
に、前記伝熱管4の出口に、気水分離器5を備えた給蒸
ラインBを接続し、前記給水ラインEと前記気水分離器
5とをドレンラインDで接続し、前記伝熱管4における
熱回収量,前記伝熱管4に対する供給熱量または前記ド
レンラインDから前記給水ラインEへの還流水量に基づ
いて、前記熱回収量が多いとき,前記供給熱量が多いと
きまたは前記還流水量が少ないときは、前記給水ポンプ
7の吐出量を増大させ、前記熱回収量が少ないとき,前
記供給熱量が少ないときまたは前記還流水量が多いとき
は、前記給水ポンプ7の吐出量を減少させる機能を有す
る制御装置Fを備えたことを特徴とする流動層式熱交換
器の給水制御装置。
1. An inlet of a heat transfer tube 4 of a fluidized bed heat exchanger A,
A water supply line E provided with a water supply pump 7 is connected, and a steam supply line B provided with a steam separator 5 is connected to an outlet of the heat transfer tube 4, so that the water feed line E and the steam separator 5 are connected to each other. Are connected by a drain line D, and when the heat recovery amount is large based on the heat recovery amount in the heat transfer tube 4, the heat supply amount to the heat transfer tube 4 or the reflux water amount from the drain line D to the water supply line E, When the supply heat amount is large or the return water amount is small, the discharge amount of the water supply pump 7 is increased, and when the heat recovery amount is small, when the supply heat amount is small or when the return water amount is large, A water supply control device for a fluidized bed heat exchanger, comprising a control device F having a function of reducing a discharge amount of the water supply pump 7.
JP1990081769U 1990-07-31 1990-07-31 Fluidized bed heat exchanger Expired - Lifetime JP2583989Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1990081769U JP2583989Y2 (en) 1990-07-31 1990-07-31 Fluidized bed heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1990081769U JP2583989Y2 (en) 1990-07-31 1990-07-31 Fluidized bed heat exchanger

Publications (2)

Publication Number Publication Date
JPH0441975U JPH0441975U (en) 1992-04-09
JP2583989Y2 true JP2583989Y2 (en) 1998-10-27

Family

ID=31627999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1990081769U Expired - Lifetime JP2583989Y2 (en) 1990-07-31 1990-07-31 Fluidized bed heat exchanger

Country Status (1)

Country Link
JP (1) JP2583989Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5925371B1 (en) * 2015-09-18 2016-05-25 三菱日立パワーシステムズ株式会社 Water quality management device, water treatment system, water quality management method, and water treatment system optimization program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724807U (en) * 1980-07-14 1982-02-09
JPS58181105A (en) * 1982-04-16 1983-10-22 Fanuc Ltd Correcting system of tool diameter
JPS62192750A (en) * 1986-02-19 1987-08-24 Dainichi Color & Chem Mfg Co Ltd Electrophotographic sensitive body
JPH0756367B2 (en) * 1987-12-18 1995-06-14 株式会社荏原製作所 Liquid chemical injection device for boiler water supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5925371B1 (en) * 2015-09-18 2016-05-25 三菱日立パワーシステムズ株式会社 Water quality management device, water treatment system, water quality management method, and water treatment system optimization program

Also Published As

Publication number Publication date
JPH0441975U (en) 1992-04-09

Similar Documents

Publication Publication Date Title
JP2583989Y2 (en) Fluidized bed heat exchanger
SE435545B (en) DEVICE FOR SPEED BED COMBUSTION OVEN
JPH0335438Y2 (en)
JP3572461B2 (en) Apparatus and method for preventing corrosion of boiler device
JP4540771B2 (en) Steam heating device
JPH09236207A (en) Boiler
JP3291095B2 (en) Hot water production and supply equipment
JP4540772B2 (en) Steam heating device
JP2734372B2 (en) Waste heat recovery boiler
JPS61237903A (en) Controller for water level in drain tank for feedwater heater
JPH09119604A (en) Condensate deaerating device for exhaust gas boiler
JPS6026290A (en) Waste heat recovery device
JPH09126409A (en) Method and device for temperature control of feed-water heater
JP6450957B2 (en) Circulating fluidized bed boiler and method for starting circulating fluidized bed boiler
JP3341209B2 (en) Steam heating device
SU1291785A2 (en) Boiler unit
JPH0663607B2 (en) Turbine plant with feedwater heater drain injection device
JPH01123902A (en) Feed water supply system for boiler
SU1040190A1 (en) Heat-supply-system replenishment plant
JPS62106207A (en) Feedwater supply system in steam turbine plant
JPS6158658B2 (en)
JP3394929B2 (en) Steam heating device
JPH035811Y2 (en)
JPS6330007Y2 (en)
JPH06281105A (en) Steam generating device