JP2582873B2 - Ferrous salt electrolysis method - Google Patents
Ferrous salt electrolysis methodInfo
- Publication number
- JP2582873B2 JP2582873B2 JP63238595A JP23859588A JP2582873B2 JP 2582873 B2 JP2582873 B2 JP 2582873B2 JP 63238595 A JP63238595 A JP 63238595A JP 23859588 A JP23859588 A JP 23859588A JP 2582873 B2 JP2582873 B2 JP 2582873B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- gas
- hydrogen
- ferrous salt
- ferrous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、第一鉄塩溶液を電解液として電解し第二鉄
塩と水素ガスを得る方法に関するものである。Description: TECHNICAL FIELD The present invention relates to a method for obtaining a ferric salt and hydrogen gas by electrolysis using a ferrous salt solution as an electrolytic solution.
(従来技術とその問題点) 従来、塩化第一鉄を酸化して塩化第二鉄を得る方法と
しては、該塩化第一鉄溶液を60〜70℃に加熱しながら塩
素ガスを液中に吹き込み酸化する方法が最も一般的であ
る 他の方法としては、該塩化第一鉄溶液に酸化剤を加え
塩化第二鉄溶液を得る方法であり、酸化剤としては、硝
酸、塩素酸、臭酸、臭素酸、ヨウ素酸、過酸化水素、熱
濃硫酸等がある。(Prior art and its problems) Conventionally, as a method of oxidizing ferrous chloride to obtain ferric chloride, a chlorine gas is blown into the liquid while heating the ferrous chloride solution to 60 to 70 ° C. The most common method of oxidation is a method of adding an oxidizing agent to the ferrous chloride solution to obtain a ferric chloride solution. As the oxidizing agent, nitric acid, chloric acid, bromic acid, There are bromic acid, iodic acid, hydrogen peroxide, hot concentrated sulfuric acid and the like.
上記の方法に於いて、前者は吹き込んだ塩素ガスを有
効に反応させるのが難しく、排気ガスの処理を必要とす
る、また装置も複雑になるという欠点がある 後者は該塩化第一鉄溶液に酸化剤として加えた物質が
残ったり、溶液中に水が生成して塩化第二鉄の濃度が薄
まることとなり、該塩化第二鉄溶液を利用する場合に、
濃縮操作や分離操作が必要となり工程が繁雑になるとい
う欠点があった。In the above method, the former has a drawback that it is difficult to effectively react the blown chlorine gas, requires the treatment of exhaust gas, and has a disadvantage that the equipment is complicated. When the substance added as an oxidizing agent remains or water is generated in the solution and the concentration of ferric chloride decreases, when using the ferric chloride solution,
There is a drawback that a concentration operation and a separation operation are required and the process becomes complicated.
(発明の目的) 本発明は、上記従来法の欠点を解決するために成され
たもので、水素発生極にガス拡散電極を用い、塩化水素
を含む第一鉄塩溶液を電解するという、簡便な装置と方
法により該第一鉄塩の濃度の変化にも影響されにくく他
の成分を含むことのない安定した方法を提供するもので
ある。(Object of the Invention) The present invention has been made in order to solve the above-mentioned drawbacks of the conventional method, and is a simple method in which a gas diffusion electrode is used as a hydrogen generating electrode and a ferrous salt solution containing hydrogen chloride is electrolyzed. The present invention provides a stable method which is hardly affected by a change in the concentration of the ferrous salt by using a simple apparatus and method and does not contain other components.
(問題点を解決するための手段) 本発明は、塩化水素を含む第一鉄塩溶液を水素ガス発
生極をガス拡散電極とし、対極に不溶性電極を用いて電
解し、水素ガスと第二鉄塩を生成させることを特徴とす
る第一鉄塩の電解方法である。(Means for Solving the Problems) In the present invention, a ferrous salt solution containing hydrogen chloride is electrolyzed using a hydrogen gas generating electrode as a gas diffusion electrode and an insoluble electrode as a counter electrode, and hydrogen gas and ferric iron are used. A method for electrolyzing a ferrous salt, which comprises producing a salt.
以下本発明の詳細について説明する。 Hereinafter, the present invention will be described in detail.
第1図はガス拡散電極の断面拡大図で、ガス拡散電極
1は反応層2とガス拡散層3の2層を有する膜状体のも
ので、反応層2は、平均粒径420Åの撥水性カーボンブ
ラックと親水性カーボンブラック、平均粒径0.3μmの
ポリテトラフルオロエチレン(以下PTFEとよぶ)と溶楳
としてソルベントナフサからなり、その混合比は7:4:4:
20の割合で、そらに白金ブラック平均粒径250Åを膜厚
0.1mmに成型したときに、0.56mg/cm2担持する割合を加
え、混合して圧縮成型したのち、280℃で加熱乾燥して
溶楳を除去したものである。FIG. 1 is an enlarged cross-sectional view of a gas diffusion electrode. The gas diffusion electrode 1 is a film-like body having two layers, a reaction layer 2 and a gas diffusion layer 3, and the reaction layer 2 has a water repellency having an average particle diameter of 420 °. It consists of carbon black and hydrophilic carbon black, polytetrafluoroethylene (hereinafter referred to as PTFE) with an average particle size of 0.3 μm, and solvent naphtha as a solvent, and the mixing ratio is 7: 4: 4:
At a ratio of 20, a platinum black average particle size of 250 mm
When molded to 0.1 mm, a ratio supporting 0.56 mg / cm 2 was added, mixed and compression molded, and then heated and dried at 280 ° C. to remove the solvent.
該反応層2は、電極としての導電性を持たせるために
主成分としてカーボンブラックが用いられている。The reaction layer 2 uses carbon black as a main component in order to impart conductivity as an electrode.
親水性カーボンブラックは電解液の浸透通路を構成す
るためであり、撥水性カーボンブラックは電極としての
性能を損なうことなくガス拡散通路を構成するためであ
り、さらに、ガス拡散通路の構成材兼結着材としてPTFE
を加えている。The hydrophilic carbon black is for forming the electrolyte passage, and the water-repellent carbon black is for forming the gas diffusion passage without impairing the performance as an electrode. PTFE as a dressing
Is added.
また、白金は全体に均一分散しており、酸化還元反応
を促進すると共に電子伝導性を持たせるためである。In addition, platinum is uniformly dispersed throughout to promote an oxidation-reduction reaction and to provide electron conductivity.
ガス拡散層3は、0.1ミクロン以下の疎水性細孔のみ
を有する膜で、平均粒径420Åの撥水性カーボンブラッ
クと平均粒径0.3μmのPTFEと溶楳としてソルベントナ
フサとを7:3:18の割合で混合し、厚さ0.5mmに成型し、2
80℃で加熱乾燥して溶楳を除去したものである。The gas diffusion layer 3 is a membrane having only hydrophobic pores of 0.1 μm or less, and is composed of water-repellent carbon black having an average particle diameter of 420 °, PTFE having an average particle diameter of 0.3 μm, and solvent naphtha as a solvent. Mix at a ratio of 0.5 and mold to a thickness of 0.5 mm.
It is dried by heating at 80 ° C to remove melamine.
該ガス拡散層3は、電解液の漏れを防ぐために撥水性
カーボンブラックとPTFEを用いている。The gas diffusion layer 3 uses water-repellent carbon black and PTFE to prevent leakage of the electrolyte.
特に、ガスの通過性を高めるための細孔を有するもの
である。In particular, it has pores for improving gas permeability.
ガス拡散電極1は、上記の反応層2とガス拡散層3を
接合したもので、該ガス拡散電極1は補強を施して用い
ることもできる。例えば金属の網状体に耐塩酸および耐
塩化鉄塩の樹脂被覆をしたものを用いて該ガス拡散電極
1を挟み固定すればよい。The gas diffusion electrode 1 is obtained by joining the reaction layer 2 and the gas diffusion layer 3 described above, and the gas diffusion electrode 1 can be used with reinforcement. For example, the gas diffusion electrode 1 may be sandwiched and fixed using a metal mesh coated with a resin resistant to hydrochloric acid and iron chloride.
上記で作製したガス拡散電極1を水素ガス発生極とし
た電解装置の模式図が第2図である。FIG. 2 is a schematic diagram of an electrolysis apparatus using the gas diffusion electrode 1 produced as described above as a hydrogen gas generating electrode.
電解装置4は陽極5と水素発生極6側にはガス室7と
ガス取り出し口8があり、陽極5と水素発生極6の間に
隔膜9があり、その隔膜9と陽極5との間に電解液10を
流せるようにしてあるものである。The electrolysis apparatus 4 has a gas chamber 7 and a gas outlet 8 on the anode 5 and hydrogen generating electrode 6 side, and a diaphragm 9 between the anode 5 and the hydrogen generating electrode 6. The electrolyte solution 10 is allowed to flow.
陽極5にはチタン、タンタル等に白金族金属又はそれ
らの酸化物を被覆した電極やカーボン繊維、カーボン多
孔質体から成るカーボン電極を用い、水素発生極6は電
解液に接触する側がガス拡散電極1の反応層2側となる
ようにセットする。As the anode 5, an electrode in which a platinum group metal or an oxide thereof is coated on titanium, tantalum, or the like, or a carbon electrode made of carbon fiber or a porous carbon material is used. 1 is set so as to be on the reaction layer 2 side.
第3図はカーボンフェルトを陽極にした場合の模式図
である。第一鉄塩水溶液から成る電解液10を下部より導
入し、カーボンフェルトのファイバーから成る陽極5中
を通過させ、そのとき第二鉄イオンに酸化されるように
したものである。この場合には第一鉄塩の流量と電流密
度を制御することでセパレータなしで連続的に酸化でき
る。FIG. 3 is a schematic diagram when carbon felt is used as the anode. An electrolytic solution 10 composed of an aqueous ferrous salt solution is introduced from below, and is passed through an anode 5 composed of carbon felt fiber, where it is oxidized to ferric ions. In this case, continuous oxidation can be performed without a separator by controlling the flow rate and current density of the ferrous salt.
電解液10は第一鉄塩と塩化水素と水から成るもので、
第一鉄塩と塩化水素は同一モル濃度であることが好まし
く、電解電圧は0.8V〜1.2Vでよい。電解液10中の第一鉄
イオンは陽極5で酸化され第二鉄イオンになり、水素発
生極6側では、ガス拡散電極1の反応層2で水素イオン
が還元して水素ガスとなりガス拡散層3を通過してガス
室7に移動しガス取り出し口8から取り出される。Electrolyte 10 is composed of ferrous salt, hydrogen chloride and water,
The ferrous salt and hydrogen chloride are preferably in the same molar concentration, and the electrolysis voltage may be 0.8V to 1.2V. Ferrous ions in the electrolytic solution 10 are oxidized by the anode 5 to become ferric ions. On the hydrogen generating electrode 6 side, the hydrogen ions are reduced by the reaction layer 2 of the gas diffusion electrode 1 to become hydrogen gas, which becomes hydrogen gas. 3 and is moved to the gas chamber 7 and taken out from the gas outlet 8.
電極酸化の速度を高めるために高い電圧かけてた場合
に発生する水素ガスの影響で浴電圧が上がるということ
を該ガス拡散電極を用いることで解消することができ
る。The use of the gas diffusion electrode can prevent the bath voltage from increasing due to the effect of hydrogen gas generated when a high voltage is applied to increase the electrode oxidation rate.
電解電圧は、水素ガスを発生しながら第一鉄イオンを
第二鉄イオンに酸化するに必要とする電圧は標準状態で
0.77Vである。ここで取り出した水素ガスは多くの用途
に利用される。The electrolysis voltage is the standard voltage required to oxidize ferrous ions to ferric ions while generating hydrogen gas.
0.77V. The hydrogen gas extracted here is used for many purposes.
なお、電解電圧を下げるために水素ガスを発生させな
い方法としてガス取り出し口8より酸素ガスを供給する
ことで、実際の電解条件下で約0.7Vの電圧低下を計れ
る。水素を必要としない場合は好ましく用いることがで
きる方法である。By supplying oxygen gas from the gas outlet 8 as a method of not generating hydrogen gas in order to lower the electrolysis voltage, a voltage drop of about 0.7 V can be measured under actual electrolysis conditions. This method can be preferably used when hydrogen is not required.
以下、本発明の実施例を記載するが、該実施例は本発
明を限定するものではない。Hereinafter, examples of the present invention will be described, but the examples do not limit the present invention.
(実施例1) 塩化第二鉄を2モル/含む溶液に硫化水素ガスを接
触させた溶液を濾過して沈澱したイオウを分離した溶液
を分析したところ、塩化第一鉄が2モル/で塩化水素
が2モル/であった。(Example 1) A solution in which hydrogen sulfide gas was brought into contact with a solution containing 2 mol / ferric chloride was filtered, and a solution in which precipitated sulfur was separated was analyzed. Hydrogen was 2 mol /.
この溶液を電解液として、電極の間隔を10mmとし、1.
0Vの電圧で定電位電解した。Using this solution as the electrolyte, the distance between the electrodes was 10 mm, and 1.
Electrostatic potential electrolysis was performed at a voltage of 0V.
電解後の溶液を分析したところ塩化第二鉄の濃度は2
モル/であった。Analysis of the solution after electrolysis showed that the concentration of ferric chloride was 2
Mol /.
ガス取り出し口より水素ガスは4得ることができ
た。Four hydrogen gases were obtained from the gas outlet.
使用したガス拡散電極は10cm×10cmのもので、陽極は
チタンに白金メッキしたラス電極で10cm×10cmのものを
用いた。The gas diffusion electrode used was 10 cm × 10 cm, and the anode was a lath electrode platinum-plated on titanium and 10 cm × 10 cm.
(実施例2) 実施例・1と同一条件で、陽極をカーボン電極に変え
て、電解を行ったところ、実施例1と同じ結果が得られ
た。(Example 2) Electrolysis was performed under the same conditions as in Example 1 except that the anode was changed to a carbon electrode, and the same results as in Example 1 were obtained.
(実施例3) 実施例1と同様に電解電圧を0.95Vで行ったところ、
実施例1と同じ結果が得られた。(Example 3) When the electrolysis voltage was set to 0.95 V in the same manner as in Example 1,
The same results as in Example 1 were obtained.
(実施例4) 塩化第一鉄0.5モル/と塩化水素0.8モル/を含む
水溶液を実施例1と同一条件で電解したところ、塩化第
二鉄0.5モル/と塩化水素0.3モル/の水溶液が得ら
れた。(Example 4) When an aqueous solution containing 0.5 mol / ferrous chloride and 0.8 mol / hydrogen chloride was electrolyzed under the same conditions as in Example 1, an aqueous solution containing 0.5 mol / ferric chloride / 0.3 mol / hydrogen chloride was obtained. Was done.
尚、上記実施例では第一鉄塩として塩化第一鉄につい
て述べたが、本発明はこれに限るものではなく硫酸第一
鉄についても良いものである。In the above embodiment, ferrous chloride was described as a ferrous salt, but the present invention is not limited to this, and ferrous sulfate may be used.
(発明の効果) 本発明は、塩化第一鉄溶液を電解酸化により塩化第二
鉄溶液を得る方法で、水素ガス発生側の電極としてガス
拡散電極を用い、対極側をチタンに白金を被覆した電極
またはカーボン電極を用いて電解することで容易に酸化
することができ、電解酸化を速めるために電圧を高くし
ても、水素ガス発生極にガス拡散電極を用いているため
に、浴電圧が上がることなく電解効率を高められ、しか
も水素ガスを取り出すことが簡単であり、従来法と比べ
極めて簡便で、塩化第二鉄溶液の特性を利用した利用範
囲を広めることができる。(Effects of the Invention) The present invention is a method for obtaining a ferric chloride solution by electrolytic oxidation of a ferrous chloride solution, using a gas diffusion electrode as an electrode on the hydrogen gas generation side, and coating the counter electrode side with platinum on titanium. It can be easily oxidized by electrolysis using an electrode or a carbon electrode, and even if the voltage is increased to accelerate electrolytic oxidation, the bath voltage is reduced because the gas diffusion electrode is used for the hydrogen gas generating electrode. Electrolysis efficiency can be increased without increasing, and hydrogen gas can be easily taken out, which is extremely simple as compared with the conventional method, and the range of use utilizing the characteristics of the ferric chloride solution can be expanded.
その一例としては、石油精製プラントにおける有毒な
硫化水素ガスの処理方法として用いることのできる塩化
第二鉄溶液との接触方法で、イオウを分離した後の塩化
第一鉄と塩化水素を含む溶液を、本発明の電解酸化方法
により塩化第二鉄溶液を水素ガスにすることで、該塩化
第二鉄溶液を循環して利用できることは極めて貢献度の
高いものといえる。As an example, in a contact method with a ferric chloride solution that can be used as a method for treating toxic hydrogen sulfide gas in an oil refinery plant, a solution containing ferrous chloride and hydrogen chloride after separating sulfur is used. The fact that the ferric chloride solution can be circulated and used by converting the ferric chloride solution to hydrogen gas by the electrolytic oxidation method of the present invention can be said to have a very high contribution.
第1図はガス拡散電極の一部断面拡大図、第2図は本発
明の第一鉄塩の電解方法の一例を示す断面模式図、第3
図は本発明の化の例を示す断面模式図である。FIG. 1 is a partially enlarged cross-sectional view of a gas diffusion electrode, FIG. 2 is a schematic cross-sectional view showing an example of a ferrous salt electrolysis method of the present invention, and FIG.
The figure is a schematic sectional view showing an example of the present invention.
Claims (1)
生極をガス拡散電極とし、対極に不溶性電極を用いて電
解し、水素ガスと第二鉄塩を生成させることを特徴とす
る第一鉄塩の電解方法。1. A ferrous salt solution containing hydrogen chloride is electrolyzed using a hydrogen gas generating electrode as a gas diffusion electrode and an insoluble electrode as a counter electrode to generate hydrogen gas and a ferric salt. Electrolysis method of ferrous salt.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63238595A JP2582873B2 (en) | 1988-09-22 | 1988-09-22 | Ferrous salt electrolysis method |
DE89830407T DE68908992T2 (en) | 1988-09-22 | 1989-09-21 | Process for changing the ion valence and device therefor. |
US07/410,582 US5071516A (en) | 1988-05-13 | 1989-09-21 | Process for converting ionic valence number |
EP89830407A EP0362157B1 (en) | 1988-09-22 | 1989-09-21 | Process for converting ionic valence number and apparatus employed therefor |
US07/757,477 US5181993A (en) | 1988-09-22 | 1991-09-10 | Process for converting ferrous ions to ferric ions |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63238595A JP2582873B2 (en) | 1988-09-22 | 1988-09-22 | Ferrous salt electrolysis method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02153086A JPH02153086A (en) | 1990-06-12 |
JP2582873B2 true JP2582873B2 (en) | 1997-02-19 |
Family
ID=17032531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63238595A Expired - Lifetime JP2582873B2 (en) | 1988-05-13 | 1988-09-22 | Ferrous salt electrolysis method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2582873B2 (en) |
-
1988
- 1988-09-22 JP JP63238595A patent/JP2582873B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02153086A (en) | 1990-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101947687B1 (en) | Water treatment device using electrolysis and heterogeneous catalytic oxidation reaction | |
Paulin et al. | Theoretical and Experimental Study of Flow‐Through Porous Electrodes | |
RU2181150C2 (en) | Method of pickling steel | |
Nabizadeh Chianeh et al. | Decolorization of azo dye CI Acid Red 33 from aqueous solutions by anodic oxidation on MWCNTs/Ti electrodes | |
US3423300A (en) | Electrolytic regeneration of reduced chromium compounds | |
JP2582873B2 (en) | Ferrous salt electrolysis method | |
JPS61157691A (en) | Electrochemical tank, production of gas reduced cathode and electrolysis | |
US5035869A (en) | Process for reducing uranyl salt | |
US5071516A (en) | Process for converting ionic valence number | |
JPH10513509A (en) | Electrochemical mercerizing, pickling and bleaching of fibers | |
US5181993A (en) | Process for converting ferrous ions to ferric ions | |
FI82486C (en) | Selective removal of chlorine from chlorine dioxide and chlorine containing solutions | |
CN111996541B (en) | Indirect hydrogen sulfide electrolysis method and device for improving hydrogen yield | |
Wei et al. | Electrochemical processes for simultaneous sulfur and energy recoveries from sulfide-containing wastewater | |
JP2006175384A (en) | Radical oxygen water generating device and system | |
JP3615814B2 (en) | Method and apparatus for removing nitrate and / or nitrite nitrogen | |
EP0006933A1 (en) | Method of catalysing evolution of gaseous hydrogen in alkaline electrolysis of water. | |
JP3420400B2 (en) | Gas diffusion electrode for electrolysis and method for producing the same | |
JPH10230264A (en) | Electrolyzed water generating device | |
JP3257831B2 (en) | Lead dioxide electrode and method for producing the same | |
JPH11302888A (en) | Water electrolysis type ozonizer | |
JP2004149848A (en) | Catalyst for electrolysis type ozone-generating anode, and electrolysis type ozone-generating device | |
JPH01294886A (en) | Method for electrolyzing halide | |
Zhang et al. | A Novel Modification Method of Stainless-steel Electrode for Sulfur Preparation by Reduction of Sulfur Dioxide | |
JP3210688B2 (en) | Aeration method for ozone-containing gas |