JP2581076B2 - Rare earth element analysis method - Google Patents

Rare earth element analysis method

Info

Publication number
JP2581076B2
JP2581076B2 JP62140500A JP14050087A JP2581076B2 JP 2581076 B2 JP2581076 B2 JP 2581076B2 JP 62140500 A JP62140500 A JP 62140500A JP 14050087 A JP14050087 A JP 14050087A JP 2581076 B2 JP2581076 B2 JP 2581076B2
Authority
JP
Japan
Prior art keywords
rare earth
added
analysis
earth element
amine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62140500A
Other languages
Japanese (ja)
Other versions
JPS63304163A (en
Inventor
祥裕 栄木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP62140500A priority Critical patent/JP2581076B2/en
Publication of JPS63304163A publication Critical patent/JPS63304163A/en
Application granted granted Critical
Publication of JP2581076B2 publication Critical patent/JP2581076B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、希土類元素の分析法に関する。さらに詳
しくは、試料中に存在しうる種々の希土類元素を液体ク
ロマトグラフィことに高速液体クロマトグラフィによっ
て高精度に分離定量しうる希土類元素の分析法に関す
る。
The present invention relates to a method for analyzing rare earth elements. More specifically, the present invention relates to a method for analyzing rare earth elements which can be separated and quantified with high accuracy by high performance liquid chromatography, especially liquid chromatography, for various rare earth elements which may be present in a sample.

(ロ)従来の技術 最近、電子技術、超電導技術等の発達に伴い、希土類
元素、いわゆるレアーメタルが注目されるようになって
いる。従って種々の対象系中の各希土類元素をより簡便
にかつ高精度に分離定量分析する方法も重要視されるに
至っている。
(B) Conventional technology Recently, with the development of electronic technology, superconductivity technology and the like, rare earth elements, so-called rare metals, have attracted attention. Therefore, a method of separating and quantitatively analyzing each rare earth element in various target systems more simply and with high precision has also been regarded as important.

従来、かかる希土類元素の分析法のうち、高速液体ク
ロマトグラフィによる希土類元素の分析は、複雑な前処
理や解析を必要としない点で簡便であり有望視されてい
る。そして最近、高速液体クロマトグラフィを用いた希
土類の高感度分析法として、乳酸やα−ヒドロキシ酪酸
のごときα−ヒドロキシカルボン酸の溶液を移動相とす
る陽イオン交換クロマトグラフィに付すことにより、キ
レートを形成させ電荷を低減させて傾斜溶離し、この溶
離液にキレート滴定指示薬であるアルセナゾIII〔2,7−
ビス(2−アルソノ−1−フェニルアゾ)−1,8−ジヒ
ドロキシナフタレン−3,6−ジスルホン酸〕を弱酸性下
混合してこれらの1対1の錯形成に基づく発色反応を行
わせ、この発色強度に基づいて各希土類元素を分離定量
する方法が提案されている〔特開昭58−144745号公報、
「アルセナゾIIIポストカラム発色法における希土類元
素の高速液体クロマトグラフィー」分析化学、第32巻
(1983年)第136−138頁、“RARE EARTHS IN MONAZITE
SAND AND…"Analyst,Vol.106,p.p869−873,August(198
3)等〕。
Conventionally, among such rare earth element analysis methods, the analysis of rare earth elements by high performance liquid chromatography has been considered simple and promising in that complicated pretreatment and analysis are not required. Recently, as a high-sensitivity analysis method for rare earths using high-performance liquid chromatography, chelates are formed by subjecting them to cation exchange chromatography using a solution of α-hydroxycarboxylic acid such as lactic acid or α-hydroxybutyric acid as a mobile phase. The gradient elution was performed with the charge reduced, and the eluent was added to the chelate titration indicator, Arsenazo III [2,7-
Bis (2-arsono-1-phenylazo) -1,8-dihydroxynaphthalene-3,6-disulfonic acid] is mixed under weak acidity to cause a color forming reaction based on a one-to-one complex formation thereof. A method of separating and quantifying each rare earth element based on the intensity has been proposed (Japanese Patent Application Laid-Open No. 58-144745,
"High Performance Liquid Chromatography of Rare Earth Elements in Arsenazo III Post Column Color Chromatography" Analytical Chemistry, Vol. 32 (1983), pp. 136-138, "RARE EARTHS IN MONAZITE"
SAND AND ... "Analyst, Vol.106, p.p869-873, August (198
3) etc.].

(ハ)発明が解決しようとする問題点 しかしながら、上記分析法においては、各希土類成
分、ことに溶出の遅い成分であるテルビウム(Tb)以後
のピークについての検量線が、低濃度領域で凹型に曲が
る傾向があった。そして、そのために希土類元素が微量
の際に、いわゆる一点検量線法では信頼性の高い定量を
行うことができないという不都合が生じていた。
(C) Problems to be Solved by the Invention However, in the above analysis method, the calibration curve for each rare earth component, particularly the peak after terbium (Tb), which is a late eluting component, has a concave shape in the low concentration region. There was a tendency to bend. Therefore, when the amount of the rare earth element is very small, there has been a problem that a so-called one-point calibration method cannot perform highly reliable quantification.

この発明は、かかる従来の問題点を解消すべくなされ
たものである。
The present invention has been made to solve such a conventional problem.

(ニ)問題点を解決するための手段 本発明者は上記観点から鋭意研究、検討を行った結
果、ピリジン等の特定のpKa範囲を有する芳香族又は環
状アミンを、前記発色反応時に共存させることにより、
溶出の遅い成分のみならず、イッテルビウム以降の溶出
の早い成分についての低濃度領域における検量線の直線
性が著しく改善され、一点検量線法でも高精度の定量が
容易に行い得る事実を見出した。
(D) Means for Solving the Problems The present inventor has conducted intensive studies and studies from the above viewpoint, and as a result, it has been found that aromatic or cyclic amines having a specific pKa range, such as pyridine, are allowed to coexist during the color-forming reaction. By
It has been found that the linearity of the calibration curve in the low concentration region for not only the late eluting component but also the fast eluting component after ytterbium has been remarkably improved, and that high-precision quantification can be easily performed even by the one-point calibration method.

かくしてこの発明によれば、希土類元素を含有する試
料を、α−ヒドロキシカルボン酸溶液を用いて溶離を行
う陽イオン交換クロマトグラフィに付し、この溶離液に
2,7−ビス(2−アルソノ−1−フェニルアゾ)−1,8−
ジヒドロキシナフタレン−3,6−ジスルホン酸とpKa3〜
7の芳香族アミン又は環状アミン類を添加して発色反応
させ、この発色強度に基づいて試料中の希土類元素を分
離定量することを特徴とする希土類元素の分析法が提供
される。
Thus, according to the invention, a sample containing a rare earth element is subjected to cation exchange chromatography, eluting with an α-hydroxycarboxylic acid solution, and
2,7-bis (2-arsono-1-phenylazo) -1,8-
Dihydroxynaphthalene-3,6-disulfonic acid and pKa3 ~
The present invention provides a method for analyzing rare earth elements, characterized by adding an aromatic amine or a cyclic amine of No. 7 to cause a color development reaction, and separating and quantifying rare earth elements in a sample based on the color intensity.

この発明の陽イオン交換クロマトグラフィに用いる移
動相としては、α−ヒドロキシカルボン酸の水溶液が適
しており、アルカリの添加によりpH2〜5の弱酸性に調
製されたものを用いるのが発色感度が高くなる点で適し
ている。ここでα−ヒドロキシカルボン酸としては、乳
酸、ヒドロキシ酪酸等の低級脂肪族ヒドロキシカルボン
酸が適しており、α−ヒドロキシイソ酪酸が好ましい。
またその濃度は、当該分野で適用される程度の濃度で充
分である。なお、希土類元素が多種含まれる場合には、
分離速度、分離性を向上させるために、α−ヒドロキシ
カルボン酸の濃度を溶離時間と共に徐々に上昇させる、
いわゆる傾斜溶離を行うのが適している。
As the mobile phase used for the cation exchange chromatography of the present invention, an aqueous solution of α-hydroxycarboxylic acid is suitable, and the use of an aqueous solution prepared to be weakly acidic at pH 2 to 5 by adding an alkali increases the color sensitivity. Suitable in point. Here, as the α-hydroxycarboxylic acid, lower aliphatic hydroxycarboxylic acids such as lactic acid and hydroxybutyric acid are suitable, and α-hydroxyisobutyric acid is preferable.
The concentration is sufficient to be applied in the art. When a large number of rare earth elements are contained,
In order to improve the separation speed and the separation property, the concentration of α-hydroxycarboxylic acid is gradually increased with the elution time,
It is suitable to carry out so-called gradient elution.

一方、陽イオン交換クロマトグラフィに用いるカラム
としては、強酸性陽イオン交換樹脂を充填したカラム適
用でき、これらのうちShimpack IC−C1[(株)島津製
作所製]を用いるのが好ましい。
On the other hand, as a column used for cation exchange chromatography, a column packed with a strongly acidic cation exchange resin can be used, and among them, Shimpack IC-C1 [manufactured by Shimadzu Corporation] is preferably used.

この発明の最も特徴とする点は、上記溶離液に、発色
試料として2,7−ビス(2−アルソノ−1−フェニルア
ゾ)−1,8−ジヒドロキシナフタレン−3,6−ジスルホン
酸(以下、アルセナゾIII)を添加して弱酸性下、こと
にpH2〜5下で発色反応に供するに際し、pKa3〜7の芳
香族又は環状アミン類を共存させる点にある。この際の
アルセナゾIIIの添加はその溶液を溶離液中に混合する
ことにより行われ、またその量は溶離液中に0.01〜1mM
となるように調整するのが適している。またこの溶液の
pHは溶離液と同じく2〜5としておくのが適している。
一方、上記アミン類の添加は上記アルセナゾIII溶液中
に予め共存させたり、別に水溶液の形態で溶離液中に混
合することにより行われ、その適切な溶離液中への添加
量は、希土類の種類にもよるが通常、0.01〜1mMの範囲
内で選択される。
The most characteristic feature of the present invention is that the above eluent contains 2,7-bis (2-arsono-1-phenylazo) -1,8-dihydroxynaphthalene-3,6-disulfonic acid (hereinafter referred to as arsenazo) as a color-developing sample. In addition to the addition of III), when the color development reaction is performed under a weak acidic condition, particularly at a pH of 2 to 5, an aromatic or cyclic amine having a pKa of 3 to 7 is allowed to coexist. The addition of Arsenazo III at this time is performed by mixing the solution in the eluent, and the amount is 0.01 to 1 mM in the eluent.
It is suitable to adjust so that Also of this solution
The pH is suitably set to 2 to 5 as in the eluent.
On the other hand, the addition of the amines is carried out in advance by coexisting in the arsenazo III solution or by separately mixing them in the form of an aqueous solution in the eluent. Usually, it is selected in the range of 0.01 to 1 mM.

上記芳香族又は環状アミン類としては、アニリン,ト
ルイジン等の芳香族アミン類や、ピリジン,ピペリジ
ン,イミダゾール,ピラゾール等の環状アミン類が挙げ
られ、これらのうちピリジンを用いるのが好ましい。
Examples of the aromatic or cyclic amines include aromatic amines such as aniline and toluidine, and cyclic amines such as pyridine, piperidine, imidazole and pyrazole, and among these, pyridine is preferable.

なお、発色反応は、緩和な温度で行われるため、とく
に加熱を行う必要はないが、反応条件を一定に保つため
に、上記両成分の添加後の反応管路には温調を施してお
くことが望ましく、また充分な混合がなされるようにス
パイラル状に構成しておくことが好ましい。
In addition, since the coloring reaction is performed at a moderate temperature, it is not necessary to perform heating, but in order to keep the reaction conditions constant, a temperature control is performed on the reaction pipe after the addition of the two components. It is preferable to form a spiral so that sufficient mixing can be achieved.

上記発色強度は、適当な波長の吸光光度を測定するこ
とにより検出され、このピーク面積あるいはピーク高さ
に基づいて各希土類について予め測定された検量線によ
って定量が行われる。この際の測定波長としては、655n
m前後を採用するのが適している。
The coloring intensity is detected by measuring the absorbance at an appropriate wavelength, and quantification is performed by a calibration curve previously measured for each rare earth based on the peak area or peak height. The measurement wavelength at this time is 655n
It is appropriate to adopt around m.

この発明の方法によれば、希土類元素(17種)のう
ち、イッテルビウム(Yb)以降に溶離する各種希土類元
素の低濃度領域における検量線の直線性を改善すること
ができ、ことに問題であったテルビウム(Tb)以降の希
土類元素の検量線の直線性を著しく改善することができ
る。
According to the method of the present invention, it is possible to improve the linearity of the calibration curve in the low concentration region of various rare earth elements eluted after ytterbium (Yb) among the rare earth elements (17 kinds). The linearity of the calibration curve of rare earth elements after terbium (Tb) can be significantly improved.

ただし、前記アミン類の添加濃度が高い場合には、低
濃度領域の検量線の直線性は改善されても、逆に高濃度
領域の検量線の直線性が低下する場合があり、この傾向
は、溶出が早い成分について大きい。従って、アミン類
の添加は、その濃度が初期の溶出成分について小さく、
終期の溶出成分について大きくなるように濃度グラジェ
ントにより徐々に増加させて行うのが適している。
However, when the addition concentration of the amines is high, the linearity of the calibration curve in the low concentration region may be improved, but the linearity of the calibration curve in the high concentration region may be reduced. Greater for faster eluting components. Therefore, the addition of amines, the concentration is small for the initial eluted components,
It is suitable to gradually increase the concentration of the eluted components at the final stage by using a concentration gradient.

(ホ)作 用 アルセナゾIIIと共に添加された芳香族又は環状アミ
ンは、希土類イオンの一部に配位して該イオンとアルセ
ナゾIIIとの1対1の錯形成に基づく発色反応をより優
位に生じさせるように作用し、これにより希土類イオン
が低濃度の際、すなわちアルセナゾIIIが過剰の場合に
も希土類イオン濃度に対応した直線性の優れた発色強度
が得られるものと考えられる。
(E) Action The aromatic or cyclic amine added together with arsenazo III coordinates to a part of the rare earth ion and more predominantly causes a color reaction based on the one-to-one complex formation between the ion and arsenazo III. It is considered that, when the rare earth ion is at a low concentration, that is, when the arsenazo III is excessive, an excellent color developing intensity corresponding to the rare earth ion concentration can be obtained.

(ヘ)実施例 第1図は、この発明の希土類元素の分析法に用いた装
置を示す構成説明図である。図において1は各々、α−
ヒドロキシカルボン酸水溶液からなる移動相を示し、2
は各々送液ポンプ(LC−6A)、3は試料注入器、4はス
ルホン化ポリスチレン樹脂を充填した陽イオン交換クロ
マトグラフィ用の分析カラム(内径5mm×150mm長;Shimp
ack IC−C1)、5はカラム恒温槽(CTO−6A)、7はス
パイラル状の反応コイル(内径0.5mm)、8はポストカ
ラム反応試薬、9は紫外・可視吸光光度検出器(SPD−6
AV)、10は抵抗管、11はデータ処理装置(C−R5A)
を、12はドレインを各々示す。なお、これら各構成要素
はいずれも島津製作所(株)製のものである。
(F) Example FIG. 1 is a structural explanatory view showing an apparatus used for the rare earth element analysis method of the present invention. In the figure, 1 is α-
A mobile phase composed of an aqueous solution of hydroxycarboxylic acid,
Is a liquid sending pump (LC-6A), 3 is a sample injector, 4 is an analytical column for cation exchange chromatography packed with sulfonated polystyrene resin (inner diameter 5 mm × 150 mm length; Shimp
ack IC-C1), 5 is a column thermostat (CTO-6A), 7 is a spiral reaction coil (0.5 mm inner diameter), 8 is a post-column reaction reagent, 9 is an ultraviolet / visible absorption spectrophotometer (SPD-6)
AV), 10 is a resistance tube, 11 is a data processing device (C-R5A)
And 12 indicates a drain. These components are all manufactured by Shimadzu Corporation.

上記装置において、移動相流量を1.5ml/分、反応試薬
流量を0.2ml/分、分析カラマ及び移動相温度を40℃、検
出波長を655nmに設定して希土類元素の分析を行った。
なお、移動相1は2種類あり、各々0.04Mと0.25Mのα−
ヒドロキシイソ酪酸水溶液(ただし、水酸化ナトリウム
でpHを4.4に調整済)からなり、0.04M→0.25Mの指数関
数的濃度グラジェントで溶離を行うよう設定した。
In the above apparatus, the rare earth element was analyzed by setting the mobile phase flow rate to 1.5 ml / min, the reaction reagent flow rate to 0.2 ml / min, the analytical column and the mobile phase temperature to 40 ° C., and the detection wavelength to 655 nm.
In addition, there are two types of mobile phases 1, each having an α- of 0.04M and 0.25M.
It consisted of an aqueous solution of hydroxyisobutyric acid (however, the pH was adjusted to 4.4 with sodium hydroxide), and was set to elute with an exponential concentration gradient from 0.04M to 0.25M.

上記条件下で、まず反応試薬8として0.4mMアルセナ
ゾIII水溶液(アミン未含有)を用い、安定同位元素の
ないプロメチウムPmを除く16種の希土類元素を各々1μ
g注入した。分析カラム4で分離された各成分は、アル
セナゾIIIと混合され、40℃に温調された反応コイル7
で錯形成反応に供される。ここで錯形成が行われると、
655nmでのアルセナゾIIIの吸収が増加するためその変化
量をモニターした。この結果を第2図に示す。このよう
に、各希土類元素が約25分で明瞭分離検出されているこ
とが判る。なお、SeとYを除くランタニド14元素では15
分以内で分離が可能であった。
Under the above conditions, a 0.4 mM arsenazo III aqueous solution (containing no amine) was used as a reaction reagent 8, and 16 kinds of rare earth elements excluding promethium Pm having no stable isotope were each 1 μm.
g was injected. Each component separated in the analytical column 4 is mixed with Arsenazo III and the temperature of the reaction coil 7 is adjusted to 40 ° C.
Is subjected to a complex formation reaction. When complexation takes place here,
As the absorption of arsenazo III at 655 nm increased, the change was monitored. The result is shown in FIG. Thus, it can be seen that each rare earth element is clearly separated and detected in about 25 minutes. The lanthanide element other than Se and Y is 15
Separation was possible within minutes.

次いで、各希土類元素について注入する量を変化させ
て各々の検量線の作成を行った。この結果、ことにテル
ビウム(Tb)以降に溶出する希土類イオンについてその
低濃度領域で検量線が直線から凹状に落ち込むことが判
明した。この例を、ネオジムを代表例として第3図Bに
示した。このように0.5μg以下の領域で直線性が著し
く低下していることが判る。
Next, each calibration curve was prepared by changing the amount of injection for each rare earth element. As a result, it has been found that the calibration curve of the rare earth ion eluted after terbium (Tb) and below is depressed from a straight line to a concave shape in the low concentration region. This example is shown in FIG. 3B using neodymium as a representative example. Thus, it can be seen that the linearity is significantly reduced in the region of 0.5 μg or less.

そこで、上記反応試薬8中に、pKa5.19であるピリジ
ンを1M濃度添加して同様に分析及び検量線の作成を行っ
たところ検量線の直線性、ことに低濃度領域での直線性
が著しく改善されることが判明した。この結果を第3図
Aに示した。そして、これ以外の溶出の早いフラクショ
ン(イッテルビウムYb以降)においても同様な傾向は認
められた。
Therefore, pyridine, which is pKa5.19, was added to the above-mentioned reaction reagent 8 at a concentration of 1 M, and the analysis and the preparation of a calibration curve were carried out in the same manner. It was found to be improved. The result is shown in FIG. 3A. A similar tendency was observed in other eluting fractions (ytterbium Yb and later).

従って、Ybのフラクション以降の溶離液にピリジンの
ようなアミン類をアルセナゾIIIに共存させることによ
り、各希土類元素の低濃度領域での直線性が改善される
ことが判明した。
Therefore, it was found that the coexistence of amines such as pyridine with arsenazo III in the eluent after the Yb fraction improved the linearity of each rare earth element in the low concentration region.

なお、上記反応試薬は、アルセナゾIIIを0.01〜1mM含
有する水溶液にアミン類を0.2〜4M加え、さらに鉱酸を
加えてpHを溶離液と同じ2〜5の範囲に調整したものが
適当である。
The reaction reagent is suitably prepared by adding amines to an aqueous solution containing 0.01 to 1 mM of arsenazo III, adding 0.2 to 4 M of amines, and further adding a mineral acid to adjust the pH to the same range of 2 to 5 as the eluent. .

一方、前記分析条件において、添加するアミン類の量
が多い場合には、逆に高濃度領域での検量線の直線性が
低下する現象も認められた。この例を、イッテルビウム
Ybを代表例として第4図Bに示した。なお図中、Aはピ
リジン未添加の結果を示すものである。かかる傾向は、
アミン類未添加でも低濃度領域での直線性が比較的良好
なテルビウムTb迄の溶出の早い成分(Yb,Tm,Er,Ho,Y,D
y)について大きかった。
On the other hand, when the amount of the amines added was large under the above-mentioned analysis conditions, a phenomenon that the linearity of the calibration curve in the high concentration region was deteriorated was also observed. An example of this is Ytterbium.
FIG. 4B shows Yb as a representative example. In the figure, A shows the result without pyridine added. This tendency is
Even if amines are not added, components that elute quickly to terbium Tb, which has relatively good linearity in the low concentration region (Yb, Tm, Er, Ho, Y, D
y) was great.

そこで、溶出の早い成分についてアミン類の添加量を
少なくし、溶出時間と共に徐々に増加する濃度グラジェ
ントについて検討を行った。第5図及び第6図は各々、
アミン類についての濃度グラジェントを行う分析装置を
示す第1図相当図である。第5図において、アルセナゾ
III水溶液8aとアミン類水溶液8bは各々ポンプ2a,2bによ
って別々に供給され途中で合流混合して分析流路に導入
されるよう構成されている。そして、ポンプ2bによる流
量は徐々に増加するように制御されている。一方第6図
において、水溶液8a,8bは各々別個に分析流路内に導入
されるように構成されてなり、ポンプ2bの流量が同様に
増加するようにするか、8aにアルセナゾIII水溶液のみ8
bにアルセナゾIIIプラスアミン水溶液を用いてポンプ2
a,2bを用いてグラジエントできるように構成されてい
る。
Therefore, the addition amount of amines was reduced for components that elute quickly, and a concentration gradient that gradually increased with elution time was examined. Figures 5 and 6 each
FIG. 2 is a diagram corresponding to FIG. 1 showing an analyzer for performing a concentration gradient for amines. In Fig. 5, Arsenazo
The III aqueous solution 8a and the amine aqueous solution 8b are separately supplied by the pumps 2a and 2b, respectively, and are configured to be mixed and mixed on the way and introduced into the analysis channel. The flow rate of the pump 2b is controlled so as to gradually increase. On the other hand, in FIG. 6, the aqueous solutions 8a and 8b are configured to be separately introduced into the analysis channel, and the flow rate of the pump 2b is similarly increased, or only the aqueous solution of Arsenazo III is added to 8a.
Pump 2 using Arsenazo III plus amine aqueous solution for b
It is configured so that a gradient can be obtained using a and 2b.

かかる濃度グラジェント法によりピリジンの溶離液中
への添加量をYb溶出時から0.01→1Mにグラジェントさせ
て前記と同様に分析及び検量線の作成を行ったところ、
Eu〜Ceについては2×10-7〜2×10-6g,Yb〜Laについて
10-7〜2×10-6gでほぼ直線性が得られた。そして検出
限界は、すべての希土類元素について約10-8g以下(S/N
=2)であった。
When the amount of pyridine added to the eluate was gradient from 0.01 to 1 M from the time of Yb elution by such a concentration gradient method, analysis and a calibration curve were prepared in the same manner as described above.
For Eu ~ Ce 2 × 10 -7 ~ 2 × 10 -6 g, For Yb ~ La
Almost linearity was obtained at 10 -7 to 2 × 10 -6 g. The detection limit is about 10 -8 g or less (S / N
= 2).

(ト)発明の効果 この発明の分析法によれば、希土類元素の低濃度領域
における検量線の直線性が改善されるため、一点検量線
法でも信頼性の高い高精度の定量分析を行うことができ
る。
(G) Effects of the Invention According to the analysis method of the present invention, the linearity of the calibration curve in the low-concentration region of the rare earth element is improved, so that a reliable and high-precision quantitative analysis can be performed even with the one-point calibration method. Can be.

さらに、ポストカラム法であるため、液体クロマトグ
ラフィでの各元素の分離性が阻害されることもない。
Furthermore, since it is a post-column method, the separation of each element in liquid chromatography is not hindered.

従って、この発明の方法は、希土類元素の定量、こと
に分離定量する方法としてその有用性は極めて高いもの
である。
Therefore, the method of the present invention is extremely useful as a method for quantifying rare earth elements, especially for separating and quantifying.

【図面の簡単な説明】[Brief description of the drawings]

第1図、第5図及び第6図は、この発明の分析法を実施
する装置の実施例を各々示す構成説明図、第2図は、ア
ミン類未添加の際の希土類元素のクロマトグラム図、第
3図は、この発明の分析法に従って作成した検量線を比
較例と共に例示するグラフ図、第4図は、高濃度領域で
の検量線の直線性が低下する現象を説明するグラフ図で
ある。
FIGS. 1, 5, and 6 are explanatory diagrams each showing an embodiment of an apparatus for carrying out the analytical method of the present invention, and FIG. 2 is a chromatogram of a rare earth element when amines are not added. FIG. 3 is a graph illustrating a calibration curve prepared according to the analysis method of the present invention together with a comparative example, and FIG. 4 is a graph illustrating a phenomenon that the linearity of the calibration curve in a high concentration region is reduced. is there.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G01N 31/22 124 G01N 31/22 124 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location G01N 31/22 124 G01N 31/22 124

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】希土類元素を含有する試料を、α−ヒドロ
キシカルボン酸溶液を用いて溶離を行う陽イオン交換ク
ロマトグラフィに付し、この溶離液に2,7−ビス(2−
アルソノ−1−フェニルアゾ)−1,8−ジヒドロキシナ
フタレン−3,6−ジスルホン酸とpKa3〜7の芳香族アミ
ン又は環状アミン類を添加して発色反応させ、この発色
強度に基づいて試料中の希土類元素を分離定量すること
を特徴とする希土類元素の分析法。
A sample containing a rare earth element is subjected to cation exchange chromatography, eluting with an α-hydroxycarboxylic acid solution, and the eluate is treated with 2,7-bis (2-
(Arsono-1-phenylazo) -1,8-dihydroxynaphthalene-3,6-disulfonic acid and an aromatic amine or a cyclic amine having a pKa of 3 to 7 were added to cause a color-forming reaction. A rare earth element analysis method characterized by separating and quantifying elements.
【請求項2】2,7−ビス(2−アルソノ−1−フェニル
アゾ)−1,8−ジヒドロキシナフタレン−3,6−ジスルホ
ン酸が、溶離液中に0.01〜1mM添加される特許請求の範
囲第1項記載の分析法。
2. The method according to claim 1, wherein 2,7-bis (2-arsono-1-phenylazo) -1,8-dihydroxynaphthalene-3,6-disulfonic acid is added to the eluent in an amount of 0.01 to 1 mM. The analysis method according to claim 1.
【請求項3】芳香族アミン又は環状アミン類が、溶離液
中に0.01〜1M添加される特許請求の範囲第1項記載の分
析法。
3. The method according to claim 1, wherein the aromatic amine or the cyclic amine is added in an amount of 0.01 to 1 M in the eluent.
【請求項4】芳香族アミン又は環状アミン類の添加が、
イッテルビウムのフラクション以降の溶離液について行
われる特許請求の範囲第1項又は第3項記載の分析法。
4. The method according to claim 1, wherein the aromatic amine or cyclic amine is added.
The analysis method according to claim 1 or 3, wherein the analysis is performed on an eluent after the fraction of ytterbium.
【請求項5】芳香族アミン又は環状アミン類の添加が、
濃度グラジェントにより徐々に増加して行われる特許請
求の範囲第3項又は第4項記載の分析法。
5. The method according to claim 1, wherein the aromatic amine or cyclic amine is added.
The method according to claim 3 or 4, wherein the analysis is carried out by gradually increasing the concentration gradient.
【請求項6】芳香族アミン又は環状アミン類が、ピリジ
ンである特許請求の範囲第1〜5項のいずれかに記載の
方法。
6. The method according to claim 1, wherein the aromatic amine or cyclic amine is pyridine.
JP62140500A 1987-06-03 1987-06-03 Rare earth element analysis method Expired - Fee Related JP2581076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62140500A JP2581076B2 (en) 1987-06-03 1987-06-03 Rare earth element analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62140500A JP2581076B2 (en) 1987-06-03 1987-06-03 Rare earth element analysis method

Publications (2)

Publication Number Publication Date
JPS63304163A JPS63304163A (en) 1988-12-12
JP2581076B2 true JP2581076B2 (en) 1997-02-12

Family

ID=15270079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62140500A Expired - Fee Related JP2581076B2 (en) 1987-06-03 1987-06-03 Rare earth element analysis method

Country Status (1)

Country Link
JP (1) JP2581076B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020015617A (en) * 2000-08-22 2002-02-28 강신원 Detecting Sensor, Its Manufaturing Method and Measurement System of Rare-earth Element using Surface Plasmon Resonance.
CN102393433B (en) * 2011-10-26 2014-04-16 杭州市质量技术监督检测院 Method for detecting trace amount and forbidden aromatic amine in cosmetic
EP4022653A2 (en) * 2019-08-29 2022-07-06 CF Technologies, Inc. Systems and methods for selective recovery of metals from ion exchange resins

Also Published As

Publication number Publication date
JPS63304163A (en) 1988-12-12

Similar Documents

Publication Publication Date Title
Lakka et al. Principles of chromatography method development
Wuilloud et al. Speciation and preconcentration of vanadium (V) and vanadium (IV) in water samples by flow injection-inductively coupled plasma optical emission spectrometry and ultrasonic nebulization
US5854084A (en) Enhanced chromatography using multiphoton detection
Jones et al. Determination of trace amounts of aluminium by ion chromatography with fluorescence detection
Van Hoof et al. Multi‐residue liquid chromatography/tandem mass spectrometric analysis of beta‐agonists in urine using molecular imprinted polymers
Wang et al. Chelating resins for on-line flow injection pre-concentration with inductively coupled plasma atomic emission spectrometry
Okayama et al. Optimized fluorometric determination of urinary delta-aminolevulinic acid by using pre-column derivatization, and identification of the derivative
Shaw et al. Determination of beryllium in a stream sediment by high-performance chelation ion chromatography
Shahida et al. Flow injection online spectrophotometric determination of uranium after preconcentration on XAD-4 resin impregnated with nalidixic acid
JP2581076B2 (en) Rare earth element analysis method
Huclová et al. Determination of salbutamol using on-line solid-phase extraction and sequential injection analysis. Comparison of chemiluminescence and fluorescence detection
Esposito On-column formation and analysis of trimethylsilyl derivatives
Andreolini et al. Determination of serum metabolic profiles of bile acids by microcolumn liquid chromatography/laser‐induced fluorescence
TOKALIOĞLU et al. Preconcentration of iron (III), lead (II), cobalt (II) and chromium (III) on amberlite XAD-1180 resin loaded with 4-(2-pyridylazo)-resorcinol (PAR) and their determination by FAAS
Wuilloud et al. Preconcentration and speciation of Cr (III) and Cr (VI) in water samples using amberlite XAD-16 resin and determination by flow injection-flame AAS
Zhou et al. Direct evaluation of unsymmetrical dimethylhydrazine with wide concentration range in wastewater by ion chromatography
de Kleijn et al. Determination of nitrite and nitrate in meat products by high-performance liquid chromatography
Koster et al. On‐fiber derivatization for direct immersion solid‐phase microextraction Part I: Acylation of amphetamine with pentafluorobenzoyl chloride
Kristjansson et al. Selective fluorogenic derivatization of Pro2—Lys peptides with naphthalene-2, 3-dicarboxaldehyde/cyanide
Baeyens et al. Optimization of an HPLC peroxyoxalate chemiluminescence detection system for some dansyl amino acids
Rollag et al. Optimization of post-column chemiluminescent detection for low-molecular-mass conjugates of acridinium esters
Nuryono et al. Ion-exchange chromatography with an oxalic acid-α-hydroxyisobutyric acid eluent for the separation and quantitation of rare-earth elements in monazite and xenotime
US5817930A (en) Process for measuring at least one element chosen from among PU (IV) PU (VI), uranium and nitrates present in a solution by liquid phase chromatography
Verma et al. Determination of alkali and alkaline earth elements along with nitrogen in uranium based nuclear fuel materials by ion chromatography (IC)
Plausinaitis et al. Method for detection of Cs and Sr isotopes avoiding interferences of Ba and Rb in radioactive samples using ion chromatography coupled with ICP-MS

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees