JP2580750Y2 - Atomic force microscope - Google Patents

Atomic force microscope

Info

Publication number
JP2580750Y2
JP2580750Y2 JP1493192U JP1493192U JP2580750Y2 JP 2580750 Y2 JP2580750 Y2 JP 2580750Y2 JP 1493192 U JP1493192 U JP 1493192U JP 1493192 U JP1493192 U JP 1493192U JP 2580750 Y2 JP2580750 Y2 JP 2580750Y2
Authority
JP
Japan
Prior art keywords
spring element
atomic force
sample
detection chip
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1493192U
Other languages
Japanese (ja)
Other versions
JPH0577715U (en
Inventor
浩令 山本
Original Assignee
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーインスツルメンツ株式会社 filed Critical セイコーインスツルメンツ株式会社
Priority to JP1493192U priority Critical patent/JP2580750Y2/en
Publication of JPH0577715U publication Critical patent/JPH0577715U/en
Application granted granted Critical
Publication of JP2580750Y2 publication Critical patent/JP2580750Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、物質間に働く原子間力
を微小なばね要素で変位に変換する光てこ方式の原子間
力顕微鏡に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical lever type atomic force microscope for converting an atomic force acting between materials into a displacement by a minute spring element.

【0002】[0002]

【従来の技術】原子間力顕微鏡(Atomic For
ce Microscope)はSTMの発明者である
G.Binnig等によって考案(Physical
Review Letters vol.56 p93
0 1986)されて以来、新規な絶縁性物質の表面形
状観察手段として期待され、研究が進められている。そ
の原理は先端を充分に鋭くした検出チップと試料間に働
く原子間力を、前記検出チップが取り付けられているば
ね要素の変位として測定し、前記ばね要素の変位量を一
定に保ちながら前記試料表面を走査し、前記ばね要素の
変位量を一定に保つための制御信号を形状情報として、
前記試料表面の形状を測定するものである。
2. Description of the Related Art Atomic force microscope
ce Microscope) is the author of G.S. Invented by Binnig et al. (Physical
Review Letters vol. 56 p93
0 1986), it has been expected as a new means for observing the surface shape of an insulating material, and research has been advanced. The principle is that the atomic force acting between the detection chip and the sample, whose tip is sufficiently sharpened, is measured as the displacement of the spring element to which the detection chip is attached, and the sample is maintained while keeping the displacement of the spring element constant. Scanning the surface, a control signal for keeping the displacement amount of the spring element constant as shape information,
The shape of the sample surface is measured.

【0003】ばね要素の変位検出手段としてはトンネル
電流を用いるSTM方式と光学的方式に大別される。S
TM方式は二つの導体を数nm〜数Åの距離に近付け電
圧を印加すると電流が流れ始めるいわゆるトンネル現象
を利用するものである。ばね要素に導電性を付与してお
き、鋭利な金属針をばね要素に1nm程度まで接近させ
てトンネル電流を流し、その電流値をばね要素の変位信
号として制御を行う。
The means for detecting the displacement of the spring element is roughly classified into an STM method using a tunnel current and an optical method. S
The TM system utilizes a so-called tunnel phenomenon in which a current starts to flow when two conductors are brought close to a distance of several nm to several Å and a voltage is applied. Conductivity is given to the spring element, and a sharp metal needle is brought close to the spring element to about 1 nm to flow a tunnel current, and the current value is controlled as a displacement signal of the spring element.

【0004】光学的方式にはいわゆる干渉法そのものを
使った例(Journal ofVacuum Sci
ence Technology A6(2)p266
Mar/Apr 1988)や、光てこ方式の例(Jo
urnal of Applied Physics
65(1)、1 p164 January 198
9)が報告されている。光てこ方式の場合光源として原
子間力顕微鏡が発明された当初は安定性が考慮されヘリ
ウムネオン等のガスレーザーが使われたが、現在では半
導体レーザーを使用した装置が製品化されている。
As an optical system, an example using a so-called interference method itself (Journal of Vacuum Sci)
ence Technology A6 (2) p266
Mar / Apr 1988) and examples of the optical lever method (Jo
urnal of Applied Physics
65 (1), 1 p164 January 198
9) has been reported. In the case of the optical lever system, a gas laser such as helium neon was used in consideration of stability when the atomic force microscope was invented as a light source, but an apparatus using a semiconductor laser is now commercialized.

【0005】図3に原子間力顕微鏡の動作原理を示す。
図3(a)は原子間距離に対する原子間力の関係を示す
概念図である。二つの原子を数nmないし数Åの距離に
近づけていくと、まず原子間距離のマイナス7乗に比例
したいわゆるファンデルワールス力が互いに引き付け合
う力として発生する。さらに近づけるといわゆる交換斥
力が急激に立ち上がる。図3(b)はばね要素3の変位
しているようすを示す断面図である。原子間力顕微鏡は
図中の変位量xが一定となるように試料1をZ方向に調
整しつつ、試料面内方向の走査を行い、試料表面の形状
データを得る。
FIG. 3 shows the principle of operation of the atomic force microscope.
FIG. 3A is a conceptual diagram showing a relationship between an interatomic distance and an interatomic force. When two atoms are brought closer to a distance of several nm or several Å, a so-called van der Waals force that is proportional to the minus 7th power of the interatomic distance is generated as a force that attracts each other. When it is brought closer, the so-called exchange repulsion rises sharply. FIG. 3B is a sectional view showing how the spring element 3 is displaced. The atomic force microscope scans the sample 1 in the Z direction so that the displacement x in the figure is constant, and scans the sample in the in-plane direction to obtain shape data of the sample surface.

【0006】[0006]

【考案が解決しようとする課題】しかしながら従来のレ
ーザーを使用した光てこ方式の原子間力顕微鏡では、コ
ヒーレントな光であるレーザーの有する可干渉性によ
り、周期性を有する試料を測定するとき試料からの反射
光が光検出素子上で干渉し、測定データに誤差を生じる
という問題点があった。
However, in a conventional optical lever type atomic force microscope using a laser, the coherent light of the laser, which is a coherent light, causes the coherence of the laser to measure the periodic sample from the sample. Reflected light interferes on the photodetector, causing an error in the measured data.

【0007】図2は、従来の光てこ方式のばね要素近傍
の状態を示す概略図である。ばね要素3裏面にレーザー
光11が照射され、その一部は反射光12として反射さ
れる。ばね要素3を透過した一部の光11とばね要素3
からはずれた光11は試料表面で散乱され、その一部が
反射光13となる。ばね要素3は1ニュートン毎メータ
ー以下の弱いばねであることが求められ、半導体技術に
より数百nmの厚みで作られており、母材は透明であ
る。従って反射膜が必要であるが反射率を上げるため膜
厚を増加させるとばね剛性も増加するため十分な反射膜
をつけることができず、結果として反射光13を完全に
除去することは困難である。この状態で試料1として回
折格子を測定する場合、回折格子上段からの反射光13
aと回折格子下段からの反射光13bが干渉し、光検出
素子9上に干渉縞を発生させる。測定のため微動素子4
をX方向に走査すると、光検出素子9上の干渉縞も走査
に連動して動き、結局測定データに誤差が生じてしまう
のである。ICパターン等の数μ〜数10μの周期構造
のある試料を測定する場合も同様の問題が発生する。
FIG. 2 is a schematic view showing a state in the vicinity of a conventional optical lever type spring element. Laser light 11 is irradiated on the back surface of the spring element 3, and a part of the light is reflected as reflected light 12. Part of light 11 transmitted through spring element 3 and spring element 3
The light 11 deviated from the surface is scattered on the sample surface, and a part thereof becomes the reflected light 13. The spring element 3 is required to be a weak spring of 1 Newton per meter or less, is made with a thickness of several hundred nm by semiconductor technology, and the base material is transparent. Therefore, a reflective film is necessary, but if the film thickness is increased to increase the reflectance, the spring stiffness also increases, so that a sufficient reflective film cannot be provided. As a result, it is difficult to completely remove the reflected light 13. is there. When a diffraction grating is measured as the sample 1 in this state, the reflected light 13 from the upper stage of the diffraction grating is measured.
a and the reflected light 13 b from the lower stage of the diffraction grating interfere with each other to generate interference fringes on the photodetector 9. Fine movement element 4 for measurement
Is scanned in the X direction, the interference fringes on the photodetector 9 also move in conjunction with the scanning, resulting in an error in the measurement data. A similar problem occurs when measuring a sample having a periodic structure of several μ to several tens of μ such as an IC pattern.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
本考案では、光源として可干渉性を有さないLEDを使
用して光てこ方式の変位検出系を構成することとした。
In order to solve the above-mentioned problems, in the present invention, an optical lever type displacement detecting system is constituted by using an LED having no coherence as a light source.

【0009】[0009]

【作用】上記の構成とすることにより、LEDは自然光
に近くほとんど干渉性を示さないため、回折格子やIC
パターン等の周期性を有する試料でも光検出素子上で干
渉現象が発生せず、正確な測定データを得られるのであ
る。
With the above arrangement, the LED is close to natural light and exhibits little coherence.
Even with a sample having periodicity such as a pattern, an interference phenomenon does not occur on the photodetector, and accurate measurement data can be obtained.

【0010】[0010]

【実施例】以下に本考案の実施例を図面に基づいて説明
する。図1に本考案に係る原子間力顕微鏡の構成を示
す。ばね要素3には試料1との相互作用を微小な範囲に
限定するための検出チップ2が取り付けられ、微小な力
検出器を構成している。検出チップ2の先端は鋭利にな
っている。試料1は微動素子4に固定され、検出チップ
2の先端を試料1表面の原子間力の働く領域内で3次元
に駆動される。微動素子4により試料1はばね要素3に
対し、試料平面に垂直な方向の距離を調整されつつ試料
平面方向に高分解能で走査される。微動素子4は試料1
とばね要素3の粗い位置決めと検出チップ2の先端を試
料1表面の原子間力の働く領域に近づけるための粗動機
構5に固定される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the configuration of the atomic force microscope according to the present invention. A detection chip 2 for limiting the interaction with the sample 1 to a minute range is attached to the spring element 3 to constitute a minute force detector. The tip of the detection chip 2 is sharp. The sample 1 is fixed to the fine movement element 4, and the tip of the detection chip 2 is driven three-dimensionally in the region of the surface of the sample 1 where an atomic force acts. The sample 1 is scanned with high resolution in the direction of the sample plane by the fine movement element 4 while adjusting the distance in the direction perpendicular to the sample plane with respect to the spring element 3. Fine movement element 4 is sample 1
And the rough positioning of the spring element 3 and the tip of the detection chip 2 are fixed to the coarse movement mechanism 5 for bringing the tip of the sample 1 closer to the region where the atomic force acts on the surface of the sample 1.

【0011】ばね要素3の裏面側にはばね要素3の変位
量を検出するための変位検出系が設けられている。まず
LED6から出射された光はレンズ8によりばね要素3
の裏面先端部に集光される。反射された光はミラー7を
介して分割型の光検出素子9上に集光される。光検出素
子9として例えば2分割型のフォトディテクターを使用
した場合においては、あらかじめ分割された素子に均等
に光が入射するように調整しておき、2分割素子の差分
信号を取る。ばね要素3が試料1に押されて傾くとき、
フォトディテクターの受光面上の光スポットもばね要素
3の傾きに比例して移動し、分割素子の出力は一方は増
加しもう一つは減少する。結果としてその差分出力はば
ね要素3の傾き、即ち変位に比例したものとなる。この
変位信号はサーボ系に取り込まれ微動素子4及び粗動機
構5への制御信号に変換され、試料1とばね要素3の距
離が一定となるよう制御される。
On the back side of the spring element 3, a displacement detection system for detecting the amount of displacement of the spring element 3 is provided. First, light emitted from the LED 6 is applied to the spring element 3 by the lens 8.
Is focused on the front end of the back surface of the. The reflected light is condensed on the split-type photodetector 9 via the mirror 7. In the case where, for example, a two-segment type photodetector is used as the light detection element 9, the difference between the two-segment elements is obtained by adjusting the light so that the light is uniformly incident on the divided elements in advance. When the spring element 3 is pushed by the sample 1 and tilts,
The light spot on the light receiving surface of the photodetector also moves in proportion to the inclination of the spring element 3, and the output of the splitting element increases on one side and decreases on the other side. As a result, the difference output is proportional to the inclination of the spring element 3, that is, the displacement. This displacement signal is taken into the servo system and converted into a control signal to the fine movement element 4 and the coarse movement mechanism 5, and is controlled so that the distance between the sample 1 and the spring element 3 becomes constant.

【0012】[0012]

【考案の効果】上記のように本考案によれば、光てこ変
位検出系の光源をLEDとすることにより、回折格子や
ICパターン等の周期性を有する試料でも光検出素子上
で干渉現象が発生せず、正確な測定データを得られるの
である。
According to the present invention, as described above, by using an LED as the light source of the optical lever displacement detection system, even if the sample has periodicity such as a diffraction grating or an IC pattern, the interference phenomenon can occur on the photodetector. It does not occur and accurate measurement data can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案にかかる原子間力顕微鏡の断面図であ
る。
FIG. 1 is a sectional view of an atomic force microscope according to the present invention.

【図2】従来の光てこ方式のばね要素近傍の状態を示す
概略図である。
FIG. 2 is a schematic view showing a state in the vicinity of a conventional optical lever type spring element.

【図3】原子間力と原子間距離の関係を示す図であり、
(a)、(b)は、ばね要素と変位を示す部分断面図で
ある。
FIG. 3 is a diagram showing a relationship between an interatomic force and an interatomic distance;
(A), (b) is a partial sectional view showing a spring element and displacement.

【符号の説明】[Explanation of symbols]

1 試料 2 検出チップ 3 ばね要素 4 微動素子 5 粗動機構 6 光源(LED) 7 ミラー 8 レンズ 9 光検出素子 DESCRIPTION OF SYMBOLS 1 Sample 2 Detection chip 3 Spring element 4 Fine movement element 5 Coarse movement mechanism 6 Light source (LED) 7 Mirror 8 Lens 9 Light detection element

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) G01B 21/30 G01N 37/00 G01B 7/34 G01B 11/00 - 11/30Continuation of the front page (58) Field surveyed (Int.Cl. 6 , DB name) G01B 21/30 G01N 37/00 G01B 7/34 G01B 11/00-11/30

Claims (2)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 試料表面から先端を尖らした検出チップ
が受ける原子間力により変位する、端部に前記検出チッ
プを有するばね要素と、光を発生し前記ばね要素端部裏
に照射する光源と、前記ばね要素端部裏面で反射した
光の位置ずれを検出する光検出器と、前記試料と前記ば
ね要素を3次元的に相対運動させ、前記検出チップの先
端を前記試料表面の原子間力の働く領域に近づける粗動
機構と、前記ばね要素に取り付けられた検出チップ先端
を前記試料表面の原子間力の働く領域内で3次元的に運
動させるための微動機構と、前記試料と前記検出チップ
先端の間を前記微動機構を介して一定の距離に保つ制御
手段とよりなる原子間顕微鏡において、前記光源は、可
干渉性を有さない光源であることを特徴とする原子間顕
微鏡。
1. A displaced by an atomic force received detection chip Togarashi tip from the sample surface, said detection chip to the end portion
A spring element having a loop, and a light-generating back end of the spring element.
A light source that irradiates a surface , a photodetector that detects a displacement of light reflected on the back surface of the end of the spring element, and a three-dimensional relative movement of the sample and the spring element, and a tip of the detection chip is A coarse movement mechanism for approaching the region where the atomic force acts on the sample surface, and a fine movement mechanism for moving the tip of the detection chip attached to the spring element three-dimensionally in the region where the atomic force acts on the sample surface. An atomic microscope comprising: a control unit that keeps a constant distance between the sample and the tip of the detection chip via the fine movement mechanism, wherein the light source is a light source having no coherence. Atomic force microscope.
【請求項2】 原子間顕微鏡において、前記光源はLE
Dであることを特徴とする請求項1記載の原子間顕微
鏡。
2. An atomic force microscope, wherein the light source is LE.
2. The atomic force microscope according to claim 1, wherein D is D.
JP1493192U 1992-03-19 1992-03-19 Atomic force microscope Expired - Lifetime JP2580750Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1493192U JP2580750Y2 (en) 1992-03-19 1992-03-19 Atomic force microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1493192U JP2580750Y2 (en) 1992-03-19 1992-03-19 Atomic force microscope

Publications (2)

Publication Number Publication Date
JPH0577715U JPH0577715U (en) 1993-10-22
JP2580750Y2 true JP2580750Y2 (en) 1998-09-17

Family

ID=11874717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1493192U Expired - Lifetime JP2580750Y2 (en) 1992-03-19 1992-03-19 Atomic force microscope

Country Status (1)

Country Link
JP (1) JP2580750Y2 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
表面アラサ検査法、大越 諒、株式会社コロナ社、昭和34年6月17日、P.92(第6・12図)

Also Published As

Publication number Publication date
JPH0577715U (en) 1993-10-22

Similar Documents

Publication Publication Date Title
Yaralioglu et al. Analysis and design of an interdigital cantilever as a displacement sensor
JP3000491B2 (en) Cantilever unit, information processing apparatus using the same, atomic force microscope, magnetic force microscope
Meyer et al. Erratum: Novel optical approach to atomic force microscopy[Appl. Phys. Lett. 53, 1045(1988)]
Rugar et al. Improved fiber‐optic interferometer for atomic force microscopy
Meyer et al. Novel optical approach to atomic force microscopy
EP0536827B1 (en) Combined scanning force microscope and optical metrology tool
Wickramasinghe Scanning probe microscopy: Current status and future trends
US6785445B2 (en) Near field light probe, near field optical microscope, near field light lithography apparatus, and near field light storage apparatus that have the near field light probe
JP2580244B2 (en) Mechanism for detecting atomic force, method for detecting deflection
US6642517B1 (en) Method and apparatus for atomic force microscopy
JP3000819B2 (en) Three-dimensional measurement probe and shape measurement method
JPH04321955A (en) Information processor
EP0378444A2 (en) Reproducing apparatus
JPH0682249A (en) Interatomic force microscope
US11796563B2 (en) Apparatus and method for a scanning probe microscope
Maghelli et al. Optical near‐field harmonic demodulation in apertureless microscopy
De Hollander et al. Near field plasmon and force microscopy
JP2580750Y2 (en) Atomic force microscope
Danzebrink et al. Near‐field optoelectronic detector probes based on standard scanning force cantilevers
Sasaki et al. Improved differential heterodyne interferometer for atomic force microscopy
JP3161116B2 (en) Micro gap width measuring apparatus and method
JP3069609B2 (en) Atomic force microscope
JP2988788B2 (en) Scanning near-field optical microscope
JP3450460B2 (en) Scanning probe microscope
JP2004191277A (en) Scanning probe microscope and its measurement method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R323111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term