JP2579178B2 - Composite iron oxide particle powder and method for producing the same - Google Patents

Composite iron oxide particle powder and method for producing the same

Info

Publication number
JP2579178B2
JP2579178B2 JP33172287A JP33172287A JP2579178B2 JP 2579178 B2 JP2579178 B2 JP 2579178B2 JP 33172287 A JP33172287 A JP 33172287A JP 33172287 A JP33172287 A JP 33172287A JP 2579178 B2 JP2579178 B2 JP 2579178B2
Authority
JP
Japan
Prior art keywords
shaped
particles
iron oxide
hematite
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33172287A
Other languages
Japanese (ja)
Other versions
JPH01172229A (en
Inventor
勉 片本
節弘 蔵田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP33172287A priority Critical patent/JP2579178B2/en
Publication of JPH01172229A publication Critical patent/JPH01172229A/en
Application granted granted Critical
Publication of JP2579178B2 publication Critical patent/JP2579178B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Iron (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、過性や作業性等の粉末特性に優れている
複合酸化鉄粒子粉末及び製造法である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a composite iron oxide particle powder excellent in powder properties such as excess and workability, and a production method.

本発明に係る複合酸化鉄粒子粉末の主な用途は、大気
やガス中の硫黄酸化物、硫化水素等や窒素酸化物等の吸
着剤、脱臭剤等である。
The main use of the composite iron oxide particle powder according to the present invention is as an adsorbent for sulfur oxide, hydrogen sulfide and the like, nitrogen oxide and the like in the atmosphere and gas, a deodorant and the like.

〔従来の技術〕[Conventional technology]

大気やガス中の硫黄酸化物、硫化水素等や窒素酸化物
等は大気汚染の元凶であり、特に、硫黄酸化物、硫化水
素等は、大気汚染源としてのみではなく、鉄を用いた構
築物や橋梁の大気腐食に直接関与しており、また、窒素
酸化物等は光化学スモッグの誘引となる為、硫黄酸化
物、硫化水素等や窒素酸化物等の発生抑制及び発生源か
らの除去の為の努力が日夜行われている。
Sulfur oxides, hydrogen sulfide, nitrogen oxides, etc. in the atmosphere or gas are the main causes of air pollution. In particular, sulfur oxides, hydrogen sulfides, etc. are not only sources of air pollution, but also structures and bridges using iron. Is directly involved in the atmospheric corrosion of nitrogen, and nitrogen oxides and the like can induce photochemical smog, so efforts are made to suppress the generation of sulfur oxides, hydrogen sulfides, nitrogen oxides, etc., and to remove them from sources. Are taking place day and night.

しかしながら、近年、産業の発達に伴う燃焼炉の増大
や自動車の普及により大量の排ガスが排出されており、
種々の対策が採られてはいるが未だ不十分であるのが現
状であり、ガス中の硫黄酸化物、硫化水素等や窒素酸化
物等の吸着能の優れた吸着剤、脱臭剤の開発が強く要望
されている。
However, in recent years, a large amount of exhaust gas has been emitted due to the increase in the number of combustion furnaces and the spread of automobiles accompanying the development of industry,
Although various countermeasures have been taken, it is still inadequate, and the development of adsorbents and deodorants with excellent adsorption capacity for sulfur oxides, hydrogen sulfide, nitrogen oxides, etc. in gas has been developed. There is a strong demand.

この事実は、例えば、日本化学会発行「日本化学会
誌」(1985年)第2315頁の「都市における大気中の窒素
酸化物濃度は、種々の対策が実施されてもいまだ低下し
ないばかりでなく漸増の傾向さえ見え、窒素酸化物除去
の努力がますます重要である。」なる記載の通りであ
る。
This fact can be seen, for example, in the Journal of the Chemical Society of Japan (1985), p. 2315, "The concentration of nitrogen oxides in the atmosphere in cities has not only declined but has gradually increased, even if various measures have been taken. And efforts to remove nitrogen oxides are increasingly important. "

従来、一般に吸着剤として活性炭、シリカゲル、ゼオ
ライト等がよく知られている。
Conventionally, activated carbon, silica gel, zeolite and the like are generally well known as adsorbents.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

硫黄酸化物、硫化水素等や窒素酸化物等の吸着能の優
れた吸着剤は現在最も要求されているところであるが、
上述した通りの公知の吸着剤は、硫黄酸化物、硫化水素
等や窒素酸化物等の吸着剤としては未だ不十分であるこ
とが指摘されている。
Adsorbents with excellent adsorption capacity for sulfur oxides, hydrogen sulfides, nitrogen oxides, etc. are currently the most demanded,
It has been pointed out that the known adsorbents as described above are still insufficient as adsorbents for sulfur oxides, hydrogen sulfides, nitrogen oxides and the like.

この事実は、例えば、日本化学会発行「日本化学会
誌」(1978年)第665頁の「二酸化硫黄を吸着除去する
ために、活性炭をはじめ各種の金属酸化物などの無機化
合物が研究されてきたが、吸着能力、選択性、再生法な
どになお問題があり、新しい吸着剤の開発が望まれてい
る。」なる記載及び前出の日本化学会発行「日本化学会
誌」(1985年)第2315頁の「一般的吸着剤である活性
炭、シリカゲルおよびゼオライトはNO2には有効ではあ
るが、NOを吸着する能力は十分でない。このため、NOに
対する吸着能の高い物質の開発が望まれている。」なる
記載の通りである。
The fact is that, for example, "The Journal of the Chemical Society of Japan" (1978), p. 665, published by The Chemical Society of Japan, "In order to adsorb and remove sulfur dioxide, inorganic compounds such as activated carbon and various metal oxides have been studied. However, there is still a problem in the adsorption capacity, selectivity, regeneration method, etc., and the development of a new adsorbent is desired. "And the above-mentioned" Journal of the Chemical Society of Japan "(1985) No. 2315 Activated carbon, silica gel and zeolite, which are common adsorbents, are effective for NO 2 , but do not have sufficient ability to adsorb NO. Therefore, the development of a substance with high adsorption capacity for NO is desired. . ".

これら吸着剤に対し、酸化鉄粒子が硫黄酸化物、硫化
水素等や窒素酸化物等に対する吸着能が優れていること
が見い出され、注目を浴びている。この事実は、例え
ば、日本化学会発行「日本化学会誌」(1978年)第665
頁の「含水酸化鉄を構造転移温度(200〜300℃)で処理
すると化学吸着量が増大する。重油燃焼排ガス組成に近
い混合ガスからSO2を選択的に吸着する。」なる記載及
び同資料第666頁の「α−FeOOHを加熱すると、300℃付
近で2α−FeOOH→α−Fe2O3+H2Oの脱水反応が起
る。」なる記載の通りである。
It has been found that iron oxide particles have an excellent ability to adsorb sulfur oxides, hydrogen sulfides, nitrogen oxides, and the like to these adsorbents, and have attracted attention. This fact can be found, for example, in “The Chemical Society of Japan” (1978) No. 665, published by The Chemical Society of Japan.
"Chemisorption amount to treat the hydrated iron oxide by the structure transition temperature (200 to 300 [° C.) is increased. Selectively adsorbing SO 2 from the gas mixture close to the fuel oil combustion exhaust gas composition." Page becomes description and the visual As described on page 666, "When α-FeOOH is heated, a dehydration reaction of 2α-FeOOH → α-Fe 2 O 3 + H 2 O occurs at around 300 ° C.”.

一方、吸着剤は、硫黄酸化物、硫化水素等や窒素酸化
物等を吸着剤の表面に吸着させるものであるから、吸着
剤の比表面積が大きくなる程吸着能が増すので、吸着剤
は出来るだけ微細であることが要求される。この事実
は、例えば、日本化学会発行「日本化学会誌」(1980
年)第681頁の「固体表面の気体分子吸着の研究におい
ては、表面積の大きい粉体を用いることが多い。」なる
記載の通りである。
On the other hand, since the adsorbent adsorbs sulfur oxides, hydrogen sulfide, nitrogen oxides, and the like on the surface of the adsorbent, the adsorbent increases as the specific surface area of the adsorbent increases, so the adsorbent can be formed. Only fineness is required. This fact can be found, for example, in the “Journal of the Chemical Society of Japan” (1980)
Year, page 681, "In the study of adsorption of gas molecules on a solid surface, powders having a large surface area are often used."

そこで、硫黄酸化物、硫化水素等や窒素酸化物等の吸
着能の優れた含水酸化鉄粒子の吸着能を更に向上させる
為、粒子の微粒子化が強く要求されている。
Therefore, in order to further improve the adsorption ability of the hydrous iron oxide particles having excellent adsorption ability for sulfur oxides, hydrogen sulfides, nitrogen oxides and the like, it is strongly required to make the particles finer.

しかしながら、針状酸化鉄粒子を微粒子化して長軸が
0.1μm程度以下にすると、あまりに微細である為、そ
の取り扱いが困難で作業性が悪く、実用化を阻む一因と
なっていた。即ち、微細な針状酸化鉄粒子は、吸着剤と
しての使用に際して、空隙率の小さい緻密な粒子の集合
体を生成する為空気の透過性が悪いものであり、また、
その製造に際しては、一般に針状含水酸化鉄微粒子を空
気中で加熱処理することにより得られるが、下記に詳述
する通り、針状含水酸化鉄微粒子そのものの過性が悪
い為、針状酸化鉄微粒子を得ることが困難であった。針
状含水酸化鉄は、一般に第一鉄塩水溶液とアルカリ水溶
液とを反応して得られた水酸化鉄を含む懸濁液を空気酸
化する方法又は第二鉄塩水溶液を加熱する方法等により
水溶液中から生成されるが、この生成物を水溶液中から
別する際に布の目づまりや布もれを生じる。
However, the long axis of the needle-shaped iron oxide particles
If it is less than about 0.1 μm, it is so fine that it is difficult to handle and has poor workability, which is one of the factors that hinders practical use. That is, the fine needle-shaped iron oxide particles, when used as an adsorbent, have low air permeability in order to generate an aggregate of small particles having a small porosity,
At the time of its production, it is generally obtained by heat-treating the acicular iron oxide fine particles in the air. However, as described in detail below, the acicular iron oxide fine particles themselves have poor transient properties. It was difficult to obtain fine particles. Acicular iron oxide hydroxide is generally prepared by reacting a ferrous salt aqueous solution with an alkaline aqueous solution to obtain a suspension containing iron hydroxide by air oxidation or by heating a ferric salt aqueous solution. Although produced from inside, when the product is separated from the aqueous solution, clogging of the cloth and cloth leakage occur.

そこで、針状酸化鉄微粒子の吸着能を低下させること
なく、過性や作業性を改良する為の技術手段の確立が
強く要望されている。
Therefore, there is a strong demand for the establishment of technical means for improving the excess and workability without lowering the adsorbability of the acicular iron oxide fine particles.

〔問題を解決する為の手段〕[Means for solving the problem]

本発明者は、針状酸化鉄微粒子の吸着能を低下させる
ことなく過性や作業性を改良すべく種々検討を重ねた
結果、本発明に到達したのである。
The inventor of the present invention has conducted various studies in order to improve the excess and workability without lowering the adsorbing ability of the acicular iron oxide fine particles, and as a result, the present invention has been achieved.

即ち、本発明は、粒子形状がO字形ないしC字形を呈
しており、且つ、最大径の平均値が0.1〜1.0μmであっ
てD104面におけるX線粒径が100〜800Åであるヘマタイ
ト粒子の表面に、長軸径0.01〜0.1μmであって短軸径
0.005〜0.05μmである針状酸化鉄微粒子が吸着又は固
着している複合酸化鉄粒子からなる複合酸化鉄粒子粉末
及び板状δ−FeOOHを含むpH2以上の懸濁液を150〜320℃
の温度範囲で水熱処理することにより粒子形状がO字形
ないしC字形を呈しており、且つ、最大径の平均値が0.
1〜1.0μmであってD104面におけるX線粒径が100〜800
Åであるヘマタイト粒子を生成させ、該O字形ないしC
字形を呈するヘマタイト粒子を含む懸濁液と長軸0.01〜
0.1μmであって短軸0.005〜0.05μmである針状含水酸
化鉄微粒子を含む懸濁液とを混合することにより前記O
字形ないしC字形を呈するヘマタイト粒子表面に前記針
状含水酸化鉄微粒子が吸着している複合酸化鉄粒子を生
成させ、次いで、該粒子を空気中で加熱処理することを
特徴とするO字形ないしC字形を呈するヘマタイト粒子
の表面に、長軸径0.01〜0.1μmであって短軸径0.005〜
0.05μmである針状酸化鉄微粒子が吸着又は固着してい
る複合酸化鉄粒子からなる複合酸化鉄粒子粉末の製造法
である。
That is, hematite particles present invention, to have no O-shaped particle shape and presents a C-shaped, and, X-rays grain size in average of the maximum diameter A 0.1 to 1.0 [mu] m D 104 surface is 100~800Å The major axis diameter is 0.01 to 0.1 μm and the minor axis diameter is
A suspension having a pH of 2 or more containing a composite iron oxide particle powder composed of composite iron oxide particles to which needle-like iron oxide fine particles of 0.005 to 0.05 μm are adsorbed or fixed and a plate-like δ-FeOOH is heated to 150 to 320 ° C.
By hydrothermal treatment in the temperature range described above, the particle shape is O-shaped or C-shaped, and the average value of the maximum diameter is 0.
X-ray particle diameter of 104 surface D a 1~1.0μm is 100 to 800
To form hematite particles, and the O-shaped or C
Suspension containing hematite particles in the shape of a letter and long axis 0.01-
0.1 μm and a suspension containing needle-like hydrous iron oxide fine particles having a minor axis of 0.005 to 0.05 μm by mixing with the suspension.
O-shaped or C-shaped composite iron oxide particles in which the needle-shaped hydrous iron oxide fine particles are adsorbed on the surface of hematite particles exhibiting a letter shape or a letter C, and then heating the particles in air. On the surface of the hematite particles having the shape of a letter, the major axis diameter is 0.01 to 0.1 μm and the minor axis diameter is 0.005 to
This is a method for producing composite iron oxide particle powder comprising composite iron oxide particles to which needle-like iron oxide fine particles of 0.05 μm are adsorbed or fixed.

〔作用〕[Action]

先ず、本発明において最も重要な点は、板状δ−FeOO
Hを含むpH2以上の懸濁液を150〜320℃の温度範囲で水熱
処理することにより得られたヘマタイト粒子は、粒子形
状がO字形ないしC字形を呈しており、且つ、最大径の
平均値が0.1〜1.0μmであってD104面におけるX線粒径
が100〜800Åであり、該ヘマタイト粒子を含む懸濁液と
針状含水酸化鉄微粒子を含む懸濁液とを混合した場合に
は、針状含水酸化鉄微粒子の短軸面の一端がヘマタイト
粒子表面に吸着する結果、O字形ないしC字形を呈する
ヘマタイト粒子の表面を針状含水酸化鉄微粒子がとげ状
となって被覆した形態となり、該粒子を更に空気中で加
熱処理すると針状含水酸化鉄微粒子が構造転移して針状
酸化鉄微粒子となり、前記O字形ないしC字形を呈する
ヘマタイト粒子の表面を針状酸化鉄微粒子がとげ状とな
って被覆した形の複合酸化鉄粒子が得られるという事実
である。
First, the most important point in the present invention is the plate-like δ-FeOO
Hematite particles obtained by hydrothermally treating a suspension having a pH of 2 or more containing H at a temperature in the range of 150 to 320 ° C. have an O-shaped or C-shaped particle shape, and have an average maximum diameter. there is 100~800A X-ray particle diameter in an in D 104 side is 0.1 to 1.0 [mu] m, when a mixture of a suspension comprising a suspension and acicular iron oxide particles containing the hematite particles As a result, one end of the short axis surface of the acicular hydrous iron oxide fine particles is adsorbed on the hematite particle surface, so that the surface of the O-shaped or C-shaped hematite particles is covered with the acicular hydrous iron oxide fine particles in a barbed shape. When the particles are further heat-treated in air, the acicular iron oxide fine particles undergo a structural transition to become acicular iron oxide fine particles, and the surface of the O-shaped or C-shaped hematite particles is barbed with the acicular iron oxide fine particles. Oxidation in the form covered Is the fact that particles are obtained.

本発明においては、針状含水酸化鉄微粒子がヘマタイ
ト粒子のO字形ないしC字形の形状にそって吸着してい
る為、空隙率の大きい粒子の集合体を形成し、その結
果、水溶液中からの過に際しては、過性が良く、
布の目づまりや布もれを生じることがなく、また、該
過物を加熱処理して得られた針状酸化鉄微粒子がヘマ
タイト粒子のO字形ないしC字形にそって吸着又は固着
している複合酸化鉄粒子もまた、空隙率の大きい粒子の
集合体である為、吸着剤としての使用に際しては、空気
等の透過性が良好となる。
In the present invention, the needle-shaped hydrous iron oxide fine particles are adsorbed along the O-shaped or C-shaped shape of the hematite particles, so that an aggregate of particles having a large porosity is formed. In the event of a mistake, the transient is good,
No clogging of the cloth and no leakage of the cloth occur, and the needle-like iron oxide fine particles obtained by heat-treating the excess adsorb or adhere along the O-shaped or C-shaped hematite particles. Since the composite iron oxide particles are also an aggregate of particles having a high porosity, when used as an adsorbent, the permeability to air and the like is improved.

本発明においては、針状酸化鉄微粒子の長軸面ではな
く短軸面の一端のみがO字形ないしC字形を呈するヘマ
タイト粒子の表面に吸着又は固着しており、また、針状
酸化鉄微粒子が相互に重ならない構造となっていること
に起因して比表面積が大きい為、大気やガスとの接触部
分が多く、従って、針状酸化鉄微粒子の表面を有効に活
用できる。
In the present invention, only one end of the short axis surface, not the long axis surface of the needle-shaped iron oxide fine particles, is adsorbed or fixed to the surface of the O-shaped or C-shaped hematite particles, and the needle-shaped iron oxide fine particles are Since the specific surface area is large due to the structure that they do not overlap with each other, there are many contact portions with the atmosphere or gas, and therefore, the surface of the acicular iron oxide fine particles can be effectively utilized.

次に、本発明実施にあたっての諸条件について述べ
る。
Next, conditions for implementing the present invention will be described.

本発明におけるO字形ないしC字形を呈したヘマタイ
ト粒子は、板状δ−FeOOHを含むpH2以上の懸濁液を150
〜320℃の温度範囲で水熱処理することにより得られ
る。
In the present invention, the O-shaped or C-shaped hematite particles are used to prepare a suspension having a pH of 2 or more containing plate-like δ-FeOOH.
It is obtained by hydrothermal treatment in a temperature range of ~ 320 ° C.

板状δ−FeOOHは、第一鉄塩水溶液とアルカリ性水溶
液とを反応して得られた水酸化第一鉄を含むアルカリ性
懸濁液を酸化剤等により急激に酸化することにより通常
の方法により得られる。
Plate-like δ-FeOOH is obtained by a usual method by rapidly oxidizing an alkaline suspension containing ferrous hydroxide obtained by reacting an aqueous ferrous salt solution and an alkaline aqueous solution with an oxidizing agent or the like. Can be

pHが2未満である場合には、O字形ないしC字形を呈
したヘマタイト粒子が生成しない。
If the pH is less than 2, no O-shaped or C-shaped hematite particles are formed.

温度が150℃未満である場合には、δ−FeOOHからのO
字形ないしC字形を呈したヘマタイト粒子の生成反応が
生起しない。温度が320℃を越える場合にも、O字形な
いしC字形を呈したヘマタイト粒子が生成するが、装置
上の安全性を考慮すれば320℃が上限である。
If the temperature is lower than 150 ° C., the O from δ-FeOOH
No formation reaction of hematite particles having a letter shape or a C shape occurs. When the temperature exceeds 320 ° C., O-shaped or C-shaped hematite particles are generated, but the upper limit is 320 ° C. in consideration of safety on the device.

得られたヘマタイト粒子は、粒子形状がO字形ないし
C字形を呈しており、且つ、最大径の平均値が0.1〜1.0
μmであってD104面におけるX線粒径が100〜800Åであ
る。
The obtained hematite particles have an O-shaped or C-shaped particle shape, and have an average maximum diameter of 0.1 to 1.0.
A μm X-ray particle diameter of 104 surface D is 100~800A.

本発明における針状酸化鉄微粒子は、長軸径0.01〜0.
1μmであって短軸径0.005〜0.5μmである。
The needle-shaped iron oxide fine particles in the present invention have a major axis diameter of 0.01 to 0.1.
The diameter is 1 μm and the minor axis diameter is 0.005 to 0.5 μm.

長軸が0.1μmを越える場合又は短軸が0.05μmを越
える場合には、比表面積が小さくなることに起因して大
気やガスとの接触部分が小さくなり、吸着剤として好ま
しくない。前述した通り、含水酸化鉄微粒子の製造に際
して、過性等の工業性や経済性を考慮した場合、長軸
の下限は0.01μm程度であり、また、短軸の下限は0.00
5μm程度であるので、この含水酸化鉄微粒子を空気中
で加熱処理して得られる針状酸化鉄微粒子もまた、長軸
の下限は0.01μm程度であり、短軸の下限は0.005μm
程度である。
When the major axis exceeds 0.1 μm or when the minor axis exceeds 0.05 μm, the contact area with the atmosphere or gas becomes small due to the small specific surface area, which is not preferable as an adsorbent. As described above, the lower limit of the major axis is about 0.01 μm and the lower limit of the minor axis is 0.00
Since it is about 5 μm, the needle-like iron oxide fine particles obtained by heat-treating the iron oxide-containing fine particles in air also have a lower limit of the major axis of about 0.01 μm and a lower limit of the minor axis of 0.005 μm.
It is about.

針状酸化鉄微粒子は、含水酸化鉄微粒子を常法により
空気中で加熱処理、殊に300〜550℃の範囲で加熱処理す
ることにより得られる。この場合、針状含水酸化鉄微粒
子が針状α−FeOOH微粒子の場合には加熱処理により針
状ヘマタイト微粒子となり、針状γ−FeOOH微粒子の場
合には、加熱処理により針状マグヘマイト微粒子とな
る。
The acicular iron oxide fine particles can be obtained by heat-treating the iron oxide-containing fine particles in the air by a conventional method, in particular, by heat-treating in the range of 300 to 550 ° C. In this case, when the needle-like hydrous iron oxide fine particles are acicular α-FeOOH fine particles, they become needle-like hematite fine particles by heat treatment, and when they are needle-like γ-FeOOH fine particles, they become needle-like maghemite fine particles by heat treatment.

針状含水酸化鉄微粒子としては、α−FeOOH、β−FeO
OH、γ−FeOOH等があり、α−FeOOH微粒子は、例えば、
硫酸第二鉄水溶液を尿素の存在下100℃以下、殊に90〜1
00℃で加熱する方法により、β−FeOOH微粒子は例え
ば、塩化第二鉄水溶液を尿素の存在下、100℃以下、殊
に90〜100℃で加熱する方法により、また、γ−FeOOH微
粒子は、例えば塩化第一鉄水溶液を10℃以下の温度で空
気酸化する方法等により得られる。
As the acicular hydrous iron oxide fine particles, α-FeOOH, β-FeO
OH, γ-FeOOH and the like, α-FeOOH fine particles, for example,
Aqueous ferric sulfate solution in the presence of urea at 100 ° C or lower, especially 90-1
By a method of heating at 00 ° C, β-FeOOH fine particles are, for example, a method of heating an aqueous ferric chloride solution in the presence of urea at 100 ° C or less, particularly 90 to 100 ° C, and γ-FeOOH fine particles are: For example, it can be obtained by a method of subjecting an aqueous ferrous chloride solution to air oxidation at a temperature of 10 ° C. or lower.

本発明においてO字形ないしC字形を呈するヘマタイ
ト粒子表面への針状酸化鉄微粒子の吸着又は固着は、O
字形ないしC字形を呈するヘマタイト粒子を含む懸濁液
と針状含水酸化鉄微粒子を含む懸濁液とを混合した後、
過、水洗し、次いで、空気中で加熱処理すればよい。
この場合、混合液の作成は、例えば、O字形ないしC字
形を呈するヘマタイト粒子を含む懸濁液と針状含水酸化
鉄微粒子を含む懸濁液とを別個に作製した後混合する方
法、または、C字形を呈するヘマタイト粒子を含む懸濁
液中で針状含水酸化鉄粒子を生成させる方法のいずれの
方法でもよく、この混合液の作成の際に、O字形ないし
C字形を呈したヘマタイト粒子の表面に針状含水酸化鉄
微粒子が吸着する。吸着した針状含水酸化鉄微粒子は、
空気中の加熱処理により一部又は全部が固着する。
In the present invention, the adsorption or fixation of the needle-like iron oxide fine particles on the surface of the O-shaped or C-shaped hematite particles is determined by O
After mixing the suspension containing hematite particles exhibiting the letter shape or C shape and the suspension containing the needle-shaped hydrous iron oxide fine particles,
After that, it may be heat-treated in air.
In this case, the mixed solution is prepared, for example, by separately preparing a suspension containing O-shaped or C-shaped hematite particles and a suspension containing needle-shaped iron oxide-containing fine particles, and then mixing them. Any method of producing needle-like hydrous iron oxide particles in a suspension containing hematite particles having a C-shape may be used. In preparing this mixed solution, the O-shaped or C-shaped hematite particles may be removed. Needle-like hydrous iron oxide fine particles are adsorbed on the surface. The adsorbed needle-shaped hydrous iron oxide fine particles
Some or all of them adhere due to the heat treatment in the air.

〔実施例〕〔Example〕

次に、実施例並びに比較例により、本発明を説明す
る。
Next, the present invention will be described with reference to Examples and Comparative Examples.

尚、以下の実施例並びに比較例における粒子の最大
径、長軸及び短軸は、いずれも電子顕微鏡写真から測定
した数値の平均値で示したものであり、比表面積はBET
法により測定した値で示した。
Incidentally, the maximum diameter of the particles in the following Examples and Comparative Examples, the major axis and the minor axis are all shown by the average value of the values measured from the electron micrograph, the specific surface area is BET
It was shown by the value measured by the method.

実施例1 板面径0.3μmのδ−FeOOH粒子1molとNaOH0.1molとか
らなるpH13のアルカリ性懸濁液をオートクレーブ中で20
0℃まで加熱し、機械的に撹拌しつつこの温度に3.0時間
保持し、赤褐色沈澱を生成させた。室温にまで冷却後、
赤褐色沈澱を別し、十分水洗した後乾燥した。
Example 1 An alkaline suspension of pH 13 consisting of 1 mol of δ-FeOOH particles having a plate surface diameter of 0.3 μm and 0.1 mol of NaOH was placed in an autoclave for 20 minutes.
Heated to 0 ° C. and held at this temperature for 3.0 hours with mechanical stirring to produce a reddish brown precipitate. After cooling to room temperature,
The reddish-brown precipitate was separated, washed thoroughly with water and dried.

得られた赤褐色粒子粉末は、図1に示すX線回折に示
す通り、ヘマタイトであり、図2に示す電子顕微鏡写真
(×50,000)から明らかな通り、最大径の平均値が0.3
μmのO字形ないしC字形を呈した粒子であった。
The obtained red-brown particle powder is hematite as shown in the X-ray diffraction shown in FIG. 1 and has an average maximum diameter of 0.3 as apparent from the electron micrograph (× 50,000) shown in FIG.
The particles were O-shaped or C-shaped particles having a size of μm.

また、D104面におけるX線粒径は380Åであり、比表
面積は18.0m2/gであった。
Further, X Sentsubu径in 104 surface D is 380 Å, a specific surface area of 18.0m 2 / g.

上記O字形ないしC字形を呈したヘマタイト粒子粉末
5gを0.5の水中に分散させることにより得られた水懸
濁液中にFe3+0.1mol/を含む硫酸第二鉄水溶液0.3と
1.0mol/の尿素水溶液0.2とを添加して全容1に調
整し、次いで、95℃で5時間加熱して沈澱を生成させた
後、別、水洗、乾燥した。
O-shaped or C-shaped hematite particle powder
5 g of an aqueous ferric sulfate solution containing Fe 3+ 0.1 mol / in a water suspension obtained by dispersing 5 g in 0.5
A 1.0 mol / urea aqueous solution 0.2 was added to adjust the total volume to 1, and then heated at 95 ° C. for 5 hours to form a precipitate, followed by separate washing with water and drying.

得られた乾燥粒子粉末は、X線回折の結果、ヘマタイ
トのピークとα−FeOOHのピークが認められ、また、電
子顕微鏡観察の結果、O字形ないしC字形を呈したヘマ
タイト粒子粉末の粒子表面に針状α−FeOOHの短軸面が
吸着して、O字形ないしC字形を呈したヘマタイト粒子
の表面を長軸0.05μmであって短軸0.01μmである針状
α−FeOOHがとげ状となって被覆した形態を呈してい
た。
As a result of X-ray diffraction, a peak of hematite and a peak of α-FeOOH were observed in the obtained dry particle powder, and as a result of observation with an electron microscope, the particle surface of the hematite particle powder having an O-shape or C-shape was observed. The short axis surface of the acicular α-FeOOH is adsorbed, and the surface of the O-shaped or C-shaped hematite particles has a long axis of 0.05 μm and a short axis of 0.01 μm. It was in the form of being covered by a coating.

この乾燥粒子粉末を空気中300℃で1.5時間加熱処理し
た。
This dried particle powder was heat-treated in air at 300 ° C. for 1.5 hours.

得られた加熱粒子粉末は、図3に示すX線回折に示す
通り、ヘマタイトのピークのみ認められた。同図中、ピ
ークAはヘマタイトである。また、図4に示す電子顕微
鏡写真(×100,000)から明らかな通り、O字形ないし
C字形を呈したヘマタイト粒子の粒子表面に針状ヘマタ
イト粒子の短軸面が吸着又は固着して、O字形ないしC
字形を呈するヘマタイト粒子の表面を長軸0.05μmであ
って短軸0.01μmである針状ヘマタイト粒子がとげ状と
なって被覆した形態の複合酸化鉄粒子粉末であた。同図
から明らかな通り、O字形ないしC字形を呈したヘマタ
イト粒子粉末は、針状、板状等の形状を呈したヘマタイ
ト粒子に比べ空隙を有する為針状ヘマタイト粒子との接
触部が大きく、その結果、多量の針状ヘマタイト粒子を
吸着することが可能であることが認められる。
In the obtained heated particle powder, only a hematite peak was recognized as shown in the X-ray diffraction shown in FIG. In the figure, peak A is hematite. Further, as is clear from the electron micrograph (× 100,000) shown in FIG. 4, the short-axis surface of the acicular hematite particles is adsorbed or fixed to the surface of the O-shaped or C-shaped hematite particles, and the O-shaped or C
This was a composite iron oxide particle powder in which needle-like hematite particles having a major axis of 0.05 μm and a minor axis of 0.01 μm were barbed and coated on the surface of the hematite particles having a letter shape. As is clear from the figure, the hematite particle powder having an O-shape or a C-shape has a larger contact portion with the acicular hematite particles because it has voids compared to the hematite particles having a needle-like or plate-like shape. As a result, it is recognized that a large amount of acicular hematite particles can be adsorbed.

尚、複合酸化鉄粒子粉末の比表面積は120m2/gであっ
た。
The specific surface area of the composite iron oxide particles was 120 m 2 / g.

実施例2 板面径0.6μmのδ−FeOOH粒子1molとNaOH1molとから
なるpH14のアルカリ性懸濁液をオートクレーブ中で280
℃まで加熱し、機械的に撹拌しつつこの温度に3.0時間
保持し、赤褐色沈澱を生成させた。室温にまで冷却後、
赤褐色沈澱を別し、十分水洗した後乾燥した。
Example 2 An alkaline suspension having a pH of 14 and comprising 1 mol of δ-FeOOH particles having a plate surface diameter of 0.6 μm and 1 mol of NaOH was placed in an autoclave for 280 minutes.
C. and held at this temperature for 3.0 hours with mechanical stirring to produce a red-brown precipitate. After cooling to room temperature,
The reddish-brown precipitate was separated, washed thoroughly with water and dried.

得られた赤褐色粒子粉末は、X線回折の結果、ヘマタ
イトであり、電子顕微鏡観察の結果、最大径の平均値が
0.6μmのO字形ないしC字形を呈した粒子であった。
The resulting reddish-brown particle powder was hematite as a result of X-ray diffraction.
The particles had an O-shape or C-shape of 0.6 μm.

また、D104面におけるX線粒径は670Åであり、比表
面積は13.0m2/gであった。
Further, X Sentsubu径in 104 surface D is 670A, the specific surface area was 13.0m 2 / g.

上記O字形ないしC字形を呈したヘマタイト粒子粉末
5gを0.5の水中に分散することにより得られた水懸濁
液中にFe3+0.05mol/を含む塩化第二鉄水溶液0.3と
0.5mol/の尿素水溶液0.2とを添加して全容1に調
整し、次いで、90℃まで加熱した後、機械的に撹拌しつ
つこの温度に3.0時間保持して沈澱を生成させた後、
別、水洗、乾燥した。
O-shaped or C-shaped hematite particle powder
5 g of an aqueous ferric chloride solution containing Fe 3+ 0.05 mol / in a water suspension obtained by dispersing 5 g in 0.5
0.5 mol / aqueous urea solution 0.2 was added to adjust the total volume to 1, then heated to 90 ° C., and maintained at this temperature for 3.0 hours while mechanically stirring to form a precipitate.
Separately, washed with water and dried.

得られた乾燥粒子粉末は、X線回折の結果、ヘマタイ
トのピークとβ−FeOOHのピークが認められ、また、電
子顕微鏡観察の結果、O字形ないしC字形を呈したヘマ
タイト粒子の粒子表面に針状β−FeOOH微粒子の短軸面
が吸着して、O字形ないしC字形を呈したヘマタイト粒
子の表面を長軸0.03μmであって短軸0.02μmである針
状β−FeOOH微粒子がとげ状となって被覆した形態を呈
していた。
As a result of X-ray diffraction, a peak of hematite and a peak of β-FeOOH were observed in the obtained dried particle powder, and as a result of observation with an electron microscope, a needle was formed on the surface of the hematite particles having an O-shape or C-shape. The short-axis surface of the β-FeOOH-like fine particles is adsorbed, and the surface of the O-shaped or C-shaped hematite particles is turned into needle-like β-FeOOH fine particles having a long axis of 0.03 μm and a short axis of 0.02 μm. In a covered form.

この乾燥粒子粉末を空気中350℃で0.5時間加熱処理し
た。
The dried particle powder was heat-treated in air at 350 ° C. for 0.5 hour.

得られた加熱粒子粉末は、X線回折の結果、ヘマタイ
トのピークのみ認められ、また、電子顕微鏡観察の結
果、O字形ないしC字形を呈したヘマタイト粒子の粒子
表面に針状ヘマタイト粒子の短軸面が吸着又は固着し
て、O字形ないしC字形を呈するヘマタイト粒子の表面
を長軸0.03μmであって短軸0.02μmである針状ヘマタ
イト粒子がとげ状となって被覆した形態の複合酸化鉄微
粒子粉末であった。O字形ないしC字形を呈したヘマタ
イト粒子粉末は、針状、板状等の形状を呈したヘマタイ
ト粒子に比べ空隙を有する為針状ヘマタイト粒子との接
触部が大きく、その結果、多量の針状ヘマタイト粒子を
吸着することが可能であることが認められる。
As a result of X-ray diffraction, only the peak of hematite was observed in the obtained heated particle powder, and the short axis of the acicular hematite particle was observed on the surface of the O-shaped or C-shaped hematite particle as a result of electron microscopic observation. Composite iron oxide in the form of O- or C-shaped hematite particles whose surfaces are adsorbed or fixed to form barbed needle-like hematite particles having a major axis of 0.03 μm and a minor axis of 0.02 μm. It was a fine particle powder. O-shaped or C-shaped hematite particle powder has voids compared to needle-shaped, plate-shaped, etc.-shaped hematite particles, and therefore has a large contact portion with needle-shaped hematite particles. It is recognized that hematite particles can be adsorbed.

尚、複合酸化鉄粒子粉末の比表面積は85m2/gであっ
た。
The specific surface area of the composite iron oxide particles was 85 m 2 / g.

実施例3 板面径0.15μmのδ−FeOOH粒子1molをpH4.5に調整し
た懸濁液をオートクレーブ中で200℃まで加熱し、機械
的に撹拌しつつこの温度に3.0時間保持し、赤褐色沈澱
を生成させた。室温にまで冷却後、赤褐色沈澱を別
し、十分水洗した後乾燥した。
Example 3 A suspension in which 1 mol of δ-FeOOH particles having a plate surface diameter of 0.15 μm was adjusted to pH 4.5 was heated to 200 ° C. in an autoclave, and kept at this temperature for 3.0 hours while mechanically stirring to obtain a reddish brown precipitate. Was generated. After cooling to room temperature, the reddish-brown precipitate was separated, washed sufficiently with water, and dried.

得られた赤褐色粒子粉末は、X線回折の結果、ヘマタ
イトであり、電子顕微鏡観察の結果、最大径の平均値が
0.2μmのO字形ないしC字形を呈した粒子であった。
The resulting reddish-brown particle powder was hematite as a result of X-ray diffraction.
The particles were O-shaped or C-shaped particles of 0.2 μm.

また、D104面におけるX線粒径は200Åであり、比表
面積は27.5m2/gであった。
Further, X Sentsubu径in 104 surface D is 200 Å, a specific surface area of 27.5m 2 / g.

上記O字形ないしC字形を呈したヘマタイト粒子粉末
5gを0.5の水中に分散させることにより得られた水懸
濁液中に5℃のFe2+0.05mol/を含む塩化第一鉄水溶液
0.3と5℃のNaOH0.04mol/の溶液0.3を添加し更に
水を加えて全容1.5に調整した後、7.5℃に保持しなが
ら2時間空気酸化を行った。次いで、この溶液を温度50
℃、pH4.5に保持しながら7時間空気酸化を行って沈澱
を生成させた後、別、水洗、乾燥した。
O-shaped or C-shaped hematite particle powder
Ferrous chloride aqueous solution containing 5 mol of Fe 2+ 0.05mol / in water suspension obtained by dispersing 5g in 0.5 water
After adding 0.3 and a 0.3 solution of NaOH 0.04 mol / at 5 ° C. and further adjusting the total volume to 1.5 by adding water, air oxidation was performed for 2 hours while maintaining the temperature at 7.5 ° C. The solution is then brought to a temperature of 50
The precipitate was formed by performing air oxidation for 7 hours while maintaining the pH at 4.5 ° C. and then separately washed with water and dried.

得られた乾燥粉末は、X線回折の結果、ヘマタイトの
ピークとγ−FeOOHのピークが認められ、また、電子顕
微鏡観察の結果、O字形ないしC字形を呈したヘマタイ
ト粒子粉末の粒子表面に針状γ−FeOOHの短軸面が吸着
して、O字形ないしC字形を呈したヘマタイト粒子の表
面を長軸0.05μmであって短軸0.02μmである針状γ−
FeOOHがとげ状となって破壊した形態を呈していた。
As a result of X-ray diffraction, a peak of hematite and a peak of γ-FeOOH were observed in the obtained dry powder, and a needle was formed on the surface of the hematite particle powder having an O-shape or C-shape as observed by electron microscopy. The surface of the O-shaped or C-shaped hematite particles having the short-axis surface of the state γ-FeOOH adsorbed thereon has a needle-like γ-phase having a long axis of 0.05 μm and a short axis of 0.02 μm.
FeOOH had a spine-like and broken form.

この乾燥粒子粉末を空気中320℃で1.5時間加熱処理し
た。
This dried particle powder was heat-treated in air at 320 ° C. for 1.5 hours.

得られた加熱粒子粉末は、X線回折の結果、ヘマタイ
トのピークとγ−Fe2O3のピークが認められ、また、電
子顕微鏡観察の結果、O字形ないしC字形を呈したヘマ
タイト粒子の粒子表面に針状マグヘマイト粒子の短軸面
が吸着又は固着して、O字形ないしC字形を呈するヘマ
タイト粒子の表面を長軸0.05μmであって短軸0.02μm
である針状マグヘマイト粒子がとげ状となって被覆した
形態の複合酸化鉄粒子粉末であった。O字形ないしC字
形を呈したヘマタイト粒子粉末は、針状、板状等の形状
を呈したヘマタイト粒子に比べ空隙を有する為針状γ−
FeOOH微粒子との接触部が大きく、その結果、多量の針
状マグヘマイト粒子を吸着することが可能であることが
認められた。
As a result of X-ray diffraction, a peak of hematite and a peak of γ-Fe 2 O 3 were observed in the obtained heated particle powder, and as a result of observation with an electron microscope, O-shaped or C-shaped particles of hematite particles were observed. The minor axis surface of the acicular maghemite particles is adsorbed or fixed on the surface, and the surface of the O-shaped or C-shaped hematite particles has a major axis of 0.05 μm and a minor axis of 0.02 μm.
The composite iron oxide particles were in a form in which the needle-like maghemite particles were barbed and covered. The O-shaped or C-shaped hematite particle powder has voids as compared with the hematite particles having a needle-like or plate-like shape, so that the needle-like γ-
It was confirmed that the contact portion with the FeOOH fine particles was large, and as a result, it was possible to adsorb a large amount of acicular maghemite particles.

尚、複合酸化鉄粒子粉末の比表面積は65m2/gであっ
た。
The specific surface area of the composite iron oxide particles was 65 m 2 / g.

比較例1 Fe3+0.05mol/を含む塩化第二鉄水溶液1と0.5mol
/の尿素1に更に水を加えて全容3に調整した混
合水溶液を90℃まで加熱した後、機械的に撹拌しつつこ
の温度に3.0時間保持し黄褐色沈澱を生成させた。
Comparative Example 1 0.5 mol of ferric chloride aqueous solution 1 containing 0.05 mol / Fe 3+
The mixed aqueous solution adjusted to a total volume of 3 by further adding water to 1 / urea 1 was heated to 90 ° C., and kept at this temperature for 3.0 hours while mechanically stirring to form a yellow-brown precipitate.

反応液の一部を抜き取り、No.5Cの紙片(東洋紙
社製)を用い別を試みたが、布もれを生起し過が
できなかった。
A part of the reaction solution was extracted, and separation was attempted using a No. 5C piece of paper (manufactured by Toyo Paper Co., Ltd.).

そこで、反応液の一部を蒸発乾固することにより黄褐
色粒子粉末を得た。
Then, a part of the reaction solution was evaporated to dryness to obtain a yellow-brown particle powder.

得られた黄褐色粒子粉末は、X線回折の結果、長軸径
0.08μm、短軸径0.04μmの針状粒子であった。
The obtained yellow-brown particle powder was analyzed by X-ray diffraction,
The particles were needle-shaped particles having a diameter of 0.08 μm and a minor axis diameter of 0.04 μm.

〔発明の効果〕〔The invention's effect〕

本発明に係る複合酸化鉄粒子粉末は、前出実施例に示
した通り、粒子形状がO字形ないしC字形を呈してお
り、且つ、最大径の平均値が0.1〜1.0μmであってD104
面におけるX線粒径が100〜800Åであるヘマタイト粒子
の表面に、長軸径0.01〜0.1μmであって短軸径0.005〜
0.05μmである針状酸化鉄微粒子が吸着又は固着してい
る粒子粉末であることに起因して、過性や作業性等の
粉末特性に優れた粒子であるので、硫黄酸化物、硫化水
素等や窒素酸化物等の吸着剤、脱臭剤等として好適であ
る。
The composite iron oxide particle powder according to the present invention has an O-shaped or C-shaped particle shape as shown in the above Examples, and has an average maximum diameter of 0.1 to 1.0 μm and D 104
The surface of the hematite particles having an X-ray particle diameter of 100 to 800 ° on the surface has a major axis diameter of 0.01 to 0.1 μm and a minor axis diameter of 0.005 to
Due to the fact that the needle-shaped iron oxide fine particles having a particle diameter of 0.05 μm are adsorbed or fixed, the particles have excellent powder characteristics such as excess and workability. It is suitable as an adsorbent for nitrogen oxides and the like, a deodorant and the like.

【図面の簡単な説明】[Brief description of the drawings]

図1及び図2は、それぞれ実施例1で得られたO字形な
いしC字形を呈したヘタマイト粒子粉末のX線回折図及
び電子顕微鏡写真(×50,000)である。図1中、ピーク
Aはヘマタイトである。 図3及び図4は、それぞれ実施例1で得られたO字形な
いしC字形を呈したヘマタイト粒子の表面に針状ヘマタ
イト微粒子がとげ状となって被覆した複合酸化鉄粒子粉
末のX線回折図及び電子顕微鏡写真(×100,000)であ
る。図3中、ピークAはヘマタイトである。
FIGS. 1 and 2 are an X-ray diffraction pattern and an electron micrograph (× 50,000) of the O-shaped or C-shaped hetamitic particles obtained in Example 1, respectively. In FIG. 1, peak A is hematite. FIGS. 3 and 4 are X-ray diffraction diagrams of the composite iron oxide particle powder in which the O-shaped or C-shaped hematite particles obtained in Example 1 are coated with barbed needle-like hematite particles. And an electron micrograph (× 100,000). In FIG. 3, peak A is hematite.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】粒子形状がO字形ないしC字形を呈してお
り、且つ、最大径の平均値が0.1〜1.0μmであってD104
面におけるX線粒径が100〜800Åであるヘマタイト粒子
の表面に、長軸径0.01〜0.1μmであって短軸径0.005〜
0.05μmである針状酸化鉄微粒子が吸着又は固着してい
る複合酸化鉄粒子からなる複合酸化鉄粒子粉末。
(1) The particle shape is O-shaped or C-shaped, and the average value of the maximum diameter is 0.1 to 1.0 μm, and D 104
The surface of the hematite particles having an X-ray particle diameter of 100 to 800 ° on the surface has a major axis diameter of 0.01 to 0.1 μm and a minor axis diameter of 0.005 to
Composite iron oxide particle powder comprising composite iron oxide particles having adsorbed or fixed needle-like iron oxide fine particles of 0.05 μm.
【請求項2】板状δ−FeOOHを含むpH2以上の懸濁液を15
0〜320℃の温度範囲で水熱処理することにより粒子形状
がO字形ないしC字形を呈しており、且つ、最大径の平
均値が0.1〜1.0μmであってD104面におけるX線粒径が
100〜800Åであるヘマタイト粒子を生成させ、該O字形
ないしC字形を呈するヘマタイト粒子を含む懸濁液と長
軸径0.01〜0.1μmであって短軸径0.005〜0.05μmであ
る針状含水酸化鉄微粒子を含む懸濁液とを混合すること
により前記O字形ないしC字形を呈するヘマタイト粒子
表面に前記針状含水酸化鉄微粒子が吸着している複合酸
化鉄粒子を生成させ、次いで、該粒子を空気中で加熱処
理することを特徴とするO字形ないしC字形を呈するヘ
マタイト粒子の表面に長軸径0.01〜0.1μmであって短
軸径0.005〜0.05μmである針状酸化鉄微粒子が吸着又
は固着している複合酸化鉄粒子からなる複合酸化鉄粒子
粉末の製造法。
2. A suspension containing plate-like δ-FeOOH having a pH of 2 or more is prepared by adding
It is not O-shaped particle shape by hydrothermal treatment in the temperature range of 0 to 320 ° C. and exhibited a C-shaped, and the average value of the maximum diameter of the X-ray particle diameter of 104 surface D a 0.1~1.0μm
A suspension containing the O-shaped or C-shaped hematite particles, and a needle-like hydrous solution having a major axis diameter of 0.01 to 0.1 μm and a minor axis diameter of 0.005 to 0.05 μm. By mixing with a suspension containing iron fine particles to form composite iron oxide particles in which the needle-like hydrous iron oxide fine particles are adsorbed on the surface of the O-shaped or C-shaped hematite particles, and then forming the particles. Needle-like iron oxide fine particles having a major axis diameter of 0.01 to 0.1 μm and a minor axis diameter of 0.005 to 0.05 μm are adsorbed or adsorbed on the surface of O-shaped or C-shaped hematite particles characterized by being subjected to heat treatment in air. A method for producing composite iron oxide particle powder comprising composite iron oxide particles adhered.
JP33172287A 1987-12-26 1987-12-26 Composite iron oxide particle powder and method for producing the same Expired - Fee Related JP2579178B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33172287A JP2579178B2 (en) 1987-12-26 1987-12-26 Composite iron oxide particle powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33172287A JP2579178B2 (en) 1987-12-26 1987-12-26 Composite iron oxide particle powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01172229A JPH01172229A (en) 1989-07-07
JP2579178B2 true JP2579178B2 (en) 1997-02-05

Family

ID=18246864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33172287A Expired - Fee Related JP2579178B2 (en) 1987-12-26 1987-12-26 Composite iron oxide particle powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP2579178B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4404329C2 (en) * 1994-02-11 1996-07-11 Cs Halbleiter Solartech Disposal of chlorofluorocarbons and halons
JP5194617B2 (en) * 2007-08-01 2013-05-08 三浦工業株式会社 Method for desulfurization of fuel gas for fuel cell
CN108217750B (en) * 2018-03-09 2020-02-28 东北大学 α -Fe2O3/FeOOH composite functional material and preparation method and application thereof
CN110860204A (en) * 2019-12-01 2020-03-06 陈洁琼 Solid deodorant and preparation method thereof

Also Published As

Publication number Publication date
JPH01172229A (en) 1989-07-07

Similar Documents

Publication Publication Date Title
US4309459A (en) Process for producing SiO2 coated iron oxide powder for use in the preparation of acicular magnetic iron or iron oxide powder
WO2019179109A1 (en) Preparation method for catalyst for ozone decomposition
CN113740390B (en) Nickel-doped indium oxide nano-particle and preparation method and application thereof
CN114471654B (en) Preparation of boron nitride material anchored cobalt ferrite composite catalyst and application thereof in catalytic degradation of terramycin
JPS6348810B2 (en)
KR880001711B1 (en) Manufacturing method of a magnetic substance
JPS5853688B2 (en) Method for producing acicular alloy magnetic particle powder mainly composed of Fe-Mg
JP2579178B2 (en) Composite iron oxide particle powder and method for producing the same
Sudakar et al. Effect of cationic substituents on particle morphology of goethite and the magnetic properties of maghemite derived from substituted goethite
Kavitha et al. Role of doped nitrogen and sulphur in cobalt/cobalt-zirconium nanoferrites synthesized by facile methods
JP2579177B2 (en) Composite iron oxide particle powder and method for producing the same
JP3427856B2 (en) Granular goethite fine particle powder, method for producing the same, and method for producing granular iron oxide fine particle powder using the fine particle powder
CN111302381A (en) Magnetic cerium oxide and preparation method thereof
JPS5919163B2 (en) Method for producing magnetic metal powder
JP3395174B2 (en) Manufacturing method of lepidocrocite fine particle powder
JPH0585487B2 (en)
JP2004217444A (en) Porous composite derived from hydrotalcite-like compound, its manufacturing method, and ordinary temperature reduction catalyst of nitrogen oxide comprised of the same
Varpe et al. Removal of Cd (II) and Pb (II) ions from water solution by CoFe 2 O 4/Al 2 O 3 nanocomposite
JP2791565B2 (en) Method for producing Sr ferrite particle powder
Ge et al. Synthesis of FeOOH and FeOOH@ ZnO by hydrothermal method and the adsorption of S2-in wastewater
Patil et al. A Negative Effect of Niobium‐Doped Ceria on Soot Oxidation Activity
JPH03174704A (en) Ferromagnetic metal particle and manufacture thereof
CN114713260B (en) N, S Co-doped Co/CoO/Co 9 S 8 Nano catalyst @ NSOC, preparation method and application thereof
CA2118301A1 (en) Coated acicular fine particulate materials, processes for preparing same and use thereof
Legutko et al. Manganese-Iron Mixed Oxides of Spinel Structure as Soot Combustion Catalysts

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees