JP2578469B2 - Heat-fusible composite fiber - Google Patents

Heat-fusible composite fiber

Info

Publication number
JP2578469B2
JP2578469B2 JP63095857A JP9585788A JP2578469B2 JP 2578469 B2 JP2578469 B2 JP 2578469B2 JP 63095857 A JP63095857 A JP 63095857A JP 9585788 A JP9585788 A JP 9585788A JP 2578469 B2 JP2578469 B2 JP 2578469B2
Authority
JP
Japan
Prior art keywords
heat
melting point
nonwoven fabric
component
conjugate fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63095857A
Other languages
Japanese (ja)
Other versions
JPH01266216A (en
Inventor
彰郎 釜谷
祥夫 飯田
勇 高橋
和昭 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP63095857A priority Critical patent/JP2578469B2/en
Publication of JPH01266216A publication Critical patent/JPH01266216A/en
Application granted granted Critical
Publication of JP2578469B2 publication Critical patent/JP2578469B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は熱融着性複合繊維に係り、詳しくは嵩高で高
融着強度を有する不織布を得るのに好適な熱融着性複合
繊維に関する。
Description: TECHNICAL FIELD The present invention relates to a heat-fusible conjugate fiber, and more particularly, to a heat-fusible conjugate fiber suitable for obtaining a nonwoven fabric having a bulky and high fusible strength. .

[従来の技術] 周知のように融点の異なる複数の繊維成分を並列状ま
たは鞘芯状に配置した熱融着性複合繊維は貼り合せ型ま
たは鞘芯型複合繊維と呼ばれ、不織布の製造に広く用い
られている。
[Prior Art] As is well known, a heat-fusible conjugate fiber in which a plurality of fiber components having different melting points are arranged in a parallel or sheath-core shape is called a bonded type or a sheath-core type conjugate fiber, and is used for producing a nonwoven fabric. Widely used.

この種の熱融着性複合繊維では、通常高融点成分とし
て結晶性ポリプロピレン、ポリエステル樹脂などが用い
られ、また低融点成分としては高密度ポリエチレン、低
密度ポリエチレンなどが使用されている。
In this type of heat-fusible conjugate fiber, crystalline polypropylene, polyester resin or the like is usually used as a high melting point component, and high density polyethylene, low density polyethylene or the like is used as a low melting point component.

しかしながら、高融点成分として結晶性ポリプロピレ
ンを使用した複合繊維を熱風融着加工することにより得
られた不織布は、融着強度は出るが、嵩は出にくく、一
方、高融点成分としてポリエステル樹脂を使用した複合
繊維を熱風融着加工することにより得られた不織布は、
嵩は出るが、融着強度は出にくく、いずれの場合も嵩高
性と高融着強度とを同時に満足させるものは得られてい
ない。
However, the nonwoven fabric obtained by hot air fusion processing of a composite fiber using crystalline polypropylene as the high melting point component has a high fusion strength, but is hardly bulky, while using a polyester resin as the high melting point component. Nonwoven fabric obtained by hot air fusion processing of the composite fiber
Although bulk is produced, the fusion strength is hardly produced, and in any case, a material satisfying both bulkiness and high fusion strength at the same time has not been obtained.

例えば不織布をおむつ等の衛生材料に用いる場合、嵩
高性と高融着強度の両者を満足することが必要なため、
これらを満足する不織布を製造し得る複合繊維の出現が
強く望まれている。
For example, when using a nonwoven fabric for sanitary materials such as diapers, it is necessary to satisfy both bulkiness and high fusion strength,
There is a strong demand for a composite fiber that can produce a nonwoven fabric satisfying these requirements.

[発明が解決しようとする課題] 従って本発明の課題は、嵩高性と高融着強度とを同時
に満足する不織布を得るのに好適な複合繊維を提供する
ことにある。
[Problems to be Solved by the Invention] Accordingly, an object of the present invention is to provide a conjugate fiber suitable for obtaining a nonwoven fabric that satisfies both bulkiness and high fusion strength at the same time.

[課題を解決するための手段] 本発明は上述の課題を達成するためになされたものであ
り、高融点成分と低融点成分とを溶融複合紡糸してなる
熱融着性複合繊維において、前記高融点成分に板状粒子
形状を有する無機系フィラーを高融点成分の重量に対し
て0.1〜13%含有させたことを特徴とする熱融着性複合
繊維である。
Means for Solving the Problems The present invention has been made to achieve the above-mentioned object, and a heat-fusible conjugate fiber obtained by melt-combining a high melting point component and a low melting point component. The heat-fusible conjugate fiber is characterized in that the high melting point component contains an inorganic filler having a plate-like particle shape in an amount of 0.1 to 13% based on the weight of the high melting point component.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

本発明の対象となる熱融着性複合繊維は、高融点成分
と低融点成分とを溶融複合紡糸してなるものであり、そ
の例として高融点成分と低融点成分とが並列状に貼り合
された形態の貼り合せ型複合繊維又は高融点成分と低融
点成分のいずれ一方を芯成分、他方を鞘成分とした鞘芯
型複合繊維が挙げられる。後者の鞘芯型複合繊維は、2
つのタイプがあり、1つは、芯成分と鞘成分とが同心状
に配置された同心タイプであり、もう1つは芯成分の中
心が複合繊維の中心と一致せず、偏心している偏心タイ
プであり、これらはいずれも本発明の対象となる複合繊
維に包含される。
The heat-fusible conjugate fiber that is the object of the present invention is obtained by spinning a high-melting component and a low-melting component into a conjugate fiber, and as an example, the high-melting component and the low-melting component are bonded in parallel. Or a sheath-core composite fiber having one of the high-melting component and the low-melting component as a core component and the other as a sheath component. The latter sheath-core type composite fiber has 2
There are two types, one is a concentric type in which a core component and a sheath component are concentrically arranged, and the other is an eccentric type in which the center of the core component does not match the center of the composite fiber and is eccentric. These are all included in the conjugate fiber targeted by the present invention.

これらの複合繊維において、高融点成分としては、結
晶性ポリプロピレンなどのポリプロピレン、ポリエステ
ル樹脂、ナイロン樹脂などが、そして低融点成分として
は、高密度ポリエチレン、低密度ポリエチレン、直鎖低
密度ポリエチレンなどのポリエチレン、低融点ポリエス
テル樹脂などが用いられる。なお、低融点成分は、高融
点成分の融点よりも20℃以上低い融点を有するのが好ま
しい。
In these composite fibers, as the high melting point component, polypropylene such as crystalline polypropylene, polyester resin, nylon resin, etc., and as the low melting point component, high density polyethylene, low density polyethylene, polyethylene such as linear low density polyethylene, etc. And a low-melting polyester resin. The low melting point component preferably has a melting point lower by at least 20 ° C. than the melting point of the high melting point component.

本発明は、複合繊維を構成する高融点成分に板状粒子
形状を有する無機系フィラーを高融点成分の重量に対し
て0.1〜13%含有させたことを特徴とし、これにより嵩
高性と高融着強度とを同時に満足する不織布を得るのに
好適な熱融着性複合繊維を得たものである。
The present invention is characterized in that the high melting point component constituting the conjugate fiber contains an inorganic filler having a plate-like particle shape in an amount of 0.1 to 13% based on the weight of the high melting point component, whereby bulkiness and high melting point are obtained. A heat-fusible conjugate fiber suitable for obtaining a nonwoven fabric which simultaneously satisfies the bonding strength is obtained.

ここに板状粒子形状とは、幾何学的な板状粒子形状の
みを意味するのではなく、広く偏平な板状粒子形状の全
てを包含する。従って偏平であれば全体的に丸みを帯び
ていても良く、縁が丸みを帯びていても良い。このよう
な板状粒子形状を有する無機系フィラーとしては、タル
ク、雲母(マイカ)、アルミナ粉、クレー、セリサイト
等が挙げられるが、これらのものに限定されるものでは
ない。
Here, the term “plate-like particle shape” means not only a geometric plate-like particle shape but also all broad and flat plate-like particle shapes. Therefore, if it is flat, it may be rounded as a whole, or the edge may be rounded. Examples of the inorganic filler having such a plate-like particle shape include talc, mica (mica), alumina powder, clay, and sericite, but are not limited thereto.

板状粒子形状を有する無機系フィラーを高融点成分に
含有させた熱融着性複合繊維を使用すると、嵩高で融着
強度に優れた不織布が得られる理由は、以下の通りであ
る。
The reason for using a heat-fusible conjugate fiber containing an inorganic filler having a plate-like particle shape in a high melting point component to obtain a bulky nonwoven fabric having excellent fusion strength is as follows.

すなわち、熱融着性複合繊維の製造に際して、高融点
成分中に板状粒子形状を有する無機系フィラーを添加す
ると、紡糸、延伸により、前記無機系フィラーの板状粒
子が繊維方向に平行に配向することが顕微鏡観察により
確認されている。そして無機系フィラーがこのように配
向することにより、熱融着性複合繊維は、その剛性が高
く保たれるので、熱融着性複合繊維のウエブの熱風融着
加工による不織布の製造において、熱風の圧力に負ける
ことなく、嵩高な不織布が得られる。また高融点成分中
に添加された無機系フィラーは熱融着性複合繊維の耐熱
性を向上させ、熱による収縮やヘタリを防止し、これに
より熱風融着加工時の繊維の融着交点の動きが抑えられ
るので、融着強度も大きくなる。
That is, in the production of the heat-fusible conjugate fiber, when an inorganic filler having a plate-like particle shape is added to the high melting point component, the plate-like particles of the inorganic filler are oriented parallel to the fiber direction by spinning and drawing. Has been confirmed by microscopic observation. The orientation of the inorganic filler in this manner keeps the heat-fusible conjugate fibers high in rigidity. Therefore, in the production of a nonwoven fabric by hot-air fusion of a web of heat-fusible conjugate fibers, And a bulky nonwoven fabric can be obtained without losing pressure. In addition, the inorganic filler added to the high melting point component improves the heat resistance of the heat-fusible conjugate fiber, prevents shrinkage and settling due to heat, and thus moves the fusion intersection of the fiber during hot-air fusion processing. , The fusion strength is also increased.

熱融着性複合繊維において、板状粒子形状を有する無
機系フィラーを使用したことにより、嵩高で融着強度の
強い不織布が得られる理由は上述の通りであるが、この
無機系フィラーの量が高融点成分の重量に対して0.1%
未満であると、不織布は融着強度は満足するが嵩高にな
らず、また13%を超えると不織布は嵩高となるが、融着
強度は小さくなる。これに対し、0.1〜13%の範囲であ
ると嵩高で高融着強度を有する不織布が得られる。従っ
て無機系フィターの量は0.1〜13%に限定される。
In the heat-fusible conjugate fiber, by using the inorganic filler having a plate-like particle shape, the reason why a nonwoven fabric having a high fusible strength with a large bulk is obtained is as described above. 0.1% by weight of high melting point component
If it is less than 1, the nonwoven fabric will satisfy the fusion strength but will not be bulky. If it exceeds 13%, the nonwoven fabric will be bulky, but the fusion strength will be small. On the other hand, when the content is in the range of 0.1 to 13%, a nonwoven fabric having bulkiness and high fusion strength can be obtained. Therefore, the amount of the inorganic filter is limited to 0.1 to 13%.

なお、板状粒子形状を有する無機系フィラーの粒径は
150メッシュ全通(110μ以下)であるのが好ましい。そ
の理由は、150メッシュで残渣のある無機系フィラーを
用いると、紡糸性が悪化し、またフィルターづまりによ
る吐出圧増加により生産性が著しく低下するからであ
る。無機系フィラーの特に好ましい粒径は200メッシュ
全通(75μ以下)である。
The particle size of the inorganic filler having a plate-like particle shape is
It is preferably 150 mesh (110 μ or less). The reason is that when an inorganic filler having a residue of 150 mesh is used, spinnability deteriorates, and productivity is remarkably lowered due to an increase in discharge pressure due to filter clogging. A particularly preferred particle size of the inorganic filler is 200 mesh (75 μ or less).

[実施例] 以下、実施例により本発明を更に説明する。[Examples] Hereinafter, the present invention will be further described with reference to examples.

実施例1〜6 一軸押出機2台とホール径0.6mmの複合繊維紡糸設備
を使用して、鞘芯型の熱融着繊維を得た。すなわち、高
密度ポリエチレン(旭化成(株)製J310、MI=20)を鞘
成分として使用し、他方、結晶性ポリプロピレン(宇部
興産(株)製S115M、MI=15)に、板状粒子形状を有す
る無機系フィラーとしてタルク(10μ以下で平均粒径1.
7μのもの、竹原化学(株)製6060T)を結晶性ポリプロ
ピレンに対して純分で、それぞれ0.1,1,2,3,5及び10重
量%配合したものを芯成分として使用して、紡糸温度24
0℃、引取速度700m/分で紡糸し、単糸デニール6.0deの
鞘芯型の熱融着性複合繊維を得た。なお鞘成分と芯成分
とは同心状に配置され、その断面積比率は1:1であっ
た。タルクの量を6水準に変動させた実施例1〜6のい
ずれの場合も紡糸性が優れ1時間の間、紡糸切れは1回
も発生しなかった。
Examples 1 to 6 Using two single-screw extruders and a composite fiber spinning apparatus having a hole diameter of 0.6 mm, sheath-core type heat-fused fibers were obtained. That is, high-density polyethylene (J310 manufactured by Asahi Kasei Corporation, MI = 20) is used as a sheath component, and crystalline polypropylene (S115M manufactured by Ube Industries, MI = 15) has a plate-like particle shape. Talc as an inorganic filler (10μ or less, average particle size 1.
7μ, 6060T manufactured by Takehara Chemical Co., Ltd.), which are pure components of crystalline polypropylene, and 0.1, 1, 2, 3, 5 and 10% by weight, respectively, are used as a core component. twenty four
The fiber was spun at 0 ° C. and a take-up speed of 700 m / min to obtain a sheath-core heat-fusible conjugate fiber having a single-denier of 6.0 denier. Note that the sheath component and the core component were arranged concentrically, and the cross-sectional area ratio was 1: 1. In each of Examples 1 to 6 in which the amount of talc was changed to six levels, spinnability was excellent and no spinning break occurred during one hour.

このマルチフィラメントを170本集めてトータルデニ
ールを17万とし、ステープルファイバー試作設備にて3.
7倍に延伸、オイリング、捲縮加工、乾燥、熱処理、カ
ットを行ない、単糸デニール2de、カット長51mm、捲縮
数16個/インチのステープルファイバーを得た。なお熱
処理は110℃の熱風にて15分間行なった。このステープ
ルファイバーを350mm幅のサンプルカード機に3回通し
目付20g/m2の均一なウエブを作成した。この時カード通
過性は全く問題なく、風合も優れていた。このウエブを
幅350mm、速度5cm/minの金網ベルトにウエブを載せ温度
140±0.2℃、速度4m/secの熱風を5秒間吹付けて熱風融
着不織布を作成した。熱風融着にて作成した不織布の比
容積及び裂断長を測定した結果を表−1に、そして比容
積と裂断長との関係を第1図及び第2図に示す。
170 multifilaments were collected to achieve a total denier of 170,000.
It was stretched 7 times, oiled, crimped, dried, heat-treated, and cut to obtain staple fiber having a denier of 2 yarns, a cut length of 51 mm, and a crimp count of 16 / inch. The heat treatment was performed with hot air at 110 ° C. for 15 minutes. The staple fiber was passed through a sample card machine having a width of 350 mm three times to prepare a uniform web having a basis weight of 20 g / m 2 . At this time, there was no problem with the card passing property and the feeling was excellent. Place the web on a wire mesh belt with a width of 350 mm and a speed of 5 cm / min.
Hot air fused at 140 ± 0.2 ° C. and a speed of 4 m / sec was blown for 5 seconds to prepare a hot air-fused nonwoven fabric. Table 1 shows the results of measuring the specific volume and the breaking length of the nonwoven fabric produced by hot-air fusion, and FIGS. 1 and 2 show the relationship between the specific volume and the breaking length.

タルクの量が本発明に規定された範囲(0.1〜13%)
にある実施例1〜6の複合繊維(第1図及び第2図中の
白丸1〜6に対応)では、比容積及び裂断長(横方向
(TD),縦方向(MD))がともに満足すべき値を示し、
嵩高性と融着強度にすぐれていた。特にタルクの量が1.
0〜5.0%である実施例2〜5の複合繊維(白丸2〜5に
対応)は比容積70cm2/g以上で、TD裂断長1250m以上、MD
裂断長6,880m以上であり、嵩高性と融着強度に特にすぐ
れていた。
The amount of talc is in the range specified in the present invention (0.1 to 13%)
In the composite fibers of Examples 1 to 6 (corresponding to white circles 1 to 6 in FIGS. 1 and 2), both the specific volume and the breaking length (transverse direction (TD), longitudinal direction (MD)) Show satisfactory values,
Excellent bulkiness and fusion strength. Especially when the amount of talc is 1.
The composite fibers of Examples 2 to 5 (corresponding to white circles 2 to 5) having a specific volume of 0 to 5.0% have a specific volume of 70 cm 2 / g or more, TD breaking length of 1250 m or more, and MD
The breaking length was 6,880 m or more, and the bulkiness and the fusion strength were particularly excellent.

比較例1 タルク量を本発明に規定された範囲外の15.0%にした
以外は実施例1〜6と同様にして複合繊維を得、該複合
繊維から不織布を得たが、該不織布(第1及び第2図中
の黒丸1に対応)は比容積70.9cm3/gで、TD裂断長1,030
m、MD裂断長5.640mであり、嵩高性を満足するが、融着
強度が著しく劣っていた。
Comparative Example 1 A conjugate fiber was obtained in the same manner as in Examples 1 to 6 except that the amount of talc was set to 15.0% outside the range specified in the present invention, and a nonwoven fabric was obtained from the conjugate fiber. And the black circle 1 in Fig. 2) have a specific volume of 70.9 cm 3 / g and a TD breaking length of 1,030
m, the MD breaking length was 5.640 m, and the bulkiness was satisfied, but the fusion strength was extremely poor.

実施例7 延伸倍率を3.7倍から4.5倍に変えた以外は実施例3と
同様にして熱融着性複合繊維を得た。
Example 7 A heat-fusible conjugate fiber was obtained in the same manner as in Example 3, except that the draw ratio was changed from 3.7 times to 4.5 times.

この熱融着性複合繊維を実施例3と同様にして熱風融
着加工して不織布を得た。
This heat-fusible conjugate fiber was subjected to hot-air fusion in the same manner as in Example 3 to obtain a nonwoven fabric.

この不織布(第1図及び第2図中の白丸7に対応)は
嵩高性に特にすぐれ、融着強度にもすぐれていた。
This nonwoven fabric (corresponding to the white circle 7 in FIGS. 1 and 2) was particularly excellent in bulkiness and excellent in fusion strength.

比較例2〜6 板状粒子形状を有する無機系フィラーを用いなかった
以外は、実施例1〜6と同じ方法にて鞘成分として高密
度ポリエチレンを、芯成分として結晶性ポリプロピレン
を用いて溶融紡糸したものをクリンパーの条件を変えて
捲縮加工し、捲縮数及び捲縮率の異なる5種の鞘芯型複
合繊維を作成し、該鞘芯型複合繊維から嵩の異なる5種
の不織布を作成した。
Comparative Examples 2-6 Melt spinning using high-density polyethylene as a sheath component and crystalline polypropylene as a core component in the same manner as in Examples 1 to 6, except that an inorganic filler having a plate-like particle shape was not used. The resulting material was crimped under the conditions of a crimper to produce five types of sheath-core composite fibers having different numbers of crimps and crimp rates. From the sheath-core composite fibers, five types of nonwoven fabrics having different bulks were formed. Created.

得られた5種の不織布(第1及び第2図中の黒丸2〜
6に対応)の比容積と裂断長(TD,MD)の値を表−1
に、比容積と裂断長との関係を第1図及び第2図に示
す。
The obtained five types of nonwoven fabrics (black circles 2 to 2 in FIGS. 1 and 2)
Table 1 shows the values of specific volume and breaking length (TD, MD)
1 and 2 show the relationship between the specific volume and the breaking length.

第1図及び第2図より、比較例2〜6の複合繊維より
得られた不織布では、それぞれのプロットが、負の勾配
を有する直線上にほぼ位置し、比容積の増加とともに裂
断長は減少すること、すなわち、嵩高性と高融着強度の
両者を同時に満足することはむずかしいことが明らかで
ある。
From FIGS. 1 and 2, in the nonwoven fabrics obtained from the composite fibers of Comparative Examples 2 to 6, the respective plots are almost positioned on a straight line having a negative gradient, and the breaking length increases with the increase in the specific volume. It is apparent that it is difficult to decrease, that is, to simultaneously satisfy both bulkiness and high fusion strength.

第1図及び第2図より、例えば、比容積がほぼ同一
(70〜75cm3/g)の比較例5(黒丸5)の不織布と実施
例2,4及び5(白丸2,4及び5)の不織布との裂断長(T
D,MD)を対比すれば、比較例5の不織布の融着強度は実
施例2,4及び5の不織布の融着強度よりもはるかに劣
り、結果として本発明の複合繊維から得られた不織布の
優位性は明らかである。
From FIGS. 1 and 2, for example, the nonwoven fabric of Comparative Example 5 (black circle 5) and Examples 2, 4 and 5 (white circles 2, 4 and 5) having a specific volume of almost the same (70 to 75 cm 3 / g) Length with nonwoven fabric (T
D, MD), the fusion strength of the nonwoven fabric of Comparative Example 5 is much lower than the fusion strength of the nonwoven fabrics of Examples 2, 4, and 5, and as a result, the nonwoven fabric obtained from the composite fiber of the present invention. The advantage of is obvious.

比較例7〜8 タルクの代りに、本発明で用いられる板状粒子形状を
有する無機系フィラーに含まれない炭酸カルシウム(竹
原化学(株)製2480K)及び酸化チタンを、高融点成分
の重量に対してそれぞれ2%用いた以外は実施例1〜6
と同様にして比較例7及び8の鞘芯型複合繊維を得たの
ち、これらの複合繊維から実施例1〜6と同様の方法で
不織布を得た。
Comparative Examples 7 to 8 Instead of talc, calcium carbonate (2480K manufactured by Takehara Chemical Co., Ltd.) and titanium oxide, which are not included in the inorganic filler having a plate-like particle shape used in the present invention, were added to the weight of the high melting point component. Examples 1 to 6 except that 2% was used for each.
After obtaining the sheath-core type composite fibers of Comparative Examples 7 and 8 in the same manner as in Example 1, nonwoven fabrics were obtained from these composite fibers in the same manner as in Examples 1 to 6.

比較例7及び8の複合繊維から得られた不織布の比容
積及び裂断長(TD,MD)の値を表−1に、そして比容積
と裂断長との関係を第1図及び第2図に示す。
Table 1 shows the values of the specific volume and the breaking length (TD, MD) of the nonwoven fabric obtained from the composite fibers of Comparative Examples 7 and 8, and FIGS. 1 and 2 show the relationship between the specific volume and the breaking length. Shown in the figure.

第1図及び第2図より明瞭なように、炭酸カルシウム
や酸化チタンを使用しても嵩高性と高融着強度を同時に
満足させることができず、逆に添加剤無添加の場合より
も劣る結果も得られた。これは、添加剤として用いられ
た炭酸カルシウム及び酸化チタンが、板状粒子形状では
なく、球状粒子形状を有しているので、嵩高性と高融着
強度との同時達成に寄与しないばかりが、場合により高
融点成分中にあってマイナスの作用をするからと考えら
れる。
As is clear from FIGS. 1 and 2, even if calcium carbonate or titanium oxide is used, bulkiness and high fusion strength cannot be simultaneously satisfied, and on the contrary, it is inferior to the case where no additive is added. Results were also obtained. This is because calcium carbonate and titanium oxide used as additives have a spherical particle shape instead of a plate-like particle shape, so that they do not contribute to simultaneous achievement of bulkiness and high fusion strength, This is considered to be due to a negative effect in the high melting point component in some cases.

[発明の効果] 高融点成分と低融点成分とを溶融複合紡糸してなる熱
融着性複合繊維において、前記高融点成分に板状粒子形
状を有する無機系フィラーを高融点成分の重量に対して
0.1〜13%含有させることにより、嵩高性と高融着強度
の両者を満足する不織布を得るに好適な熱融着性複合繊
維が得られた。
[Effect of the Invention] In a heat-fusible conjugate fiber obtained by melt-spinning a high-melting component and a low-melting component, an inorganic filler having a plate-like particle shape in the high-melting component is added to the weight of the high-melting component. hand
By containing 0.1 to 13%, a heat-fusible conjugate fiber suitable for obtaining a nonwoven fabric satisfying both bulkiness and high fusion strength was obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は、本発明の実施例及び比較例の複合
繊維から得られた不織布の比容積と裂断長との関係を示
すグラフである。
FIG. 1 and FIG. 2 are graphs showing the relationship between the specific volume and the breaking length of the nonwoven fabric obtained from the conjugate fibers of Examples and Comparative Examples of the present invention.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】高融点成分と低融点成分とを溶融複合紡糸
してなる熱融着性複合繊維において、前記高融点成分に
板状粒子形状を有する無機系フィラーを高融点成分の重
量に対して0.1〜13%含有させたことを特徴とする熱融
着性複合繊維。
1. A heat-fusible conjugate fiber obtained by melt-spinning a high melting point component and a low melting point component, wherein the high melting point component has an inorganic filler having a plate-like particle shape relative to the weight of the high melting point component. 0.1 to 13% by weight.
【請求項2】請求項1に記載の熱融着性複合繊維から得
られる不織布。
2. A non-woven fabric obtained from the heat-fusible conjugate fiber according to claim 1.
JP63095857A 1988-04-19 1988-04-19 Heat-fusible composite fiber Expired - Fee Related JP2578469B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63095857A JP2578469B2 (en) 1988-04-19 1988-04-19 Heat-fusible composite fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63095857A JP2578469B2 (en) 1988-04-19 1988-04-19 Heat-fusible composite fiber

Publications (2)

Publication Number Publication Date
JPH01266216A JPH01266216A (en) 1989-10-24
JP2578469B2 true JP2578469B2 (en) 1997-02-05

Family

ID=14149037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63095857A Expired - Fee Related JP2578469B2 (en) 1988-04-19 1988-04-19 Heat-fusible composite fiber

Country Status (1)

Country Link
JP (1) JP2578469B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06141761A (en) * 1992-10-31 1994-05-24 Yamanaka Sangyo Kk Casing material for ham and sausage
US5780155A (en) * 1994-08-11 1998-07-14 Chisso Corporation Melt-adhesive composite fibers, process for producing the same, and fused fabric or surface material obtained therefrom
FR2763073B1 (en) 1997-05-07 2000-03-03 Appryl Snc POLYMER LOADED BY SOLID PARTICLES PASSED BY A SUSPENSION STATE
KR100407219B1 (en) * 1998-06-10 2004-03-12 (주)성신텍스타일 Manufacturing method of illite nylon filament yarn
KR20000018829A (en) * 1998-09-03 2000-04-06 문태수 Method for producing synthetic fiber mixed with illite
DE10115941B4 (en) * 2000-04-04 2006-07-27 Mi Soo Seok Process for the production of fibers with functional mineral powder and fibers made therefrom
KR100477148B1 (en) * 2002-04-29 2005-03-17 관 모 이 The process of manufacturing paper, cotton, mineral mixed healthy bioceramic padding

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5361718A (en) * 1976-11-15 1978-06-02 Ruudein Arufuretsudo Fiber and method of producing same
JPS54120734A (en) * 1978-03-07 1979-09-19 Chisso Corp Heat-fusible fibers
JPS60199942A (en) * 1984-03-24 1985-10-09 チッソ株式会社 Fiber product having fluorescence

Also Published As

Publication number Publication date
JPH01266216A (en) 1989-10-24

Similar Documents

Publication Publication Date Title
KR101453591B1 (en) Meltblown fiber web with staple fibers
KR101471230B1 (en) Molded respirator comprising meltblown fiber web with staple fibers
US5350620A (en) Filtration media comprising non-charged meltblown fibers and electrically charged staple fibers
EP0615007B1 (en) Electret fibers with improved charge stabilisation, process for their production and textile material containing these electret fibers
US4729371A (en) Respirator comprised of blown bicomponent fibers
DE602004013039T2 (en) MULTICOMPONENT STAPLE FIBER WITH POLYARYLENE SULFIDE COMPONENT
JP3079571B2 (en) Polytetrafluoroethylene fiber, cotton-like material containing the same, and method for producing the same
US4261373A (en) Tobacco filters and method for forming same
JPH02289159A (en) Flexible nonwoven fabric of continuous fiber
JPH02200868A (en) Ultrafine conjugate fiber and woven or nonwoven fabric thereof
US5780155A (en) Melt-adhesive composite fibers, process for producing the same, and fused fabric or surface material obtained therefrom
CA2193804A1 (en) Bulky long fiber and split yarn of polytetrafluoroethylene, method of manufacturing the same, cotton-like material manufacturing method using the fiber and yarn, and dust collecting filter cloth
JPH0929021A (en) Filter
JP2578469B2 (en) Heat-fusible composite fiber
JPH02169718A (en) Polyolefinic heat fusible fiber and nonwoven fabric thereof
JP3657415B2 (en) Nonwoven fabric and method for producing the same
JP3110566B2 (en) Method for producing polypropylene-based nonwoven fabric
JP2003227061A (en) Spunbonded nonwoven fabric composed of multifilament yarn and method for producing the same
EP0089113A2 (en) Fire retardant composite fibres and process for producing them
GB2143867A (en) Three-dimensional textile structures
JPH04194013A (en) Fiber capable of producing ultrafine fiber
JP2846675B2 (en) Composite fiber with excellent bulkiness
KR20130035503A (en) Melt blown nonwoven fabric having high bulkiness and manufacturing method thereof
JPH08284019A (en) Splitting fiber and fibrous sheetlike material using the same
EP0581909B1 (en) Non-woven Fabric

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees