JP2577562B2 - Glow discharge decomposition equipment - Google Patents

Glow discharge decomposition equipment

Info

Publication number
JP2577562B2
JP2577562B2 JP62129299A JP12929987A JP2577562B2 JP 2577562 B2 JP2577562 B2 JP 2577562B2 JP 62129299 A JP62129299 A JP 62129299A JP 12929987 A JP12929987 A JP 12929987A JP 2577562 B2 JP2577562 B2 JP 2577562B2
Authority
JP
Japan
Prior art keywords
substrate
glow discharge
film
heat source
discharge decomposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62129299A
Other languages
Japanese (ja)
Other versions
JPS63293166A (en
Inventor
永 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=15006133&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2577562(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP62129299A priority Critical patent/JP2577562B2/en
Publication of JPS63293166A publication Critical patent/JPS63293166A/en
Application granted granted Critical
Publication of JP2577562B2 publication Critical patent/JP2577562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Chemical Vapour Deposition (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は筒状基板上にアモルファスシリコン層などを
形成することができるグロー放電分解装置に関し、その
反応室内部への筒状基板の挿入又は取出しが容易となっ
たグロー放電分解装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a glow discharge decomposition apparatus capable of forming an amorphous silicon layer or the like on a cylindrical substrate, and relates to the insertion or insertion of the cylindrical substrate into a reaction chamber. The present invention relates to a glow discharge decomposition device that can be easily taken out.

〔従来技術及びその問題点〕[Prior art and its problems]

今日、アモルファスシリコンを光導電層とした電子写
真感光体が実用化されており、その優れた耐摩耗性、耐
熱性及び光感度特性並びに無公害性等々によって急速に
市場に浸透しつつある。
Today, electrophotographic photoreceptors using amorphous silicon as a photoconductive layer have been put to practical use, and are rapidly penetrating the market due to their excellent abrasion resistance, heat resistance, photosensitivity characteristics, and pollution-free properties.

この電子写真感光体はグロー放電分解法によって形成
されるが、そのためのグロー放電分解装置は例えば第3
図に示すような構成である。
The electrophotographic photosensitive member is formed by a glow discharge decomposition method.
The configuration is as shown in the figure.

第3図において、1は円筒形状の反応容器であり、こ
の反応容器1は例えばセラミックスから成る絶縁性の蓋
体1a、導電性の周壁1b、導電性の底板1cから成り、更に
2は円筒形状のグロー放電用電極板、3はアルミニウム
等から成る筒状の導電性基板支持体、4はアルミニウム
などから成る成膜用筒状基板であり、この基板4は基板
支持体の鍔部3aの上に載置されており、基板支持体3と
基板4のそれぞれの周面は相互にゆるやかに接触して電
気的に導通しており、回転駆動手段(図示せず)によっ
て基板支持体3が回転し、これに伴って筒状基板4が回
転する。
In FIG. 3, reference numeral 1 denotes a cylindrical reaction vessel. This reaction vessel 1 comprises an insulating lid 1a made of, for example, ceramics, a conductive peripheral wall 1b, and a conductive bottom plate 1c. The glow discharge electrode plate 3 is a cylindrical conductive substrate support made of aluminum or the like, and 4 is a film-forming cylindrical substrate made of aluminum or the like. The substrate 4 is formed on a flange 3a of the substrate support. The peripheral surfaces of the substrate support 3 and the substrate 4 are loosely in contact with each other and are electrically connected to each other, and the rotation of the substrate support 3 by rotation driving means (not shown). Accordingly, the cylindrical substrate 4 rotates.

また、周壁1bは電極板2と電気的に導通しており、一
方、底板1cは基板支持体3と電気的に導通して接地され
ている。そして、高周波電源5の一方の出力端子は接地
され、他方の出力端子は周壁1bと接続されており、この
ような電力印加系のもとで電極板2と基板4の間でグロ
ー放電が発生する。尚、6は周壁1b及び電極板2のそれ
ぞれと底板1cとを電気的に絶縁するリング体である。
The peripheral wall 1b is electrically connected to the electrode plate 2, while the bottom plate 1c is electrically connected to the substrate support 3 and is grounded. One output terminal of the high-frequency power supply 5 is grounded, and the other output terminal is connected to the peripheral wall 1b. Glow discharge occurs between the electrode plate 2 and the substrate 4 under such a power application system. I do. Reference numeral 6 denotes a ring body for electrically insulating each of the peripheral wall 1b and the electrode plate 2 from the bottom plate 1c.

7はガス導入口、8はガス排出口であり、a−Si成膜
用ガスがガス導入口7を介して反応容器1の内部へ導入
され、次いで電極板2に貫設された複数個のガス噴出口
9を通して基板4へ向けて吹き出される。
Reference numeral 7 denotes a gas inlet, 8 denotes a gas outlet, and a-Si film forming gas is introduced into the reaction vessel 1 through the gas inlet 7, and then a plurality of gas formed through the electrode plate 2. The gas is blown toward the substrate 4 through the gas outlet 9.

a−Si感光体ドラムを製作する場合、上記のような電
力印加系及びガス流入系の下で基板4が回転し、更に基
板支持体3の内部に配設したヒータ10によって基板4を
加熱し、その基板温度を所要の温度範囲内に設定し、グ
ロー放電分解によって基板4上にa−Si膜が気相成長す
る。そして、この気相成長に伴って生じる分解残余ガス
はガス排出口8を介して排出される。尚、図中の矢印は
ガス流の方向を表わす。
When an a-Si photosensitive drum is manufactured, the substrate 4 is rotated under the above-described power application system and gas inflow system, and further heated by the heater 10 disposed inside the substrate support 3. The substrate temperature is set within a required temperature range, and an a-Si film is vapor-phase grown on the substrate 4 by glow discharge decomposition. Then, the residual decomposition gas generated during the vapor phase growth is discharged through the gas discharge port 8. The arrows in the figure indicate the direction of the gas flow.

しかし乍ら、上記のようなグロー放電分解装置によれ
ば、基板4を基板支持体3へ挿着する場合或いは基板支
持体3より取出す場合、基板4の内周面と期板支持体3
の外周面が擦れ、これによって両者の構成材、例えばア
ルミニウムが微粉状となって飛び散り、この微粉が基板
4の表面に付着し、その結果、その基板面上に成膜され
たa−Si膜に欠陥が生じる。
However, according to the above-described glow discharge decomposition apparatus, when the substrate 4 is inserted into the substrate support 3 or when the substrate 4 is removed from the substrate support 3, the inner peripheral surface of the substrate 4 and the initial plate support 3
Are rubbed, whereby both components, for example, aluminum, are scattered in the form of fine powder, and the fine powder adheres to the surface of the substrate 4, and as a result, the a-Si film formed on the substrate surface Defects.

また、成膜終了後その成膜基板を取り出し、次いで基
板支持体3を取り出すという作業がある。しかし乍ら、
この基板支持体3はグロー放電により汚染されており、
そのために次回の成膜に備えて洗浄する必要がある。
Further, there is an operation of taking out the film-formed substrate after the film formation is completed, and then taking out the substrate support 3. However,
This substrate support 3 is contaminated by glow discharge,
For this purpose, it is necessary to clean the film before the next film formation.

更に、基板の装着や取出しは人手によって行われてお
り、その基板の成膜面が手などによって汚染されないよ
うに気を付ける必要がある。
Furthermore, the mounting and unloading of the substrate are performed manually, and it is necessary to take care that the film formation surface of the substrate is not contaminated by the hand or the like.

このように一度の成膜形成を行うに当たっては、それ
に要する工程数が多くなり、煩雑な作業が要求され、更
に人手が多くなるために製造管理が難しくなり、その結
果、信頼性の高い成膜形成を行うことが難しくなる。
As described above, in performing one-time film formation, the number of steps required for the film formation increases, complicated work is required, and the number of manual operations increases, so that manufacturing control becomes difficult, and as a result, highly reliable film formation is performed. The formation becomes difficult.

また、基板支持体3は基板4とヒータ10の間に介在し
ており、ヒータ10の輻射加熱を妨げており、 そのために基板を所要温度にまで上昇させるための加熱
時間が長くなっている。そして、成膜後の基板冷却にお
いても基板支持体がもつ熱容量に応じてその冷却に要す
る時間が長くなる。
Further, the substrate support 3 is interposed between the substrate 4 and the heater 10 and hinders the radiant heating of the heater 10, thereby increasing the heating time for raising the substrate to a required temperature. Further, even in cooling the substrate after film formation, the time required for the cooling becomes longer according to the heat capacity of the substrate support.

〔発明の目的〕 従って本発明は叙上に鑑みて案出されたものであり、
その目的は成膜操作を簡略化し、これによって製造効率
及び製造コストを改善したグロー放電分解装置を提供す
ることにある。
[Objects of the Invention] Accordingly, the present invention has been devised in view of the above description,
An object of the present invention is to provide a glow discharge decomposition apparatus which simplifies a film forming operation and thereby improves production efficiency and production cost.

本発明の他の目的は基板に対する加熱又は冷却の応答
性を高め、これによって加熱時間及び冷却時間を短縮す
ることができたグロー放電分解装置を提供することにあ
る。
Another object of the present invention is to provide a glow discharge decomposition apparatus capable of improving the response of heating or cooling to a substrate, thereby shortening the heating time and cooling time.

〔問題点を解決するための手段〕[Means for solving the problem]

本発明によれば、成膜用ガスが導入される反応室内部
に成膜用筒状基板が設置され、該基板に対向してグロー
放電用電極板が配置されており、該基板内部に設置され
た熱源によって該基板が所要温度にまで加熱され且つグ
ロー放電の発生によって基板上に成膜されるグロー放電
分解装置において、前記熱源の形状が管状又は棒状であ
り且つ前記基板内面側に挿入されたロボットハンドが該
基板内面を押圧して該基板を引き上げることができるよ
うに該熱源と該基板が離れていることを特徴とするグロ
ー放電分解装置が提供される。
According to the present invention, a tubular substrate for film formation is installed inside a reaction chamber into which a gas for film formation is introduced, and an electrode plate for glow discharge is arranged opposite to the substrate, and installed inside the substrate. In a glow discharge decomposition apparatus in which the substrate is heated to a required temperature by a heat source and a film is formed on the substrate by generation of a glow discharge, the shape of the heat source is tubular or rod-shaped, and the heat source is inserted into the inner surface of the substrate. A glow discharge decomposition device is provided, wherein the heat source and the substrate are separated so that the robot hand can push up the substrate by pressing the inner surface of the substrate.

以下、本発明をa−Si感光体ドラムを製作することが
できるグロー放電分解装置を例にとって詳細に説明す
る。
Hereinafter, the present invention will be described in detail by taking a glow discharge decomposition apparatus capable of manufacturing an a-Si photosensitive drum as an example.

本発明のグロー放電分解装置はロボットハンドにより
成膜用筒状基板の挿入又は取出しが可能となったことが
特徴であり、この装置を第1図と第2図によって説明す
る。尚、これらの図において第3図と同一箇所には同一
符号が付してある。
The glow discharge decomposition apparatus according to the present invention is characterized in that a cylindrical substrate for film formation can be inserted or removed by a robot hand. This apparatus will be described with reference to FIGS. 1 and 2. FIG. In these figures, the same parts as those in FIG. 3 are denoted by the same reference numerals.

第1図は第3図に示した基板支持体3及びヒータ10が
付設されておらず、これに代わって底板1cの上にはリン
グ状の基板載置体11が形成されており、この基板載置体
11の上に基板4が載置されており、更にこの基板4の概
ね中心軸に位置する箇所に管状又は棒状の熱源12が設定
されており、そして、蓋体1aが取り外され、ロボットハ
ンド13が反応室1の上方より下りて基板4を持着してい
る。
FIG. 1 does not include the substrate support 3 and the heater 10 shown in FIG. 3, but instead has a ring-shaped substrate mounting body 11 formed on a bottom plate 1c. Mounting body
The substrate 4 is placed on the substrate 11, and a tubular or rod-shaped heat source 12 is set at a position substantially located on the central axis of the substrate 4. The lid 1 a is removed, and the robot hand 13 is removed. Are attached from below the reaction chamber 1 to the substrate 4.

このロボットハンド13は軸部13aと当接部13bとから成
り、この当接部13bは基板4の内周面を押圧しており、
更に軸部13aは上下方向に移動させることができ、これ
により、基板4を反応室内部へ挿入したり又は反応室よ
り取出したりすることができる。
The robot hand 13 includes a shaft portion 13a and a contact portion 13b, and the contact portion 13b presses the inner peripheral surface of the substrate 4,
Further, the shaft 13a can be moved in the vertical direction, whereby the substrate 4 can be inserted into or taken out of the reaction chamber.

熱源12は管状又は棒状に形成されており、その径は基
板4の径に比べて著しく小さくなっており、そのために
ロボットハンド13を熱源12と基板4の間に挿入すること
ができる。
The heat source 12 is formed in the shape of a tube or a rod, and its diameter is significantly smaller than the diameter of the substrate 4, so that the robot hand 13 can be inserted between the heat source 12 and the substrate 4.

第2図はグロー放電を発生させて成膜ができる状態を
示しており、基板4の上にはキャップ体14が載置され、
これにより、基板4の内部空間がその外部空間と隔絶さ
れ、基板内部へ放電が入り込まなくなる。また、底板1c
は基板載置体11及び基板4と電気的に導通し且つ接地さ
れており、そのため、基板4と電極板2の間でグロー放
電が生じる。
FIG. 2 shows a state in which a film can be formed by generating a glow discharge, and a cap body 14 is placed on the substrate 4.
As a result, the internal space of the substrate 4 is isolated from the external space, so that discharge does not enter the substrate. Also, bottom plate 1c
Is electrically connected to the substrate mounting body 11 and the substrate 4 and is grounded, so that a glow discharge occurs between the substrate 4 and the electrode plate 2.

前記熱源12はその形状が管状又は棒状であり且つ加熱
可能であるならば種々の構成をとることができ、例えば
第4図及び第5図に示すような熱源がある。
The heat source 12 can have various configurations as long as it is tubular or rod-shaped and can be heated, and for example, there is a heat source as shown in FIG. 4 and FIG.

第4図は熱源12の一部を切り欠いた破断面図であり、
第5図は第4図中の切断面線X−Xによる断面図であ
る。
FIG. 4 is a cutaway view of the heat source 12 with a part cut away.
FIG. 5 is a cross-sectional view taken along line XX of FIG.

この熱源12はその一端が閉塞された細管状でSUSなど
から成るシース15と、このシース15の内部に充填された
MgOなどから成る絶縁部材16と、更にこの絶縁部材16の
内部に埋設された発熱性の素線17とから成り、この素線
17はNi−Crなどから成る螺旋状の電熱線であり、これが
U字型に配設されており、この発熱によってシース15が
加熱され、熱源12となる。
The heat source 12 is a thin tube having one end closed and made of a sheath 15 made of SUS or the like, and the inside of the sheath 15 is filled.
An insulating member 16 made of MgO or the like, and a heat generating element wire 17 buried inside the insulating member 16,
Reference numeral 17 denotes a spiral heating wire made of Ni-Cr or the like, which is disposed in a U-shape. The heat generated by this heating heats the sheath 15 and becomes the heat source 12.

このような構成のグロー放電分解装置によりa−Siを
成膜形成する場合には、反応室1の内部を脱気し、真空
度を著しく高め、次いでa−Si成膜用ガスをガス導入口
7、ガス噴出口9を介して基板4へ向けて噴き出し、熱
源12により基板4を所要な温度になるように加熱する。
また、基板載置体11を回転駆動手段(図示せず)によっ
て回転し、これに伴って基板4を回転し、そして、グロ
ー放電により基板上にa−Si膜を形成する。
When a-Si is formed into a film by the glow discharge decomposition apparatus having such a configuration, the inside of the reaction chamber 1 is evacuated, the degree of vacuum is significantly increased, and then the a-Si film forming gas is supplied to the gas inlet. 7. The gas is ejected toward the substrate 4 via the gas ejection port 9 and the heat source 12 heats the substrate 4 to a required temperature.
Further, the substrate mounting body 11 is rotated by a rotation driving means (not shown), the substrate 4 is rotated accordingly, and an a-Si film is formed on the substrate by glow discharge.

上記のようなグロー放電分解装置においては、基板4
が熱源12によって直接加熱され、そのために熱応答性が
著しく高められ、基板を所定温度にまで高めるのに要す
る時間を短縮することができる。また、成膜終了後の基
板冷却についても自然放置又は冷却媒体を通して基板が
容易に冷却され、その冷却時間を短縮することができ
る。
In the glow discharge decomposition apparatus as described above, the substrate 4
Is directly heated by the heat source 12, thereby significantly increasing the thermal responsiveness, and shortening the time required to raise the substrate to a predetermined temperature. In addition, the substrate can be easily cooled after the film formation is completed by leaving it naturally or through a cooling medium, and the cooling time can be shortened.

そして、成膜終了後、蓋体1aを取り外し、キャップ体
14も取り出し、ロボットハンド13によりa−Si感光体ド
ラムを取り出す。次いで、次回の成膜を行うに当たって
反応室内部をガスエッチング等により洗浄する。
After the film formation, the lid 1a is removed, and the cap
The robot hand 13 also takes out the a-Si photosensitive drum. Next, when performing the next film formation, the inside of the reaction chamber is cleaned by gas etching or the like.

即ち、a−Si膜をグロー放電により形成した場合、そ
の放電に伴って汚染物が粉状又は膜状となって電極板2
や反応室内面に付着しており、このような汚染物を除去
するためにガスエッチングにより洗浄する場合、基板載
置体11の上に基板4と概ね同形状且つ同寸法のダミー用
基板をロボットハンド13により載置し、その上にキャッ
プ体14を載置し、蓋体1aを設置し、そして、CF4,SF6,NF
3,CCL4等々のエッチングガスを反応室内に導入し、この
ガスをグロー放電分解させると、その分解ガスが上記汚
染物をガス化し、これによって反応室内部が洗浄され
る。
That is, when the a-Si film is formed by glow discharge, contaminants become powdery or film-like with the discharge, and the electrode plate 2
When cleaning by gas etching to remove such contaminants, a dummy substrate having substantially the same shape and dimensions as the substrate 4 is placed on the substrate mounting body 11 by a robot. It is placed by the hand 13, the cap body 14 is placed thereon, the lid 1a is placed, and CF 4 , SF 6 , NF
When an etching gas such as 3 or CCL 4 is introduced into the reaction chamber and the gas is decomposed by glow discharge, the decomposition gas turns the contaminants into gas, thereby cleaning the inside of the reaction chamber.

このガスエッチング洗浄が終了すると蓋体1aを取り外
し、キャップ体14も取り外し、ロボットハンド13により
ダミー用基板を取り出し、その後、次回の成膜に使用さ
れる基板4を装着する。
When the gas etching cleaning is completed, the lid 1a is removed, the cap body 14 is also removed, the dummy substrate is taken out by the robot hand 13, and then the substrate 4 used for the next film formation is mounted.

このような成膜プロセスによれば、基板4がロボット
ハンドによって挿入又は取り出されており、そのため、
基板に人手が触れなくなる。
According to such a film forming process, the substrate 4 is inserted or removed by the robot hand.
No human touches the substrate.

〔発明の効果〕〔The invention's effect〕

以上の通り、本発明のグロー放電分解装置によれば、
基板と、それを設置するための支持体との擦れがなくな
り、これに起因した成膜欠陥が生じなくなり、その結
果、高品質且つ高信頼性の成膜形成ができるグロー放電
分解装置を提供することができる。
As described above, according to the glow discharge decomposition device of the present invention,
Provided is a glow discharge decomposition apparatus that eliminates rubbing between a substrate and a support on which the substrate is to be placed, and does not cause film formation defects due to the rubbing. As a result, high-quality and highly reliable film formation can be performed. be able to.

また本発明のグロー放電分解装置によれば、ロボット
ハンドを用いて基板の挿入又は取出しができようにな
り、更に基板の加熱時間又は冷却時間を短縮することが
でき、これにより、製造効率を高めて製造時間を短縮す
ることができ、そして、製造コストを低減させることが
できた高信頼性の成膜ができるようになった。
Further, according to the glow discharge decomposition apparatus of the present invention, it becomes possible to insert or remove a substrate by using a robot hand, and further reduce the heating time or cooling time of the substrate, thereby increasing the production efficiency. As a result, the manufacturing time can be shortened, and a highly reliable film can be formed with a reduced manufacturing cost.

尚、本発明は上記のような構成のグロー放電分解装置
に限られるものでなく、本発明の要旨を逸脱しない範囲
において種々の変更、改善などは何等差支えない。
Note that the present invention is not limited to the glow discharge decomposition device having the above configuration, and various changes and improvements can be made without departing from the scope of the present invention.

【図面の簡単な説明】[Brief description of the drawings]

第1図及び第2図は本発明グロー放電分解装置の説明
図、第3図は従来のグロー放電分解装置の説明図、第4
図は本発明グロー放電分解装置に設置される熱源の破断
面図、第5図は第4図中切断面線X−Xによる断面図で
ある。 2……グロー放電用電極板 4……成膜用筒状基板 12……熱源 13……ロボットハンド
1 and 2 are explanatory views of the glow discharge decomposition apparatus of the present invention, FIG. 3 is an explanatory view of a conventional glow discharge decomposition apparatus, and FIG.
The figure is a cross-sectional view of the heat source installed in the glow discharge decomposition apparatus of the present invention, and FIG. 5 is a cross-sectional view taken along the line XX in FIG. 2 ... Glow discharge electrode plate 4 ... Film forming tubular substrate 12 ... Heat source 13 ... Robot hand

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】成膜用ガスが導入される反応室内部に成膜
用筒状基板が設置され、該基板に対向してグロー放電用
電極板が配置されており、該基板内部に設置された熱源
によって該基板が所要温度にまで加熱され且つグロー放
電の発生によって基板上に成膜されるグロー放電分解装
置において、前記熱源の形状が管状又は棒状であり且つ
前記基板内面側に挿入されたロボットハンドが該基板内
面を押圧して該基板を引き上げることができるように該
熱源と該基板が離れていることを特徴とするグロー放電
分解装置。
1. A film-forming cylindrical substrate is installed inside a reaction chamber into which a film-forming gas is introduced, and a glow discharge electrode plate is arranged opposite to the substrate, and is installed inside the substrate. In a glow discharge decomposition apparatus in which the substrate is heated to a required temperature by a heat source and a film is formed on the substrate by generation of a glow discharge, the shape of the heat source is tubular or rod-shaped and inserted into the inner surface side of the substrate. A glow discharge decomposition apparatus, wherein the heat source and the substrate are separated so that a robot hand can push up the substrate by pressing the inner surface of the substrate.
JP62129299A 1987-05-26 1987-05-26 Glow discharge decomposition equipment Expired - Fee Related JP2577562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62129299A JP2577562B2 (en) 1987-05-26 1987-05-26 Glow discharge decomposition equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62129299A JP2577562B2 (en) 1987-05-26 1987-05-26 Glow discharge decomposition equipment

Publications (2)

Publication Number Publication Date
JPS63293166A JPS63293166A (en) 1988-11-30
JP2577562B2 true JP2577562B2 (en) 1997-02-05

Family

ID=15006133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62129299A Expired - Fee Related JP2577562B2 (en) 1987-05-26 1987-05-26 Glow discharge decomposition equipment

Country Status (1)

Country Link
JP (1) JP2577562B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60184678A (en) * 1984-03-02 1985-09-20 Canon Inc Vacuum treating device
JPS6125149A (en) * 1984-07-14 1986-02-04 Mita Ind Co Ltd Continuous coating method of drum
JPS61221368A (en) * 1985-03-27 1986-10-01 Kyocera Corp Mass production of amorphous silicon film
JPS6220875A (en) * 1985-07-19 1987-01-29 Canon Inc Accumulated film formation device

Also Published As

Publication number Publication date
JPS63293166A (en) 1988-11-30

Similar Documents

Publication Publication Date Title
JP2720420B2 (en) Film formation / etching equipment
US5310453A (en) Plasma process method using an electrostatic chuck
JP2577562B2 (en) Glow discharge decomposition equipment
SE465100B (en) PROCEDURE AND DEVICE TO PROCESS IN A COLD WALL REACTOR
CN1170210C (en) Fixing roll assembly of electronic photography image-forming device
JPS62245626A (en) Semiconductor manufacturing apparatus
JP2608410B2 (en) Glow discharge decomposition equipment
JP2860653B2 (en) Plasma processing method
JPS59100265A (en) Device for forming amorphous silicon photosensitive layer
JP2657531B2 (en) Method of forming amorphous silicon film
JP2558469B2 (en) Glow discharge decomposition equipment
JPH0596063U (en) Glow discharge decomposition device
JP2620939B2 (en) Glow discharge decomposition equipment
JPS5871369A (en) Producing device for photosensitive body
JP2721847B2 (en) Plasma processing method and vertical heat treatment apparatus
JPH0543095Y2 (en)
JPS62256966A (en) Film forming device
JPH10186698A (en) Photoreceptor and glow discharge decomposition device
JPH01107542A (en) Plasma processor
JPS6159381A (en) Fixing device
JP2958850B2 (en) Plasma CVD apparatus and method for manufacturing amorphous silicon photoreceptor using the same
JPS6013075A (en) Plasma cvd device
JPH0650336U (en) Film forming equipment
JPS62218570A (en) Apparatus for producing deposited film
JP2577397Y2 (en) Glow discharge decomposition equipment

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees