JP2576745B2 - Flameless atomic absorption spectrophotometer - Google Patents

Flameless atomic absorption spectrophotometer

Info

Publication number
JP2576745B2
JP2576745B2 JP4269498A JP26949892A JP2576745B2 JP 2576745 B2 JP2576745 B2 JP 2576745B2 JP 4269498 A JP4269498 A JP 4269498A JP 26949892 A JP26949892 A JP 26949892A JP 2576745 B2 JP2576745 B2 JP 2576745B2
Authority
JP
Japan
Prior art keywords
heating
heating tube
tube
window
atomic absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4269498A
Other languages
Japanese (ja)
Other versions
JPH0694607A (en
Inventor
友裕 中野
玄 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP4269498A priority Critical patent/JP2576745B2/en
Priority to AU46186/93A priority patent/AU672803B2/en
Priority to US08/116,695 priority patent/US5424832A/en
Priority to EP93307167A priority patent/EP0587444B1/en
Priority to DE69322563T priority patent/DE69322563T2/en
Priority to CN93116810.4A priority patent/CN1046032C/en
Publication of JPH0694607A publication Critical patent/JPH0694607A/en
Application granted granted Critical
Publication of JP2576745B2 publication Critical patent/JP2576745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、フレームレス原子吸光
分光光度計に関する。
The present invention relates to a flameless atomic absorption spectrophotometer.

【0002】[0002]

【従来の技術】フレームレス原子吸光分光光度計では、
グラファイトチューブ等の加熱管の中に試料を入れ、加
熱管により試料を高温に加熱して原子化し、その中に測
定光を通過させてその吸光度を測定する。
2. Description of the Related Art In a frameless atomic absorption spectrophotometer,
A sample is placed in a heating tube such as a graphite tube, the sample is heated to a high temperature by the heating tube to atomize, and a measurement light is passed through the sample to measure the absorbance.

【0003】このようなフレームレス原子吸光分光光度
計で有機物中の金属の含有量を測定しようとする場合、
通常、有機物を濃度既知の水溶液として加熱管の中に所
定量だけ滴下し、上記の通り原子化して含有金属量を測
定する。ここで、正確な測定を行なうためには、目的と
する金属成分を原子化する前に予め試料から水分や有機
物等の妨害成分を除去しておく必要がある。そのため従
来より、フレームレス原子吸光分光光度計では図1の上
部に示すようなパターンで加熱管の温度をプログラム制
御するようにしていた。すなわち、最初は100℃程度
の温度で数十秒程度加熱し、試料の水分を蒸発させる
(乾燥)。次に、100〜1000℃程度の温度範囲で
数十秒程度加熱し、有機物を気化させる(灰化)。こう
して水分、有機物を十分に除去した後、加熱管を高温
(1000〜3000℃程度)に加熱し、残った主に金
属成分から成る分析成分を原子化して吸光分光光度測定
を行なう。なお、この吸光分光光度測定の時間は数秒程
度である。
When the content of a metal in an organic substance is to be measured by such a flameless atomic absorption spectrophotometer,
Ordinarily, a predetermined amount of an organic substance is dropped into a heating tube as an aqueous solution having a known concentration, atomized as described above, and the contained metal amount is measured. Here, in order to perform an accurate measurement, it is necessary to remove interfering components such as moisture and organic substances from the sample in advance before atomizing the target metal component. Therefore, conventionally, in the frameless atomic absorption spectrophotometer, the temperature of the heating tube is program-controlled in a pattern as shown in the upper part of FIG. That is, first, the sample is heated at a temperature of about 100 ° C. for about several tens of seconds to evaporate the moisture of the sample (drying). Next, it is heated in a temperature range of about 100 to 1000 ° C. for about several tens of seconds to vaporize an organic substance (ashing). After the water and organic substances are sufficiently removed in this way, the heating tube is heated to a high temperature (about 1000 to 3000 ° C.), and the remaining analytical components mainly composed of metal components are atomized to perform absorption spectrophotometry. In addition, the time of this absorption spectrophotometry is about several seconds.

【0004】上記加熱パターンのうち、灰化時には有機
物が燃焼するため、煙が発生する。加熱管内で発生した
灰化時の煙は、図2(a)に示すように、加熱管21の
側面に設けられた試料装入口22からも排出されるが、
測定光の光軸23方向にも拡散し、この煙が後の原子化
時まで加熱管21内に滞留して測定に悪影響を及ぼす。
そのため、図2(b)に示すように、加熱管21の両端
(実際には、加熱管21を挟み、かつ、覆う電極24
a、24bの両端)に透明な石英板による窓25a,2
5bを設け、電極24a、24bの両端側(ただし、窓
25a,25bよりは内側)に設けたインナガス通路2
6より加熱管21内にAr等の不活性ガス(インナガ
ス)を流すようにしていた。これにより、灰化時に発生
する煙は光軸23方向には広がらず、インナガスにより
押されて試料装入口22から強制的に、かつ、速やかに
排出される。なお、加熱管21と電極24a,24bの
間の空間にも同様に不活性ガス(アウタガス)がアウタ
ガス通路27から送り込まれ、グラファイト製の加熱管
21の酸化消耗を防止するようになっている。アウタガ
スは両電極24a,24bの隙間28から排出される。
[0004] Among the above-mentioned heating patterns, organic matter is burned during incineration, so that smoke is generated. As shown in FIG. 2A, the smoke generated during the ashes generated in the heating tube is also discharged from a sample loading inlet 22 provided on the side surface of the heating tube 21,
The measurement light is also diffused in the direction of the optical axis 23, and this smoke stays in the heating tube 21 until later atomization, which adversely affects the measurement.
Therefore, as shown in FIG. 2B, both ends of the heating tube 21 (actually, the electrodes 24 that sandwich and cover the heating tube 21)
windows 25a, 2 made of a transparent quartz plate
5b, and inner gas passages 2 provided at both ends of the electrodes 24a, 24b (but inside the windows 25a, 25b).
From 6, an inert gas (inner gas) such as Ar was allowed to flow into the heating tube 21. As a result, the smoke generated at the time of incineration does not spread in the direction of the optical axis 23, but is pushed by the inner gas and is forcibly and promptly discharged from the sample inlet 22. In addition, an inert gas (outer gas) is similarly fed into the space between the heating tube 21 and the electrodes 24a and 24b from the outer gas passage 27 to prevent the heating tube 21 made of graphite from being oxidized and consumed. The outer gas is discharged from the gap 28 between the electrodes 24a, 24b.

【0005】[0005]

【発明が解決しようとする課題】ところが、この石英窓
25a,25bは、薄いものを使用しても測定光の吸収
が避けられず、特に、波長200nm以下の短波長領域
において測定信号のS/N比の低下が問題となる(例え
ば、λ=190nmでは石英板1枚当たり約10%の損
失が生ずる)。
However, even if the quartz windows 25a and 25b are thin, absorption of the measuring light is inevitable even if they are thin. In particular, S / S of the measuring signal is short in a short wavelength region of 200 nm or less. The problem is that the N ratio decreases (for example, at λ = 190 nm, a loss of about 10% occurs per quartz plate).

【0006】本発明はこのような課題を解決するために
成されたものであり、その目的とするところは、灰化時
の煙による影響、及び、石英窓による測定光損失のいず
れをも防止して、高精度の測定を行なうことのできるフ
レームレス原子吸光分光光度計を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve such a problem, and an object of the present invention is to prevent both the influence of smoke at the time of ashing and the loss of measurement light due to a quartz window. Another object of the present invention is to provide a flameless atomic absorption spectrophotometer capable of performing highly accurate measurement.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に成された本発明では、側面に試料装入口を備えた加熱
管と、加熱管の周囲を覆う外包管と、加熱管の内部へガ
スを導入するために外包管に設けられたインナガス導入
口と、加熱管の加熱をプログラム制御する加熱制御部と
を備えたフレームレス原子吸光分光光度計において、 a)外包管のインナガス導入口よりも外側の両開口部に
開閉可能に設けられた窓板と、 b)加熱管の加熱プログラムの乾燥時及び灰化時には上
記開口部を閉成し原子化時には該開口部を開成するよう
に上記窓板を開閉する窓開閉制御部とを備えることを
特徴としている。
According to the present invention, which has been made to solve the above-mentioned problems, a heating tube having a sample loading inlet on a side surface, an outer envelope tube surrounding the heating tube, and an inside of the heating tube are provided. In a frameless atomic absorption spectrophotometer provided with an inner gas inlet provided in an outer tube for introducing gas and a heating control unit for program-controlling heating of the heating tube, a) from an inner gas inlet of the outer tube; B) a window plate which can be opened and closed at both outer openings, and b) an upper portion at the time of drying and incineration of the heating program of the heating tube.
Close the opening and open it during atomization.
It is characterized by and a window opening and closing controller for opening and closing the window plate.

【0008】[0008]

【作用】加熱制御部によるプログラム加熱の灰化の時に
は、窓開閉制御部が窓板を閉じる。これにより、灰化時
に発生した煙は加熱管内へは拡散せず、インナガスに追
われて加熱管の側面の試料装入口から速やかに排出され
る。このため、後の測定の際には妨害成分によるバック
グラウンドが最小限に抑えられる。プログラム加熱の原
子化の時には、窓開閉制御部が窓板を開ける。これによ
り、光源からの測定光は入口側の窓板通過による減衰を
生じることなく原子化された試料に照射され、出口側に
おいても減衰を受けることなく受光器に到達して、正確
な測定が行なわれる。なお、測定時には原子化された試
料をできる限り長く加熱管内に滞留させるため、インナ
ガスを停止することが望ましい。この場合、原子化した
試料が光軸方向に広がるようになるため、測定光が空間
的により長く試料ガス中を通過することになり、この点
からも測定の精度が上昇する。
When the program heating is incinerated by the heating control unit, the window opening / closing control unit closes the window plate. As a result, the smoke generated during the incineration does not diffuse into the heating tube, but is quickly expelled from the sample loading inlet on the side surface of the heating tube following the inner gas. For this reason, the background due to the interfering component is minimized in the subsequent measurement. At the time of atomization of program heating, the window opening / closing control unit opens the window plate. As a result, the measurement light from the light source irradiates the atomized sample without attenuating due to passing through the window plate on the entrance side, and reaches the light receiver without being attenuated on the exit side, so that accurate measurement can be performed. Done. At the time of measurement, it is desirable to stop the inner gas in order to keep the atomized sample in the heating tube as long as possible. In this case, since the atomized sample spreads in the direction of the optical axis, the measurement light spatially passes through the sample gas for a longer time, and this also increases the measurement accuracy.

【0009】[0009]

【実施例】本発明の一実施例を図1、図3〜図5により
説明する。本実施例のフレームレス原子吸光分光光度計
の構成は図3に示す通りである。光源31から発射され
た測定光は炉部32の内部にある加熱管21(図4)を
通過し、分光器34により分光されて検出器35により
その強度が検出される。制御部37は分光器34を制御
すると共に、検出器35からの信号を信号処理部36を
介して受け取り、測定試料の分析を行なう。なお、制御
部37にはキーボード等の操作部42及びLCD等の表
示部41が接続されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. The configuration of the flameless atomic absorption spectrophotometer of this embodiment is as shown in FIG. The measurement light emitted from the light source 31 passes through the heating tube 21 (FIG. 4) inside the furnace part 32, is separated by the spectroscope 34, and the intensity is detected by the detector 35. The control unit 37 controls the spectroscope 34, receives a signal from the detector 35 via the signal processing unit 36, and analyzes the measurement sample. Note that an operation unit 42 such as a keyboard and a display unit 41 such as an LCD are connected to the control unit 37.

【0010】炉部32の構造を図4により詳しく説明す
る。炉部32はグラファイト製の加熱管21、加熱管2
1を挟持する2個の電極24a,24b、及び、両電極
24a,24bの端部に設けられた開閉可能の窓板33
a,33b(及びその窓枠43a,43b)から構成さ
れる。窓板33a,33bの開閉機構は、図5(a)及
び(b)に示すように、モータ52及びギア53で回転
させて窓板33a,33bを窓枠43a,43b内に入
れるという形式でもよいし、図5(c)に示すようにソ
レノイドや空圧器等の平行移動装置54により平行移動
させる形式でもよい。
The structure of the furnace section 32 will be described in detail with reference to FIG. The furnace part 32 is made of graphite heating tube 21 and heating tube 2.
1, two electrodes 24a and 24b, and a window plate 33 that can be opened and closed and provided at the ends of both electrodes 24a and 24b.
a, 33b (and their window frames 43a, 43b). As shown in FIGS. 5A and 5B, the opening / closing mechanism of the window plates 33a and 33b may be rotated by a motor 52 and a gear 53 to put the window plates 33a and 33b into the window frames 43a and 43b. Alternatively, as shown in FIG. 5C, a type in which the parallel movement is performed by a parallel movement device 54 such as a solenoid or a pneumatic device may be used.

【0011】両電極24a,24bは加熱管21を挟持
して大電流を流し、加熱管21の通電加熱を行なうとい
う電極としての役割の他に、加熱管21を覆う外包管と
しての役割も果たしている。従って、加熱管21の側面
中央に設けられた試料装入口22に対応して、その部分
を覆う側の電極24aには試料装入口29が設けられて
いる。また、両電極24a,24b共に、加熱管21の
両端面と接触する箇所よりも外側であって窓枠43a,
43bよりは内側となる部分にはインナガス通路26
が、その接触箇所よりも中央側にはアウタガス通路27
が設けられている。
The electrodes 24a and 24b serve as electrodes for sandwiching the heating tube 21 to allow a large current to flow and energize and heat the heating tube 21, and also as an outer tube for covering the heating tube 21. I have. Therefore, a sample loading port 29 is provided on the electrode 24a on the side covering the portion corresponding to the sample loading port 22 provided at the center of the side surface of the heating tube 21. In addition, both electrodes 24a and 24b are located outside of a portion in contact with both end surfaces of the heating tube 21 and are located outside the window frame 43a,
The inner gas passage 26 is located on the inner side than 43b.
However, the outer gas passage 27 is located on the center side of the contact point.
Is provided.

【0012】図3に戻り、窓板33a,33bの開閉は
窓板駆動部38(図5(a)の場合にはモータ52等、
同図(b)の場合には平行移動装置54等)により行な
われ、インナガス通路26及びアウタガス通路27への
不活性ガスの供給はガス供給部39により行なわれる。
また、加熱管21の通電加熱のための電力は加熱電源部
40から供給される。
Returning to FIG. 3, the opening and closing of the window plates 33a and 33b are performed by opening and closing the window plate driving unit 38 (in the case of FIG.
In the case shown in FIG. 2B, the inert gas is supplied to the inner gas passage 26 and the outer gas passage 27 by the gas supply unit 39.
Further, electric power for energizing and heating the heating tube 21 is supplied from the heating power supply unit 40.

【0013】試料を加熱管21内に装入した後、操作者
が操作部42のスタートスイッチを押すと、制御部37
は次のような処理を行なう。まず、予め操作者により入
力された(或いは、ROM又は外部記憶装置等に格納さ
れている)プログラムに従い、加熱電源部40を制御す
ることにより図1の上部に示すようなパターンで加熱管
21の加熱を行なう。そして、この加熱プログラムに同
期して、窓板駆動部38及びガス供給部39を次のよう
に制御する(図1中段及び下段)。乾燥期及び灰化期に
おいては、窓板33a,33bを窓枠43a,43bに
挿入して加熱管21の両側を遮蔽するとともに、インナ
ガス通路26より不活性ガスを加熱管21の内部に送り
込み、加熱管21内で発生した乾燥期の水蒸気や灰化期
の煙を試料装入口22、29を通して速やかに外部へ排
出する。従って、灰化期の終了時には加熱管21の内部
からは測定時のバックグラウンドを構成するような不純
物はほぼ排除されている。なお、窓板33a,33bは
このようにガスを遮蔽することが目的であり、測定時に
は光軸23から取り外されるため、必ずしも透明である
必要はない。
After the sample is loaded into the heating tube 21 and the operator presses the start switch of the operation unit 42, the control unit 37
Performs the following processing. First, by controlling the heating power supply unit 40 in accordance with a program previously input by an operator (or stored in a ROM or an external storage device or the like), the heating tube 21 is controlled in a pattern as shown in the upper part of FIG. Perform heating. Then, in synchronization with this heating program, the window plate drive section 38 and the gas supply section 39 are controlled as follows (middle and lower rows in FIG. 1). In the drying period and the incineration period, the window plates 33a and 33b are inserted into the window frames 43a and 43b to shield both sides of the heating tube 21, and an inert gas is sent from the inner gas passage 26 into the heating tube 21. The vapor in the drying period and the smoke in the incineration period generated in the heating pipe 21 are quickly discharged to the outside through the sample inlets 22 and 29. Therefore, at the end of the ashing phase, impurities that constitute a background during measurement are almost completely removed from the inside of the heating tube 21. The purpose of the window plates 33a and 33b is to shield the gas in this way, and the window plates 33a and 33b are not necessarily transparent because they are removed from the optical axis 23 during measurement.

【0014】原子化のための加熱を開始する時点で、制
御部37は窓板駆動部38に対して、窓板33a,33
bを窓枠43a,43bから引き出すように指示し、測
定光の光軸23から光を吸収する可能性のあるものを排
除する。これと同時に、ガス供給部39に対してインナ
ガスの供給を停止するように指示する。これにより、加
熱管21内で原子化された試料のガスは光軸23方向に
広がり、より多くの部分が測定光の吸収に関与するよう
になる。なお、アウタガスは全期間を通じて流してお
く。
At the time of starting the heating for atomization, the control unit 37 sends the window plates 33a and 33 to the window plate driving unit 38.
b is drawn out of the window frames 43a and 43b, and those that may absorb light from the optical axis 23 of the measurement light are excluded. At the same time, it instructs the gas supply unit 39 to stop supplying the inner gas. As a result, the gas of the sample atomized in the heating tube 21 spreads in the direction of the optical axis 23, and more of the gas participates in the absorption of the measurement light. The outer gas is supplied throughout the entire period.

【0015】[0015]

【発明の効果】本発明に係るフレームレス原子吸光分光
光度計では、灰化期には加熱管の両側を窓板で遮蔽し、
発生する煙等を加熱管内で光軸方向に広がらせることな
く、速やかに試料装入口から排出させる。そして、試料
を原子化し、測定を行なう際には窓板を取り外す。これ
らにより、測定時に不要成分が滞留せず、バックグラウ
ンドノイズが低下するとともに、測定光が吸収を受ける
ことがないため、高精度の測定を行なうことができる。
In the flameless atomic absorption spectrophotometer according to the present invention, both sides of the heating tube are shielded by window plates during the ashing period,
The generated smoke and the like are quickly discharged from the sample loading inlet without spreading in the optical axis direction in the heating tube. Then, when the sample is atomized and the measurement is performed, the window plate is removed. As a result, unnecessary components do not stay at the time of measurement, the background noise is reduced, and the measurement light is not absorbed, so that highly accurate measurement can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の一実施例であるフレームレス原子吸
光分光光度計の加熱管の加熱プログラムと窓板の開閉及
びインナガス供給のタイミングチャート。
FIG. 1 is a timing chart of a heating program for a heating tube of a frameless atomic absorption spectrophotometer according to an embodiment of the present invention, a window plate opening / closing, and an inner gas supply.

【図2】 加熱管(a)及び従来の炉部(b)の断面
図。
FIG. 2 is a sectional view of a heating tube (a) and a conventional furnace section (b).

【図3】 実施例のフレームレス原子吸光分光光度計の
構成を示すブロック図。
FIG. 3 is a block diagram illustrating a configuration of a frameless atomic absorption spectrophotometer according to the embodiment.

【図4】 実施例のフレームレス原子吸光分光光度計の
炉部の断面図。
FIG. 4 is a cross-sectional view of a furnace part of the flameless atomic absorption spectrophotometer according to the embodiment.

【図5】 窓板開閉機構の2種の例を示す平面図(a)
及び側面図(b)、(c)。
FIG. 5A is a plan view showing two examples of a window plate opening / closing mechanism.
And side views (b) and (c).

【符号の説明】[Explanation of symbols]

21…加熱管 24a,24b
…電極(外包管) 26…インナガス通路 27…アウタガ
ス通路 32…炉部 33a,33b
…窓板 37…制御部 38…窓板駆動
部 39…ガス供給部 40…加熱電源
部 43a,43b…窓枠 52…窓板駆動
用モータ 53…窓板駆動用ギア 54…窓板移動
用平行移動装置
21 ... heating tubes 24a, 24b
... Electrode (envelope tube) 26 ... Inner gas passage 27 ... Outer gas passage 32 ... Furnace part 33a, 33b
... window plate 37 ... control unit 38 ... window plate drive unit 39 ... gas supply unit 40 ... heating power supply unit 43a, 43b ... window frame 52 ... window plate drive motor 53 ... window plate drive gear 54 ... window plate movement parallel Moving equipment

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 側面に試料装入口を備えた加熱管と、加
熱管の周囲を覆う外包管と、加熱管の内部へガスを導入
するために外包管に設けられたインナガス導入口と、加
熱管の加熱をプログラム制御する加熱制御部とを備えた
フレームレス原子吸光分光光度計において、 a)外包管のインナガス導入口よりも外側の両開口部に
開閉可能に設けられた窓板と、 b)加熱管の加熱プログラムの乾燥時及び灰化時には上
記開口部を閉成し原子化時には該開口部を開成するよう
に上記窓板を開閉する窓開閉制御部と を備えることを特徴とするフレームレス原子吸光分光光
度計。
1. A heating tube having a sample loading inlet on a side surface, an outer tube surrounding the heating tube, an inner gas inlet provided in the outer tube for introducing gas into the heating tube, and a heating tube. A frameless atomic absorption spectrophotometer having a heating control section for program-controlling the heating of the tube, comprising: a) a window plate provided at both openings outside the inner gas inlet of the envelope tube so as to be openable and closable; b. ) Above during drying and incineration of heating program of heating tube
Close the opening and open it during atomization.
Flameless atomic absorption spectrophotometer comprising: a, a window opening and closing controller for opening and closing the window plate.
JP4269498A 1992-09-11 1992-09-11 Flameless atomic absorption spectrophotometer Expired - Lifetime JP2576745B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP4269498A JP2576745B2 (en) 1992-09-11 1992-09-11 Flameless atomic absorption spectrophotometer
AU46186/93A AU672803B2 (en) 1992-09-11 1993-09-07 Flameless atomic absorption spectrophotometer
US08/116,695 US5424832A (en) 1992-09-11 1993-09-07 Flameless atomic absorption spectrophotometer
EP93307167A EP0587444B1 (en) 1992-09-11 1993-09-10 Flameless atomic absorption spectrophotometers
DE69322563T DE69322563T2 (en) 1992-09-11 1993-09-10 Devices for flameless atomic absorption spectrophotometry
CN93116810.4A CN1046032C (en) 1992-09-11 1993-09-11 Flameless atomic absorption spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4269498A JP2576745B2 (en) 1992-09-11 1992-09-11 Flameless atomic absorption spectrophotometer

Publications (2)

Publication Number Publication Date
JPH0694607A JPH0694607A (en) 1994-04-08
JP2576745B2 true JP2576745B2 (en) 1997-01-29

Family

ID=17473268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4269498A Expired - Lifetime JP2576745B2 (en) 1992-09-11 1992-09-11 Flameless atomic absorption spectrophotometer

Country Status (1)

Country Link
JP (1) JP2576745B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3547346B2 (en) * 1999-09-17 2004-07-28 株式会社日立製作所 Atomic absorption measurement method
JP4898561B2 (en) * 2007-05-31 2012-03-14 株式会社日立ハイテクノロジーズ Atomic absorption spectrometry and atomic absorption photometer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035022B2 (en) * 1979-06-27 1985-08-12 株式会社日立製作所 Flameless atomizer for atomic absorption spectrometry
JPH0762649B2 (en) * 1989-02-27 1995-07-05 株式会社島津製作所 Atomic absorption spectrophotometer

Also Published As

Publication number Publication date
JPH0694607A (en) 1994-04-08

Similar Documents

Publication Publication Date Title
Figg et al. Elemental fractionation of glass using laser ablation inductively coupled plasma mass spectrometry
US6002477A (en) Spectrophotometer
Butcher et al. Laser-excited atomic fluorescence spectrometry in flames, plasmas and electrothermal atomisers. A review
JP2576745B2 (en) Flameless atomic absorption spectrophotometer
US4660976A (en) Method and device for electrothermal atomization of a sample material
Lundgren et al. A temperature-controlled graphite tube furnace for the determination of trace metals in solid biological tissue
JP4449188B2 (en) Method and apparatus for analyzing components in molten metal
Ottaway et al. The Effect of Temperature on Carbon Furnace Atomic Emission Spectrometry
Epstein et al. Atomic and ionic fluorescence spectrometry with pulsed dye laser excitation in the inductively-coupled plasma
US5434665A (en) Atomic absorption analyzing apparatus with adjustable carrier gas flow rate
US5155047A (en) Method and apparatus for measuring and controlling efficiency of a combustion
JP2633628B2 (en) Method and apparatus for electrothermal atomization of sample
EP0587444B1 (en) Flameless atomic absorption spectrophotometers
US4162849A (en) Selected element concentration for flameless atomic absorption spectroscopic measurements
US4824241A (en) Atomic spectroscopy
JPH0762649B2 (en) Atomic absorption spectrophotometer
JP3206300B2 (en) Spectrometer
JP4151192B2 (en) Flame atomic absorption spectrophotometer
JPH04230833A (en) Method and apparatus for analyzing sample by atom absorbing spectrometer
US4840484A (en) Atomic absorption spectrophotometer with furnace at pressure equal or near light source pressure
US4339201A (en) Temperature control system for an element analyzer
JP2000275172A (en) Atomic absorption analysis method and apparatus
JP2904507B2 (en) Inductively coupled plasma mass spectrometry
JPS6135960Y2 (en)
AU730982B2 (en) Improved spectrophotometer

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20040729

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041221