JP2574344B2 - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JP2574344B2
JP2574344B2 JP62309874A JP30987487A JP2574344B2 JP 2574344 B2 JP2574344 B2 JP 2574344B2 JP 62309874 A JP62309874 A JP 62309874A JP 30987487 A JP30987487 A JP 30987487A JP 2574344 B2 JP2574344 B2 JP 2574344B2
Authority
JP
Japan
Prior art keywords
sealing plate
battery
organic electrolyte
dish
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62309874A
Other languages
Japanese (ja)
Other versions
JPH01151154A (en
Inventor
文夫 大尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62309874A priority Critical patent/JP2574344B2/en
Publication of JPH01151154A publication Critical patent/JPH01151154A/en
Application granted granted Critical
Publication of JP2574344B2 publication Critical patent/JP2574344B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、負極活物質としてリチウム等の軽金属を用
いて構成される有機電解質電池の防爆用封口板に関する
ものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an explosion-proof sealing plate for an organic electrolyte battery constituted by using a light metal such as lithium as a negative electrode active material.

従来の技術 昨今、IC,LSIをはしめとするエレクトロニクスの進展
は目覚しく、これらを応用した電子精密機器の消費電流
は数μA程度で極めて微弱な電流しか必要としなくなっ
てきている。又、これ等の電源としての一次電池にも小
型軽量,高エネルギー密度,長期信頼性が求められてい
る。これ等の要件を満たす電池として、金属リチウム、
又はリチウム−アルミニウム(Li−Al)合金等のリチウ
ム系合金を負極活物質とし、電解液として非フロント系
高誘電率,低粘度の非水系電解液を用い、正極活物質と
して、二酸化マンガン,酸化銅等の金属酸化物、あるい
はフッ化黒鉛を用いて構成される有機電解質電池があ
る。これ等の電池を長期にわたって作動させる場合、電
池設計上においては、安定した密閉性,気密性が要求さ
れ、極めて気密度の高い封口がなされている。従って万
一電池が内部短絡,外部短絡あるいは漏れ電流などによ
る充電がされると電池内部にガスが発生し、電池内圧が
異常に上昇した場合、電池が破裂し極めて危険性が高い
ものであった。従ってこれまで、第1図に示すように、
電池の組立封口板Bの中に、肉薄な金属板、合成樹脂、
ゴム板からなる薄板を弁体4として設け、内圧が20〜40
kg/cm2に上昇した時、この弁体4が裂けて電池内のガス
を逃がす方法がとられていた。
2. Description of the Related Art In recent years, the progress of electronics, including ICs and LSIs, has been remarkable, and the current consumption of electronic precision equipment using these devices is on the order of several μA, requiring only extremely weak currents. Also, primary batteries as these power sources are required to be small, lightweight, high energy density, and long-term reliability. Batteries meeting these requirements include lithium metal,
Alternatively, a lithium-based alloy such as a lithium-aluminum (Li-Al) alloy is used as a negative electrode active material, a non-aqueous non-aqueous electrolyte having a high dielectric constant and a low viscosity is used as an electrolyte, and manganese dioxide and an oxide are used as a positive electrode active material. There is an organic electrolyte battery configured using a metal oxide such as copper or fluorinated graphite. When these batteries are operated for a long period of time, stable hermeticity and airtightness are required in battery design, and a very airtight seal is made. Therefore, if the battery is charged due to internal short-circuit, external short-circuit, leakage current, or the like, gas is generated inside the battery, and if the internal pressure of the battery rises abnormally, the battery ruptures and is extremely dangerous. . Thus, so far, as shown in FIG.
A thin metal plate, synthetic resin,
A thin plate made of a rubber plate is provided as the valve body 4 and the internal pressure is 20 to 40.
When the pressure increased to kg / cm 2 , the valve 4 was torn and the gas in the battery was released.

発明が解決しようとする問題点 上記方法の場合にあっては、合成樹脂,ゴム等の弾性
体を弁体として用いて低圧作動性を具体化するには、そ
の肉厚を0.1〜0.3m/m程度にする必要があり、このよう
な厚みの薄板材では、大気中の水分、あるいはその他の
産業廃棄ガス等を極めて容易に透過しやすく、特に水分
の存在をきらう有機電解質電池、例えばリチウム電池に
おいては不適当である。また弁体としての作動性を考え
た場合、極めて弾性に富む特徴を有しているため、作動
圧が一定しない欠点を有していた。一方、水分透過性及
び各種の気体透過性の少ない弁体材料としては、金属素
材が考えられるが、低圧作動性を考慮すると、その厚み
として数μm〜数十μmのオーダにする必要がある。こ
のような金属薄板を使用した場合長期にわたって電池を
保存、あるいは使用する場合、外気中の腐食性のガス
が、キャップに設けたガス抜き孔より侵入し、これ等の
金属薄板を腐食させ、ピンホールを形成する可能性があ
る。また電池構成時に、電解液が付着することもあり、
このような場合、電解液中の溶質(一般に無機塩)、あ
るいは溶媒が、大気中に水分、あるいは他の産業廃棄ガ
スと接して、腐食性物質に変質し、金属薄板を腐食させ
ピンホールを形成する場合もあり、電池特性に重大な影
響を及ぼすものであった。
Problems to be Solved by the Invention In the case of the above method, in order to realize low-pressure operability by using an elastic body such as synthetic resin or rubber as a valve body, the thickness thereof should be 0.1 to 0.3 m / m, and a thin sheet material having such a thickness can easily permeate moisture in the atmosphere or other industrial waste gas, etc., and particularly, an organic electrolyte battery in which the presence of moisture is suppressed, for example, a lithium battery Is inappropriate in Further, considering the operability of the valve body, it has a feature that the operation pressure is not constant because it has a feature that is extremely rich in elasticity. On the other hand, as a valve body material having low moisture permeability and various gas permeability, a metal material is conceivable. However, in consideration of low pressure operability, its thickness needs to be on the order of several μm to several tens μm. When using such a thin metal plate, when storing or using the battery for a long time, corrosive gas in the outside air enters through the gas vent hole provided in the cap, corroding these thin metal plates, and May form holes. Also, when the battery is configured, the electrolyte may be attached,
In such a case, the solute (generally, an inorganic salt) or the solvent in the electrolytic solution comes into contact with moisture or other industrial waste gas in the atmosphere, transforms into a corrosive substance, corrodes the metal sheet, and forms a pinhole. In some cases, it was formed, which had a significant effect on battery characteristics.

問題点を解決するための手段 本発明は、上記問題点を解決する防爆封口板の弁体を
提供するものであり、金属薄板として、外気に接する面
あるいは全面を化成処理によって均一な酸化皮膜を形成
したアルミニウム板を用いたことを特徴とする。
Means for Solving the Problems The present invention is to provide a valve body of an explosion-proof sealing plate that solves the above problems, and as a thin metal plate, a uniform oxide film by chemical conversion treatment on the surface or the entire surface that is in contact with the outside air. It is characterized by using the formed aluminum plate.

作用 このような弁体を使用することにより、弁体としての
作動圧レベルを高めることなく、低圧でしかも、安定し
た作動性を示し、大気中の水分などの電池内への透過を
防止し、電池特性の優れる防爆封口板を提供できるもの
である。
Action By using such a valve body, without increasing the operating pressure level of the valve body, it shows low pressure and stable operability, and prevents permeation of atmospheric moisture and the like into the battery, An explosion-proof sealing plate having excellent battery characteristics can be provided.

実施例 以下、本発明の実施例を第1図を参照して説明する。Embodiment An embodiment of the present invention will be described below with reference to FIG.

第1図は、本発明の防爆封口板を用いた円筒形リチウ
ム電池の例を示し、図において、Aは発電要素群であ
り、正極としてはフッ化黒鉛,二酸化マンガン,酸化銅
等を主材とし、これに導電材,結着剤を加えたものから
なる。負極には金属リチウムを用い、この正負極を、ポ
リプロピレン不織布や、マイクロポーラスフィルムから
なるセパレータを介して渦巻状に構成した極板群であ
る。この極板群に電解液として、1・2−ジメトキシエ
タン,ジオキソラン,γ−ブチロラクトン等の溶媒を単
独か、あるいは混合したものに、溶質として、LiBF4,Li
ClO4等を溶解させたものを含浸させて発電要素を形成し
ている。1は電池容器で、前記極板群の負極活物質であ
る金属リチウムの集電体リード2を内周面にスポット溶
接により溶接し、負極端子を兼ねている。その材質とし
ては、0.3mm程度の厚みを有した耐電解液性ステンレス
鋼材、あるいは耐食メッキを施した鉄が用いられる。B
は本発明による弁体4を配した組立封口板で、その構成
法は、第2図A,Bに示すように、弁孔3aを、電池容器側
へ突出した突出部3bの底面に有した皿状封口板3に、円
板状弁体4を1段目の水平内周縁部3cに挿入載置する工
程と、ガス排出孔5aを凸状部5bに有し、その周縁部5cを
平坦にしたキャップ5を嵌合させ、皿状封口板3の開口
折曲縁3dを内方に金型でもってカシメて、弁体4を皿状
封口板3の1段目の水平部3cと、キャップ5の周縁鍔部
5cによって圧接固定する工程から形成されたものであ
る。
FIG. 1 shows an example of a cylindrical lithium battery using the explosion-proof sealing plate of the present invention. In the drawing, A is a power generating element group, and the main material of the positive electrode is graphite fluoride, manganese dioxide, copper oxide, or the like. And a conductive material and a binder added thereto. The negative electrode is a group of electrode plates in which metallic lithium is used as a negative electrode, and the positive and negative electrodes are formed in a spiral shape through a separator made of a polypropylene nonwoven fabric or a microporous film. A solvent such as 1,2-dimethoxyethane, dioxolane, γ-butyrolactone, or the like is used alone or as a mixture as an electrolyte in this electrode group, and LiBF 4 , Li
A power generation element is formed by impregnating a material in which ClO 4 or the like is dissolved. Reference numeral 1 denotes a battery container, which is a negative electrode terminal by welding a current collector lead 2 of metallic lithium, which is a negative electrode active material of the electrode plate group, to the inner peripheral surface by spot welding. As the material, an electrolytic solution-resistant stainless steel material having a thickness of about 0.3 mm, or corrosion-resistant plated iron is used. B
Is an assembled sealing plate provided with a valve body 4 according to the present invention, and has a valve hole 3a on the bottom surface of a protruding portion 3b protruding toward the battery container as shown in FIGS. 2A and 2B. A step of inserting and placing the disc-shaped valve body 4 on the horizontal inner peripheral edge 3c of the first stage in the dish-shaped sealing plate 3, and having a gas discharge hole 5a in the convex portion 5b and flattening the peripheral edge 5c. The cap 5 is fitted, and the opening bent edge 3d of the dish-shaped sealing plate 3 is swaged inward with a mold, so that the valve element 4 is connected to the first horizontal portion 3c of the dish-shaped sealing plate 3, Peripheral flange of cap 5
This is formed from the step of pressing and fixing by 5c.

次に弁体について詳述すると、厚みが30μmのアルミ
ニウム薄板を電気的、あるいは化学的な方法でもって酸
化処理、つまりは化成処理することによって、アルミニ
ウム表面に均一な金属酸化皮膜(以後MOと記す)を形成
させることによってアルミニウムの耐食性を向上させ、
安全弁としての低圧破損性を維持させることができるも
のである。次に具体的な化成処理の一例を示すと、30μ
mのアルミニウム板を約90℃に加温された炭酸ナトリウ
ムNa2CO3と、重クロム酸ナトリウムNa2CrO4の混合液中
に浸漬させ、下記に示す反応式で酸化アルミニウムAl2O
3とクロム酸Cr2O3よりなる不溶性の灰色のMOを形成させ
る。
Next, the valve body will be described in detail. An aluminum sheet having a thickness of 30 μm is oxidized by an electrical or chemical method, that is, a chemical conversion treatment is performed, so that a uniform metal oxide film (hereinafter referred to as MO) is formed on the aluminum surface. ) To improve the corrosion resistance of aluminum,
It is possible to maintain low-pressure breakage as a safety valve. Next, an example of a specific chemical conversion treatment is as follows.
m aluminum plate is immersed in a mixed solution of sodium carbonate Na 2 CO 3 heated to about 90 ° C. and sodium dichromate Na 2 CrO 4 , and aluminum oxide Al 2 O is obtained by the following reaction formula.
An insoluble gray MO consisting of 3 and Cr 2 O 3 chromate is formed.

2Al+2Na2CrO4+2H2O→Al2O3+Cv2O3+4NaOH あるいは、リン酸,フッ化ナトリウム,酸化クロムか
らなる溶液中に浸漬して、表面にリン酸クロムの緑色の
MOを形成させる。これらはいずれも化学的化成法の例で
あるが、他に電気化学的方法、つまりアルミニウムを硫
酸、あるいは蓚酸の処理浴中で、一定電流密度(1A/d
m2)で陽極酸化処理を行なって酸化・皮膜MOを形成させ
る方法が均一な酸化皮膜MOを形成させる上で極めて有効
である。
2Al + 2Na 2 CrO 4 + 2H 2 O → Al 2 O 3 + Cv 2 O 3 + 4NaOH or immersed in a solution consisting of phosphoric acid, sodium fluoride, and chromium oxide.
Form MO. These are all examples of the chemical conversion method, but the other method is electrochemical, that is, the aluminum is treated with sulfuric acid or oxalic acid in a constant current density (1 A / d
The method of forming an oxide film MO by performing anodizing treatment at m 2 ) is extremely effective in forming a uniform oxide film MO.

皿状封口板3の材質としては、厚みが0.3mm程度の耐
食メッキを施した鉄材、あるいは、耐食性特殊ステンレ
ス材よりなる。この皿状封口板3の底面には、前記発電
要素群Aの正極活物質からの集電リード6がスポット溶
接により一体化され、従って封口板Bは正極端子を兼ね
る。また、封口板Bは発電要素群Aを組み込んだ電池容
器1の開口部16を低透湿性,耐電解液性のポリプロピレ
ンからなる絶縁パッキング7を介して気密封口してい
る。表1は、本発明による弁体を用いて封口板を構成
し、温度60℃,PH4.0の塩酸酸性雰囲気,PH9.5のか性カリ
のアルカリ性雰囲気に1ケ月間放置した後、ピンホール
発生率を比較した結果を示す。
The dish-shaped sealing plate 3 is made of a corrosion-resistant plated iron material having a thickness of about 0.3 mm or a corrosion-resistant special stainless steel material. A current collecting lead 6 from the positive electrode active material of the power generation element group A is integrated with the bottom surface of the dish-shaped sealing plate 3 by spot welding, so that the sealing plate B also serves as a positive electrode terminal. In addition, the sealing plate B hermetically seals the opening 16 of the battery container 1 in which the power generation element group A is incorporated via an insulating packing 7 made of polypropylene having low moisture permeability and electrolytic resistance. Table 1 shows that a sealing plate was formed using the valve element according to the present invention, and pinholes were formed after being left for 1 month in a hydrochloric acid acidic atmosphere at a temperature of 60 ° C. and a PH of 4.0 and an alkaline atmosphere of caustic potassium at a pH of 9.5. The results of comparing the rates are shown.

次に本発明の弁体の破損圧を測定したところ、本発明
品でアルミニウムの厚みが50μm以下の領域にあっては
破損圧が20kg/cm2以下であり、電池の安全弁として機能
する上で十分な低圧作動領域である。なお実験に供した
アルミニウムはJIS4160相当品を用いた。第3図は本発
明による弁体を用いて、直径17.0mm、高さ33.5mm、電気
容量1300mAhの円筒形二酸化マンガンリチウム電池を各
々50個構成し、温度80℃、相対湿度90%の高温多湿雰囲
気中に電池を保存した時の内部抵抗の変化を比較調査し
たものである。なお弁体として酸化皮膜を形成したもの
のみを用いた例を示したが、封口板の生産性を考慮し、
アルミニウムの片面あるいは両面にヒートシール性を有
した合成樹脂膜、あるいは接着組成物を塗布し、皿状封
口板の内底面に接着固定して封口板を構成してもよい。
Next, when the breaking pressure of the valve body of the present invention was measured, the breaking pressure was 20 kg / cm 2 or less in the region of the present invention in which the thickness of aluminum was 50 μm or less. Sufficient low pressure operating area. The aluminum used in the experiment was JIS4160 equivalent. FIG. 3 shows a cylindrical lithium manganese dioxide battery having a diameter of 17.0 mm, a height of 33.5 mm and an electric capacity of 1300 mAh using a valve body according to the present invention. It is a comparative study of changes in internal resistance when a battery is stored in an atmosphere. Although an example using only an oxide film formed as a valve body was shown, in consideration of the productivity of the sealing plate,
A sealing plate may be formed by applying a heat-sealable synthetic resin film or an adhesive composition to one or both surfaces of aluminum and bonding it to the inner bottom surface of the dish-shaped sealing plate.

発明の効果 以上述べたように本発明による弁体を用いた封口板
は、長期に渡って外部からの腐食要因に対し、均一なMO
が強力な保護力を発揮し、また低圧で安定した作動性を
示すため、性能の安定した安全性にすぐれる有機電解質
電池を提供することができる。
Effect of the Invention As described above, the sealing plate using the valve body according to the present invention can provide a uniform MO for a long period against external corrosion factors.
Exerts a strong protective force and exhibits stable operability at low pressure, so that an organic electrolyte battery with stable performance and excellent safety can be provided.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明ならびに従来の構造による防爆安全弁装
置を備えた電池の断面図、第2図A,Bは本発明ならびに
従来の防爆封口板の構成を示す断面図、第3図は弁体材
料と電池内部抵抗特性の保存特性を示す図である。 1……電池容器、3……皿状封口板、4……弁体、4a…
…酸化皮膜(MO)、5……キャップ、7……絶縁パッキ
ング、A……発電要素群、B……組立封口板。
FIG. 1 is a cross-sectional view of a battery provided with an explosion-proof safety valve device according to the present invention and a conventional structure, FIGS. 2A and 2B are cross-sectional views showing the structure of the present invention and a conventional explosion-proof sealing plate, and FIG. It is a figure which shows the preservation | save characteristic of a material and a battery internal resistance characteristic. 1 ... battery container, 3 ... dish-shaped sealing plate, 4 ... valve body, 4a ...
... oxide film (MO), 5 ... cap, 7 ... insulating packing, A ... power generation element group, B ... assembly sealing plate.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】正極と、軽金属負極と有機電解質を有し、
皿状封口板の電池容器側へ突出した底面に弁孔をあけ、
かつこの弁孔を封口板の内側から閉塞する弁体を内蔵し
た有機電解質電池であって、上記弁孔を常時閉塞する弁
体として、表面に化成処理によって酸化皮膜を形成させ
たアルミニウム円板体を用い、円板体周縁部は皿状封口
板の内周縁と凸状部にガス抜き孔を有するキャップの鍔
部との間に挾まれ、皿状封口板の開口端部を内方へ折り
曲げてカシメることで固定されている有機電解質電池。
Claims: 1. A positive electrode, comprising a light metal negative electrode and an organic electrolyte,
Drill a valve hole in the bottom of the dish-shaped sealing plate protruding toward the battery container,
An organic electrolyte battery incorporating a valve body for closing the valve hole from the inside of the sealing plate, wherein the valve disk for always closing the valve hole is an aluminum disk having an oxide film formed on the surface by a chemical conversion treatment. The peripheral edge of the disc body is sandwiched between the inner peripheral edge of the dish-shaped sealing plate and the flange of the cap having a gas vent hole in the convex portion, and the opening end of the dish-shaped sealing plate is bent inward. An organic electrolyte battery that is fixed by swaging.
JP62309874A 1987-12-08 1987-12-08 Organic electrolyte battery Expired - Lifetime JP2574344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62309874A JP2574344B2 (en) 1987-12-08 1987-12-08 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62309874A JP2574344B2 (en) 1987-12-08 1987-12-08 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH01151154A JPH01151154A (en) 1989-06-13
JP2574344B2 true JP2574344B2 (en) 1997-01-22

Family

ID=17998341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62309874A Expired - Lifetime JP2574344B2 (en) 1987-12-08 1987-12-08 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP2574344B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6300006B1 (en) 1999-11-19 2001-10-09 Eveready Battery Company, Inc. Electrochemical cell having seal and cover assembly
JP6103222B2 (en) * 2013-06-25 2017-03-29 株式会社豊田自動織機 Power storage device
KR102275779B1 (en) 2017-11-17 2021-07-13 주식회사 엘지에너지솔루션 Secondary battery

Also Published As

Publication number Publication date
JPH01151154A (en) 1989-06-13

Similar Documents

Publication Publication Date Title
JP2002313290A (en) Electrochemical cell
US6670074B2 (en) Glass to metal seal
US10103361B2 (en) Coin type battery
JP2000164259A (en) Flat nonaqueous electrolyte battery and its manufacture
JPH0877999A (en) Battery
JP2002203534A (en) Thin-type secondary battery and battery pack
JP2574344B2 (en) Organic electrolyte battery
JP7170296B2 (en) Non-aqueous coin cell
JP2007059650A (en) Coin-shaped storage cell
JP2574343B2 (en) Organic electrolyte battery
CN108352557A (en) Nonaqueous electrolyte battery and nonaqueous electrolyte battery component
JP2764921B2 (en) Organic electrolyte subsurface
JPH07226206A (en) Nonaqueous electrolyte secondary battery
JP2001035458A (en) Flat battery with organic electrolytic solution
WO2018154841A1 (en) Coin-shaped battery
JP2559023B2 (en) Method of manufacturing organic electrolyte battery
JPH0514379B2 (en)
JPS63202847A (en) Organic electrolyte battery
KR102630459B1 (en) Nonaqueous electrolyte secondary battery
JPH0648620B2 (en) Manufacturing method of assembled sealing plate for organic electrolyte battery
JPH0727561Y2 (en) Organic electrolyte battery
US20230178829A1 (en) Button battery with improved sealing properties
JPH0732006B2 (en) Organic electrolyte battery
JP2024032326A (en) battery
JPH0718350U (en) Organic electrolyte battery