JP2573285B2 - Method of forming organic thin film - Google Patents

Method of forming organic thin film

Info

Publication number
JP2573285B2
JP2573285B2 JP63039590A JP3959088A JP2573285B2 JP 2573285 B2 JP2573285 B2 JP 2573285B2 JP 63039590 A JP63039590 A JP 63039590A JP 3959088 A JP3959088 A JP 3959088A JP 2573285 B2 JP2573285 B2 JP 2573285B2
Authority
JP
Japan
Prior art keywords
substrate
film
pulled
surface pressure
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63039590A
Other languages
Japanese (ja)
Other versions
JPH01215379A (en
Inventor
俊夫 中山
信弘 源間
明 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP63039590A priority Critical patent/JP2573285B2/en
Priority to DE1989605945 priority patent/DE68905945T2/en
Priority to EP19890301738 priority patent/EP0330454B1/en
Publication of JPH01215379A publication Critical patent/JPH01215379A/en
Priority to US07/879,468 priority patent/US5286529A/en
Priority to US08/070,973 priority patent/US5415899A/en
Application granted granted Critical
Publication of JP2573285B2 publication Critical patent/JP2573285B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ラングミュア・ブロジェット法により有機
分子膜を累積する有機薄膜の形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for forming an organic thin film in which an organic molecular film is accumulated by a Langmuir-Blodgett method.

(従来の技術) 近年、ラングミュア・ブロジェット法による有機薄膜
(LB膜)の研究が各種の新機能デバイスへの応用を目的
として盛んに行われている。LB膜を用いると、均一で極
めて薄い膜の中で、色素骨格を有する機能性分子の配
向,積層構造,分子間距離等を制御することにより、所
望の機能を発現させる素子が得られる可能性がある。
(Prior Art) In recent years, research on organic thin films (LB films) by the Langmuir-Blodgett method has been actively conducted for the purpose of application to various new functional devices. Using an LB film, it is possible to obtain an element that exhibits desired functions by controlling the orientation, stacking structure, and intermolecular distance of functional molecules having a dye skeleton in a uniform and extremely thin film. There is.

一般的にLB膜は、分子内に親水性の高い部分と疎水性
の高い部分を備えた両親媒性有機分子を水面上に展開
し、これを所定の表面圧を示すように面積を圧縮して水
面上に単分子膜を形成した後、所定の基板にこの単分子
膜を移しとることにより得られる。単分子膜膜を基板に
移し取る具体的な操作法としては、基板を単分子膜が展
開された水面に垂直に浸漬する方法(垂直浸漬法)と、
基板を水面に平行に保った状態でその基板を単分子膜に
付着させて引上げる方法(水平付着法)とがある。LB膜
形成に当たって基本的に重要なことは、表面圧がある一
定値という条件が常に満たされなければならないことで
ある。通常のLB膜形成装置では、基板引上げ時、基板近
傍の水面上単分子膜の減少による表面圧の低下は直ちに
単分子膜全体に伝わり、これが水槽内の任意の位置に置
かれた表面圧計によって検出されて、常に表面圧が一定
になるように帰還制御されることが前提になっている。
しかし本発明者らの研究によれば、この様な条件を満た
すのは、脂肪族系のごく限られた分子を用いた場合しか
得られない。例えば、色素含有分子や高分子等では、単
分子膜の粘弾性的性質が大きく、基板近傍の表面圧低下
は直ぐには基板から離れた位置の表面圧計に伝わらない
ことが明らかになった。このため、例えば垂直浸漬法で
色素含有分子や高分子の単分子膜を累積しようとして
も、常時一定の表面圧を保つことは困難であり、単分子
膜の密度や分子配向の変化を招いて、構造の不均一で欠
陥の多いLB膜が形成される。
Generally, an LB film develops an amphiphilic organic molecule having a highly hydrophilic portion and a highly hydrophobic portion in the molecule on the water surface, and compresses the area so as to show a predetermined surface pressure. After forming a monomolecular film on the water surface by the above method, the monomolecular film is obtained by transferring the monomolecular film to a predetermined substrate. As a specific operation method for transferring the monomolecular film to the substrate, a method of vertically immersing the substrate in the water surface where the monomolecular film is developed (vertical immersion method),
There is a method (horizontal attachment method) in which the substrate is attached to a monomolecular film and pulled up while the substrate is kept parallel to the water surface. What is fundamentally important in forming the LB film is that the condition that the surface pressure is a certain value must always be satisfied. In a normal LB film forming apparatus, when the substrate is pulled up, the decrease in surface pressure due to the decrease of the monolayer on the water surface near the substrate is immediately transmitted to the entire monolayer, and this is measured by a surface pressure gauge placed at an arbitrary position in the water tank. It is assumed that the feedback control is performed so that the detected surface pressure is always constant.
However, according to the study of the present inventors, such a condition can be satisfied only when a very limited number of aliphatic molecules are used. For example, in the case of a dye-containing molecule or a polymer, it was found that the viscoelastic properties of the monomolecular film were large, and a decrease in the surface pressure near the substrate was not immediately transmitted to a surface pressure gauge located away from the substrate. For this reason, it is difficult to maintain a constant surface pressure at all times even when trying to accumulate a monolayer of a dye-containing molecule or a polymer by, for example, the vertical immersion method, which causes a change in the density and molecular orientation of the monolayer. Thus, an LB film having a non-uniform structure and many defects is formed.

一方従来の水平付着法を顧みると、従来の研究例は重
合膜に集中しているがやはり良好な累積膜は得られてい
ない。一般に水平付着法では、累積構造はX型またはZ
型と考えられている。X型またはZ型は、先に付着した
層とその次に付着した層の分子配向が同じである累積構
造である。これに対して、親水基同士,疎水基同士が引
合う状態、即ち単分子膜が交互に反転した状態で累積さ
れる構造はY型と呼ばれる。両親媒性分子を用いて、本
来Y型累積膜が形成される筈である場合にも、水平付着
法でその様な累積膜は従来得られていない。これは、基
板の引上げ過程がよく制御されておらず、第1層目は付
着したとしてもその後基板近傍の表面圧が低下して第2
層目は乱れた構造でしか形成されないためと思われる。
On the other hand, when considering the conventional horizontal deposition method, the conventional research examples concentrate on the polymerized film, but no satisfactory accumulated film has been obtained. In general, in the horizontal deposition method, the cumulative structure is X-shaped or Z-shaped.
It is considered a type. X-type or Z-type is a cumulative structure in which the previously deposited layer and the next deposited layer have the same molecular orientation. On the other hand, a structure in which hydrophilic groups are attracted to each other and hydrophobic groups are attracted to each other, that is, a structure in which monomolecular films are alternately inverted is called a Y-type structure. Even when a Y-type cumulative film is to be formed originally using amphiphilic molecules, such a cumulative film has not been obtained by the horizontal deposition method. This is because the process of pulling the substrate is not well controlled, and even if the first layer adheres, the surface pressure near the substrate subsequently decreases and the second layer is removed.
This is probably because the layers are formed only with a disordered structure.

水平付着法での上述した2層目形成における膜構造の
乱れの問題を回避するため、基板を付着後、基板周囲に
仕切り板を設け、単分子膜の流入がない状態として基板
を引上げる方法が考えられている。ところがこの場合、
引上げた基板に付着した単分子膜は親水基が表面に向い
ているためにこれに多量の水が付着し、これが次に累積
される膜の構造の乱れる原因となり、やはり良好な累積
膜は得られない。
In order to avoid the problem of disorder of the film structure in the formation of the second layer by the horizontal deposition method, after the substrate is deposited, a partition plate is provided around the substrate, and the substrate is pulled up in a state where no monomolecular film flows. Is considered. However, in this case,
A large amount of water adheres to the monomolecular film attached to the pulled-up substrate because the hydrophilic group is directed to the surface, and this causes a disturbance in the structure of the film to be accumulated next. I can't.

(発明が解決しようとする課題) 以上のように、従来の水平付着法によるLB膜累積操作
では、そもそも累積機構がよく理解されておらず、従っ
て累積過程の制御も不十分であって、良好なLB膜が得ら
れていない。
(Problems to be Solved by the Invention) As described above, in the conventional LB film accumulating operation by the horizontal deposition method, the accumulating mechanism is not well understood in the first place, and therefore the control of the accumulating process is insufficient. No LB film was obtained.

本発明は上記の点に鑑みなされたもので、水平付着法
によって良好なLB膜の累積膜を得る方法を提供すること
を目的とする。
The present invention has been made in view of the above points, and has as its object to provide a method for obtaining a favorable LB film cumulative film by a horizontal deposition method.

[発明の構成] (課題を解決するための手段) 本発明は、次のような知見に基づく。本発明者らの熱
力学的考察によれば、水平付着法においては、熱力学的
平衡条件またはこれに近い条件を満たしながら水平付
着,引上げを行なうと、引上げ過程で親水基同士が向か
いあってY型の累積膜が形成される。
[Configuration of the Invention] (Means for Solving the Problems) The present invention is based on the following findings. According to the thermodynamic considerations of the present inventors, in the horizontal attachment method, when horizontal attachment and pull-up are performed while satisfying thermodynamic equilibrium conditions or conditions close thereto, hydrophilic groups face each other in the pull-up process. A Y-type cumulative film is formed.

本発明は、この様な熱力学的平衡条件にできるだけ近
い状態での累積を実現するため、基本的には、水面上に
展開した単分子膜に付着させた基板を表面圧を実質的に
低下させない遅い速度で所定距離引上げ、ある距離条件
で気/液界面の圧力差によって決まる基板周辺のメニス
カスを維持するためにメニスカスが自発的に基板中心部
に向かって移動を開始することを利用し、その様な引上
げ距離で基板を静止させて、親水基同士が付着した状態
でY型累積膜を形成することを特徴とする。
The present invention basically reduces the surface pressure of a substrate attached to a monomolecular film developed on a water surface in order to realize accumulation in a state as close as possible to such thermodynamic equilibrium conditions. Using the fact that the meniscus spontaneously starts moving toward the substrate center in order to maintain the meniscus around the substrate determined by the pressure difference at the gas / liquid interface under a certain distance condition, It is characterized in that the substrate is stopped at such a pulling distance, and a Y-type cumulative film is formed in a state where the hydrophilic groups adhere to each other.

上述した熱力学的平衡条件を満たし、メニスカスが自
動的に移動開始する引上げ点を検出する手段として有効
な一つの方法は、引上げられる基板にかかる荷重を測定
する方法である。基板を荷重測定機構(例えば電子天
秤)に保持して所定距離引上げて基板を静止させた時
に、メニスカスが移動し始めれば、荷重測定値は減少し
始めるから、その点で基板を静止させれば、自動的にY
型累積膜が得られる。
One effective method for detecting the pulling point at which the meniscus automatically starts to move, which satisfies the above-mentioned thermodynamic equilibrium condition, is a method of measuring the load applied to the substrate to be pulled. When the meniscus starts moving when the substrate is stopped by holding the substrate in a load measuring mechanism (for example, an electronic balance) and pulling it up a predetermined distance, the measured load value starts to decrease. , Automatically Y
A type accumulation film is obtained.

また、実際の引上げ操作においては、上述したメニス
カスが移動し始める臨界点前後で引上げ速度を異なら
せ、臨界点以後の引上げ速度の制御によってメニスカス
の移動速度を制御することも有効になる。更に、上記の
臨界点前後で基板を静止し、単分子膜の表面圧の制御に
よってメニスカスの移動速度を制御することも有用であ
る。
In the actual pulling operation, it is also effective to make the pulling speed different before and after the critical point at which the meniscus starts to move, and to control the moving speed of the meniscus by controlling the pulling speed after the critical point. Further, it is also useful to stop the substrate around the critical point and control the meniscus moving speed by controlling the surface pressure of the monomolecular film.

(作用) 本発明によれば、水平付着法において、熱力学的平衡
条件を満たすように基板の引上げ速度と引上げ距離を正
確に制御することによって、一度の付着と引上げの操作
によりY型累積膜を得ることができる。
(Action) According to the present invention, in the horizontal deposition method, by precisely controlling the pulling speed and the pulling distance of the substrate so as to satisfy the thermodynamic equilibrium condition, the Y-type cumulative film can be formed by a single deposition and pulling operation. Can be obtained.

(実施例) 具体的な実施例を説明するに先だって、本発明による
LB膜の累積法の原理的な説明を、第1図を参照して行な
う。(a)に示すように、所定の有機分子を水面に展開
して圧縮することにより、所定の表面圧に設定した単分
子膜1を形成し、これに水平に保った所定の基板2を付
着させる。そして(b)に示すように、単分子膜の表面
圧を一定値以上に保つように基板2を極めてゆっくりし
た速度で引上げる。具体的には、0.01〜1mm/min、更に
好ましくは0.01〜0.1mm/minの速さで引上げる。また表
面圧の測定は通常の表面圧測定を基板近傍で行なう。所
定の高さhまで基板2を引上げると、(c)に示すよう
に基板周辺に形成されるメニスカスにはそれを維持する
ための力が作用してメニスカスが自動的に基板中心部に
向かって移動し始める。その条件は後に詳細に説明す
る。この高さ位置で基板を静止すれば、メニスカスの移
動にともなって、(d),(e)に示すように、単分子
膜1は親水基同士が自動的に付着する状態で基板2の全
面にY型累積膜として形成されることになる。
(Examples) Before describing specific examples, the present invention
The principle of the LB film accumulation method will be described with reference to FIG. As shown in (a), a predetermined organic molecule is spread on a water surface and compressed to form a monomolecular film 1 set at a predetermined surface pressure, and a predetermined substrate 2 kept horizontally is attached thereto. Let it. Then, as shown in (b), the substrate 2 is pulled up at an extremely slow speed so as to keep the surface pressure of the monomolecular film at a certain value or more. Specifically, it is pulled up at a rate of 0.01 to 1 mm / min, more preferably 0.01 to 0.1 mm / min. For the measurement of the surface pressure, a normal surface pressure measurement is performed near the substrate. When the substrate 2 is pulled up to a predetermined height h, a force for maintaining the meniscus formed around the substrate acts on the meniscus formed around the substrate as shown in FIG. Start moving. The conditions will be described later in detail. When the substrate is stopped at this height position, the monomolecular film 1 is attached to the entire surface of the substrate 2 in a state where the hydrophilic groups are automatically attached as shown in (d) and (e) with the movement of the meniscus. Is formed as a Y-type cumulative film.

以上の原理説明において、基板を所定距離引上げた時
にメニスカスが自動的に横方向に移動し始める条件は、
次のようにして決まる。第3図(a)(b)は、メニス
カスの横方向移動の素過程を模式的に示したものであ
る。この素過程における熱力学的エネルギ変化ΔUは、
次式で与えられる。
In the above description of the principle, the conditions under which the meniscus automatically starts moving laterally when the substrate is pulled up by a predetermined distance are as follows:
It is determined as follows. FIGS. 3A and 3B schematically show an elementary process of the lateral movement of the meniscus. The thermodynamic energy change ΔU in this elementary process is
It is given by the following equation.

ΔU=(γw−π)(1−cos θ)lΔx+(γxx′
−γwx−γwx′)lΔx …(1) ここで、θは単分子膜と基板の接触角(第3図に示
す)、πは単分子膜の表面圧、γwは水の表面エネル
ギ、γxx′は第1層目の親水基(X)と第2層目の親水
基(X′)との間の界面エネルギであり、γwx,γwx′
はそれぞれ、親水基(X)と水(W),親水基(X′)
と水(W)との間の界面エネルギである。Δxはメニス
カスの横方向の変位距離、lは基板2の幅(図の面に垂
直な方向)である。
ΔU = (γw−π) (1-cos θ) lΔx + (γxx ′
−γwx−γwx ′) lΔx (1) where θ is the contact angle between the monolayer and the substrate (shown in FIG. 3), π is the surface pressure of the monolayer, γw is the surface energy of water, γxx ′ Is the interfacial energy between the hydrophilic group (X) of the first layer and the hydrophilic group (X ′) of the second layer, and γwx, γwx ′
Represents a hydrophilic group (X) and water (W), respectively, and a hydrophilic group (X ')
Energy between water and water (W). Δx is the lateral displacement distance of the meniscus, and l is the width of the substrate 2 (the direction perpendicular to the plane of the drawing).

メニスカスの移動は、 ΔU≦0 …(2) という条件を満たした時に起こる。この関係は次のよう
に書き直される。
The movement of the meniscus occurs when the condition of ΔU ≦ 0 (2) is satisfied. This relationship is rewritten as follows.

1−(γwx+γwx′−γxx′)/(γw−π)≦cos
θ …(3) 一方、基板の水面からの高さhとcos θは次式で関係
付けられる。
1− (γwx + γwx′−γxx ′) / (γw−π) ≦ cos
θ (3) On the other hand, the height h of the substrate from the water surface and cos θ are related by the following equation.

ここで、ρは水の密度、gは重力加速度である。 Here, ρ is the density of water, and g is the gravitational acceleration.

水の表面エネルギγwは、73dyn/cmであることが知ら
れており、従って(4)式は次のように書き直される。
It is known that the surface energy γw of water is 73 dyn / cm, and therefore equation (4) is rewritten as follows.

(3)式を満たすようなθがどのような値であるかとい
うことについては、親水基の種類にもよるが、殆どの場
合、 0°≦θ≦90° の範囲となることが、本発明者が経験的に把握した。従
って水面からの高さh(mm)を、 の範囲に設定しておけば、メニスカスの横方向移動が自
発的に起こることになる。
The value of θ that satisfies the expression (3) depends on the type of hydrophilic group, but in most cases, 0 ° ≦ θ ≦ 90 °. The inventor empirically grasped. Therefore, the height h (mm) from the water surface is In this case, the lateral movement of the meniscus occurs spontaneously.

次に具体的に実施例を説明する。 Next, specific examples will be described.

実施例1 塩化カドミウムの0.5mM溶液のトラフを用い、その水
面上にステアリン酸のクロロホルム溶液を展開し、25dy
n/cmの表面圧を示すまで圧縮して単分子膜を形成した。
基板として、熱酸化膜を形成したシリコン基板を用い、
これを洗浄,乾燥した後、ヘキサメチルジシラザンの気
相雰囲気中に24時間放置して疎水化処理した。この基板
を水槽の水面と平行に保ってそのまま下降させ、ステア
リン酸単分子膜と接触したところで停止させた。その
後、設定された表面圧が低下しないようなゆっくりした
速度で基板を水面に対して平行に保ったまま引上げ、水
面からの高さが3.3mmのところで基板を静止させた。こ
の後、基板周辺に形成されたメニスカスは極めてゆっく
りと中心部に向かって移動し、最終的に水面は基板から
離れる。
Example 1 Using a trough of a 0.5 mM solution of cadmium chloride, a chloroform solution of stearic acid was spread on the water surface, and 25 dy
Compression was performed until a surface pressure of n / cm was exhibited to form a monomolecular film.
As a substrate, using a silicon substrate with a thermal oxide film formed,
After washing and drying, it was left in a gaseous atmosphere of hexamethyldisilazane for 24 hours to perform a hydrophobic treatment. The substrate was lowered while keeping it parallel to the water surface of the water tank, and stopped when it came into contact with the stearic acid monomolecular film. Thereafter, the substrate was pulled up while keeping the substrate parallel to the water surface at a slow speed such that the set surface pressure did not decrease, and the substrate was stopped at a height of 3.3 mm from the water surface. Thereafter, the meniscus formed around the substrate moves very slowly toward the center, and finally the water surface separates from the substrate.

以上の操作を5回繰返してステアリン酸の10層累積膜
を基板上に形成した。この累積膜をX線,TEM,SEMを用い
て評価した結果、積層方向に周期構造の乱れがない、均
一且つ欠陥のないLB膜となっていることが確認された。
The above operation was repeated five times to form a 10-layer cumulative film of stearic acid on the substrate. As a result of evaluating the accumulated film using X-ray, TEM, and SEM, it was confirmed that the LB film was uniform and defect-free without disturbance of the periodic structure in the stacking direction.

実施例2 純水のトラフを用い、その水面にパラフェニレンジア
ミンを骨格とする次の構造式で表わされるドナー性分子
(I)のクロロホルム溶液を展開した。
Example 2 Using a trough of pure water, a chloroform solution of a donor molecule (I) represented by the following structural formula having paraphenylenediamine as a skeleton was developed on the water surface.

これを、40dyn/cmの表面圧を示すまで圧縮して、単分子
膜を形成した。この単分子膜を実施例1と同様にして疎
水化処理したシリコン基板上に10層累積した。
This was compressed to a surface pressure of 40 dyn / cm to form a monomolecular film. Ten monolayers of this monomolecular film were accumulated on a silicon substrate subjected to a hydrophobic treatment in the same manner as in Example 1.

得られた累積膜をX線回折,TEM,SEMにより構造評価し
た結果、積層方向に周期構造の乱れの少ない、均一且つ
欠陥のない膜ができていることが確認された。
As a result of a structural evaluation of the obtained accumulated film by X-ray diffraction, TEM, and SEM, it was confirmed that a uniform and defect-free film with little disturbance of the periodic structure in the stacking direction was formed.

実施例3 純水のトラフを用い、その水面上にキノジイミンを骨
格とする次の構造式で表わされるアクセプタ性分子(I
I)のクロロホルム溶液を展開した。
Example 3 Using a trough of pure water, an acceptor molecule having a quinodiimine skeleton represented by the following structural formula (I
The chloroform solution of I) was developed.

これを、30dyn/cmの表面圧を示すように圧縮して単分子
膜を形成した。この単分子膜を実施例1と同様にして疎
水化処理したシリコン基板上に10層累積した。
This was compressed to show a surface pressure of 30 dyn / cm to form a monomolecular film. Ten monolayers of this monomolecular film were accumulated on a silicon substrate subjected to a hydrophobic treatment in the same manner as in Example 1.

得られた累積膜をX線回折,TEM,SEMにより構造評価し
た結果、積層方向に周期構造の乱れの少ない、均一且つ
欠陥のない膜ができていることが確認された。
As a result of a structural evaluation of the obtained accumulated film by X-ray diffraction, TEM, and SEM, it was confirmed that a uniform and defect-free film with little disturbance of the periodic structure in the stacking direction was formed.

以上の実施例では、基板を引上げて静止させる高さを
モニタすることにより、(6)式で示されるメニスカス
が自発的に移動する条件に設定することで、膜累積を行
なった。この場合、メニスカスが自動的に動き始める臨
界点を検出する手段として、基板に荷重測定装置(電子
天秤や歪みゲージなど)を取付け、荷重測定を行なうこ
とが一つの有効な方法である。
In the above-described embodiment, the film accumulation is performed by monitoring the height at which the substrate is pulled up and stopped, and setting the condition in which the meniscus expressed by Expression (6) moves spontaneously. In this case, as an effective means for detecting a critical point at which the meniscus starts to move automatically, one effective method is to attach a load measuring device (such as an electronic balance or a strain gauge) to the substrate and measure the load.

そのような実施例での基板引上げ操作を、第1図
(a)〜(e)に対応させて第2図(a)〜(e)に示
す。基板2には電子天秤3が取付けられ、引上げられる
基板2の荷重が測定されるようになっている。所定距離
引上げた状態で基板を静止させた時、メニスカスが移動
しなければ、荷重測定値はそこで一定値を示す。(c)
に示すようにメニスカスが横方向に移動する条件の下で
は、基板2とともに持上げられる水の量が時間と共に減
少するために、測定される荷重値も時間と共に減少す
る。従って、表面圧が一定の条件で基板を所定距離引上
げて静止させた時に、重量測定値が動いていれば、先の
(6)式の条件を満たしていることになる。
FIGS. 2 (a) to 2 (e) show the substrate pulling operation in such an embodiment corresponding to FIGS. 1 (a) to 1 (e). An electronic balance 3 is attached to the substrate 2 so that the load of the substrate 2 to be pulled can be measured. If the meniscus does not move when the substrate is stopped after being pulled up by a predetermined distance, the measured load value shows a constant value there. (C)
Under the condition that the meniscus moves in the lateral direction as shown in FIG. 7, since the amount of water lifted with the substrate 2 decreases with time, the measured load value also decreases with time. Therefore, if the weight measurement value is moving when the substrate is pulled up and stopped by a predetermined distance under the condition that the surface pressure is constant, the condition of the above-mentioned expression (6) is satisfied.

基板を所定距離hだけ引上げてメニスカスが基板周辺
にピン止めされている時の基板の荷重Fは、基板の面積
をS、周囲長をLとすると次式で表わされる。
When the substrate is pulled up by a predetermined distance h and the meniscus is pinned to the periphery of the substrate, the load F of the substrate is expressed by the following equation, where S is the area of the substrate and L is the peripheral length.

F=Shρg+L(γw−π)sin θ …(7) ここで、右辺第1項は基板の大きさで決まる浮力を示
し、第2項は表面張力を示している。従って基板を水面
に平行に保った状態で引上げる過程で、基板にかかる荷
重が(7)式の一定値がずれ始める点を検出し、その点
で基板を静止させれば、先に説明したようにメニスカス
の自発的移動によってY型膜の累積が行われる。
F = Shρg + L (γw−π) sin θ (7) Here, the first term on the right side indicates buoyancy determined by the size of the substrate, and the second term indicates surface tension. Therefore, when the point at which the load applied to the substrate starts to deviate from the constant value of the equation (7) is detected in the process of lifting the substrate while keeping the substrate parallel to the water surface, and the substrate is stopped at that point, the point described above is obtained. Thus, the accumulation of the Y-type films is performed by the spontaneous movement of the meniscus.

実施例5 先の実施例1〜4と基本的に同様の条件で、それぞれ
基板の荷重をモニタして引上げる高さを設定してLB膜累
積を行なった。この結果、良好な累積膜が得られた。
Example 5 The LB film accumulation was performed under basically the same conditions as in Examples 1 to 4 described above, while monitoring the load on the substrate and setting the pulling height. As a result, a good cumulative film was obtained.

以上においては、基板をある高さまで引上げた後は、
基板を静止させ、その状態で自動的なメニスカス移動に
よる単分子膜累積を行なった。しかし、実際の操作にお
いては、基板を静止させることは必ずしも必要ではな
い。基板の引上げ速度の制御によって、メニスカスの移
動速度を最適制御することも可能である。即ち、前述し
たメニスカスが自発的に移動開始する臨界点高さあるい
はその前後で基板を一旦静止させ、その後はそれまでの
引上げ速度より更にゆっくりした速度に切換えて、その
速度制御によってメニスカスの移動速度を制御すること
ができる。これにより例えば、完全に基板を静止させた
場合に比べて、熱力学的平衡条件を満たす範囲内で速い
製膜を行なうことも可能になる。基板の一旦停止も必ず
しも必要ではなく、上記臨界点を考慮しながら段階的に
或いは連続的に基板引上げ速度を変化させることによ
り、製膜速度を制御することができる。
In the above, after the board is pulled up to a certain height,
The substrate was allowed to stand still, and in that state, monolayer accumulation was performed by automatic meniscus movement. However, in actual operation, it is not always necessary to keep the substrate stationary. By controlling the substrate pulling speed, it is also possible to optimally control the moving speed of the meniscus. That is, the substrate is once stopped at or around the critical point height at which the meniscus starts to move spontaneously, and thereafter, the speed is switched to a speed slower than the previous pulling speed, and the speed of the meniscus is controlled by the speed control. Can be controlled. As a result, for example, it is possible to perform a rapid film formation within a range satisfying the thermodynamic equilibrium condition as compared with a case where the substrate is completely stopped. It is not always necessary to temporarily stop the substrate, and the film formation speed can be controlled by changing the substrate pulling speed stepwise or continuously while taking the critical point into consideration.

実施例6 引上げ速度を前述の臨界点高さの前後で異ならせて、
メニスカスの移動速度を制御する方法を、先の実施例1
〜4の膜形成に適用した。この結果、良好なLB膜が得ら
れた。
Example 6 By changing the pulling speed before and after the critical point height,
The method of controlling the moving speed of the meniscus is described in the first embodiment.
4 were applied. As a result, a good LB film was obtained.

基板を上記した臨界点高さまたはその前後まで引上げ
た後、単分子膜の表面圧を制御することによって、メニ
スカスの移動速度を制御することもできる。
After the substrate is pulled up to or above the critical point height described above, the movement speed of the meniscus can also be controlled by controlling the surface pressure of the monomolecular film.

実施例7 実施例1と同様にして、ステアリン酸の単分子膜をト
ラフに形成し、疎水性基板を水面に平行に付着後、水面
に平行に引上げた。実施例1と異なり、メニスカスが移
動開始する前に基板を静止させ、この状態で単分子膜の
表面圧をゆっくり上げた。これによりメニスカスは基板
内部に向かってゆっくり移動し初め、実施例1と同様に
ステアリン酸のY型累積膜が形成された。10層の累積膜
を形成して構造評価した結果、実施例1と同様に良好な
膜であることが確認された。
Example 7 In the same manner as in Example 1, a monomolecular film of stearic acid was formed in a trough, a hydrophobic substrate was attached in parallel with the water surface, and then pulled up in parallel with the water surface. Unlike Example 1, the substrate was stopped before the meniscus started to move, and the surface pressure of the monomolecular film was gradually increased in this state. As a result, the meniscus began to slowly move toward the inside of the substrate, and a Y-type cumulative film of stearic acid was formed as in Example 1. As a result of forming a 10-layer cumulative film and evaluating the structure, it was confirmed that the film was a good film as in Example 1.

[発明の効果] 以上述べたように本発明によれば、水平付着法におい
て、熱力学的平衡条件をほぼ満たす条件下でメニスカス
が自発的に基板中心部に移動する現象を積極的に利用す
ることによって、累積構造が均一で欠陥の少ないY型累
積膜を得ることができる。
[Effects of the Invention] As described above, according to the present invention, in the horizontal deposition method, the phenomenon in which the meniscus spontaneously moves to the center of the substrate under conditions substantially satisfying the thermodynamic equilibrium condition is positively used. This makes it possible to obtain a Y-type cumulative film having a uniform cumulative structure and few defects.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(e)は本発明の膜累積の操作と原理を
説明するための図、第2図(a)〜(e)は同じく具体
的な実施例での膜累積の操作と制御原理を説明するため
の図、第3図(a)(b)は本発明におけるメニスカス
移動の様子を説明するための図である。 1……単分子膜、2……基板、3……電子天秤。
1 (a) to 1 (e) are diagrams for explaining the operation and principle of the film accumulation of the present invention, and FIGS. 2 (a) to 2 (e) are the operation of the film accumulation in the same specific embodiment. FIGS. 3 (a) and 3 (b) are diagrams for explaining how the meniscus moves in the present invention. 1 ... monomolecular film, 2 ... substrate, 3 ... electronic balance.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−291058(JP,A) 特開 昭62−286576(JP,A) 特開 昭62−176574(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-291058 (JP, A) JP-A-62-286576 (JP, A) JP-A-62-176574 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】水面上に有機分子を展開して圧縮すること
により所定の表面圧の単分子膜を形成して、所定の基板
を水平に保ちながら前記単分子膜に付着させて引上げる
ことにより、その基板上に有機薄膜を形成する方法にお
いて、前記基板をその近傍の表面圧を低下させない速度
で所定距離引上げ、基板周辺に立つメニスカスを基板中
心部へ移動させる力を利用して、前記単分子膜のY型累
積膜を形成することを特徴とする有機薄膜の形成方法。
1. A monomolecular film having a predetermined surface pressure is formed by expanding and compressing organic molecules on a water surface, and is attached to the monomolecular film and pulled up while keeping a predetermined substrate horizontal. Thus, in the method of forming an organic thin film on the substrate, the substrate is pulled up a predetermined distance at a speed that does not reduce the surface pressure in the vicinity thereof, utilizing the force to move the meniscus standing around the substrate to the center of the substrate, A method for forming an organic thin film, comprising forming a monomolecular Y-type cumulative film.
【請求項2】水面上に有機分子を展開して圧縮すること
により所定の表面圧の単分子膜を形成して、所定の基板
を水平に保ちながら前記単分子膜に付着させて引上げる
ことにより、その基板上に有機薄膜を形成する方法にお
いて、前記基板をその近傍の表面圧を低下させない速度
で引上げ、表面圧π(dyn/cm)に対して下記式で示され
る範囲の高さh(mm)の点で静止させ、そのときに基板
周辺に立つメニスカスが基板中心部へ自動的に移動する
ことを利用して、前記単分子膜のY型累積膜を形成する
ことを特徴とする有機薄膜の形成方法。 式
2. A monomolecular film having a predetermined surface pressure is formed by expanding and compressing organic molecules on a water surface, and is attached to the monomolecular film and pulled up while keeping a predetermined substrate horizontal. Thus, in the method of forming an organic thin film on the substrate, the substrate is pulled up at a speed that does not lower the surface pressure in the vicinity thereof, and the height h in the range represented by the following equation with respect to the surface pressure π (dyn / cm) (Mm), and the Y-cumulative film of the monomolecular film is formed by utilizing the fact that the meniscus standing around the substrate automatically moves to the center of the substrate at that time. A method for forming an organic thin film. formula
【請求項3】水面上に有機分子を展開して圧縮すること
により所定の表面圧の単分子膜を形成して、所定の基板
を水平に保ちながら前記単分子膜に付着させて引上げる
ことにより、その基板上に有機薄膜を形成する方法にお
いて、前記基板をその近傍の表面圧を低下させない速度
で引上げ、前記基板周辺に立つメニスカスが基板中心部
へ自動的に移動開始する点を引上げられる基板にかかる
荷重の測定により検出して、その点で前記基板を静止さ
せることにより、前記単分子膜のY型累積膜を形成する
ことを特徴とする有機薄膜の形成方法。
3. A monomolecular film having a predetermined surface pressure is formed by expanding and compressing organic molecules on a water surface, and is attached to the monomolecular film and pulled up while keeping a predetermined substrate horizontal. Thereby, in the method of forming an organic thin film on the substrate, the substrate is pulled up at a speed that does not lower the surface pressure in the vicinity thereof, and the point at which the meniscus standing around the substrate automatically starts moving to the substrate center can be pulled up. A method for forming an organic thin film, comprising: detecting a load applied to a substrate; measuring the load on the substrate; and stopping the substrate at that point, thereby forming the Y-type cumulative film of the monomolecular film.
【請求項4】水面上に有機分子を展開して圧縮すること
により所定の表面圧の単分子膜を形成して、所定の基板
を水平に保ちながら前記単分子膜に付着させて引上げる
ことにより、その基板上に有機薄膜を形成する方法にお
いて、前記基板をその近傍の表面圧を低下させない速度
で引上げ、基板周辺に立つメニスカスが基板中心部へ自
動的に移動し始める高さの臨界点前後から前記基板の引
上げ速度を制御して、メニスカスの移動速度を制御する
ことにより、前記単分子膜のY型累積膜を形成すること
を特徴とする有機薄膜の形成方法。
4. A monomolecular film having a predetermined surface pressure is formed by expanding and compressing organic molecules on a water surface, and is attached to the monomolecular film and pulled up while keeping a predetermined substrate horizontal. Thus, in the method of forming an organic thin film on the substrate, the substrate is pulled up at a speed that does not lower the surface pressure in the vicinity thereof, and the critical point of the height at which the meniscus standing around the substrate automatically starts moving to the substrate center. A method for forming an organic thin film, wherein the Y-cumulative film of the monomolecular film is formed by controlling a pulling speed of the substrate from before and after and controlling a moving speed of the meniscus.
【請求項5】水面上に有機分子を展開して圧縮すること
により所定の表面圧の単分子膜を形成して、所定の基板
を水平に保ちながら前記単分子膜に付着させて引上げる
ことにより、その基板上に有機薄膜を形成する方法にお
いて、前記基板をその近傍の表面圧を低下させない速度
で引上げ、基板周辺に立つメニスカスが基板中心部へ自
動的に移動し始める高さの臨界点前後で基板を静止さ
せ、その後前記表面圧を制御してメニスカスの移動速度
を制御することにより、前記単分子膜のY型累積膜を形
成することを特徴とする有機薄膜の形成方法。
5. A monomolecular film having a predetermined surface pressure is formed by expanding and compressing organic molecules on a water surface, and is attached to the monomolecular film and pulled up while keeping a predetermined substrate horizontal. Thus, in the method of forming an organic thin film on the substrate, the substrate is pulled up at a speed that does not lower the surface pressure in the vicinity thereof, and the critical point of the height at which the meniscus standing around the substrate automatically starts moving to the substrate center. A method for forming an organic thin film, wherein the substrate is stopped before and after, and then the surface pressure is controlled to control the moving speed of the meniscus, thereby forming the monomolecular Y-cumulative film.
JP63039590A 1988-02-24 1988-02-24 Method of forming organic thin film Expired - Lifetime JP2573285B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63039590A JP2573285B2 (en) 1988-02-24 1988-02-24 Method of forming organic thin film
DE1989605945 DE68905945T2 (en) 1988-02-24 1989-02-22 METHOD FOR PRODUCING A THIN ORGANIC FILM.
EP19890301738 EP0330454B1 (en) 1988-02-24 1989-02-22 Method of forming an organic thin film
US07/879,468 US5286529A (en) 1988-02-24 1992-05-04 Method of forming an organic thin film
US08/070,973 US5415899A (en) 1988-02-24 1993-06-04 Method of forming an organic thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63039590A JP2573285B2 (en) 1988-02-24 1988-02-24 Method of forming organic thin film

Publications (2)

Publication Number Publication Date
JPH01215379A JPH01215379A (en) 1989-08-29
JP2573285B2 true JP2573285B2 (en) 1997-01-22

Family

ID=12557317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63039590A Expired - Lifetime JP2573285B2 (en) 1988-02-24 1988-02-24 Method of forming organic thin film

Country Status (1)

Country Link
JP (1) JP2573285B2 (en)

Also Published As

Publication number Publication date
JPH01215379A (en) 1989-08-29

Similar Documents

Publication Publication Date Title
Honig et al. Langmuir-Blodgett deposition ratios
Shah et al. Single‐Step Self‐Organization of Ordered Macroporous Nanocrystal Thin Films
Xue et al. Inhibition of dewetting of thin polymer films
US4155793A (en) Continuous preparation of ultrathin polymeric membrane laminates
EP0270212B1 (en) Production of close packed colloidal particle coatings
CN1325325A (en) Method and apparatus for coating with liquid or supercritical carbon dioxide
JPS59102406A (en) Polymer membrane
US20050118338A1 (en) Control of the spatial distribution and sorting of micro-or nano-meter or molecular scale objects on patterned surfaces
EP0640406A1 (en) A method for producing a particle film
Meiners et al. Chemically functionalized surfaces from ultrathin block‐copolymer films
JP2573285B2 (en) Method of forming organic thin film
Ko et al. Fabrication of colloidal self-assembled monolayer (SAM) using monodisperse silica and its use as a lithographic mask
JP3262472B2 (en) Langmuir Blodgett film production equipment
US5415899A (en) Method of forming an organic thin film
Hur et al. Fabrication of high-quality non-close-packed 2D colloid crystals by template-guided Langmuir–Blodgett particle deposition
Narhe et al. Dynamics of drop coalescence on a surface: The role of initial conditions and surface properties
Dukarov et al. Surface energy and wetting in island films
Kraack et al. Langmuir films of normal-alkanes on the surface of liquid mercury
Aveyard et al. Contact angles and transfer ratios measured during the Langmuir-Blodgett deposition of docosanoic acid onto mica from CdCl2 subphases
US20160136682A1 (en) Nanoparticle coated substrates and method of making the same
JP2647121B2 (en) Organic thin film manufacturing method
EP0330454B1 (en) Method of forming an organic thin film
Tang et al. Self-assembly of rod-coil block copolymers on a substrate into micrometer-scale ordered stripe nanopatterns
Sykes et al. Critical radius of holes in liquid coating
Tsukruk et al. Tribological properties of modified MEMS surfaces