JP2573281B2 - Magneto-optical disk playback method - Google Patents

Magneto-optical disk playback method

Info

Publication number
JP2573281B2
JP2573281B2 JP63023905A JP2390588A JP2573281B2 JP 2573281 B2 JP2573281 B2 JP 2573281B2 JP 63023905 A JP63023905 A JP 63023905A JP 2390588 A JP2390588 A JP 2390588A JP 2573281 B2 JP2573281 B2 JP 2573281B2
Authority
JP
Japan
Prior art keywords
magneto
magnetic field
recording
hex
laser power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63023905A
Other languages
Japanese (ja)
Other versions
JPH01201846A (en
Inventor
勝太郎 市原
博道 小堀
光男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP63023905A priority Critical patent/JP2573281B2/en
Publication of JPH01201846A publication Critical patent/JPH01201846A/en
Application granted granted Critical
Publication of JP2573281B2 publication Critical patent/JP2573281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) この発明は、光磁気ディスク上に記録された情報を再
生する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a method for reproducing information recorded on a magneto-optical disk.

(従来の技術) 光磁気ディスクは、膜面に対して垂直な方向に磁化容
易軸を有する、例えば希土類−遷移金属非晶質合金(RE
−TM)膜に代表される光磁気記録層を基板上に形成した
記録媒体である。光磁気ディスクにおける記録は、記録
層にレーザビームを照射し、必要があればさらに外部よ
り磁界を印加して、磁化の向きを可逆的に反転させるこ
とで行なわれる。また、再生は記録層の磁化の向きに応
じた極カー効果を利用して行なわれる。
(Prior Art) A magneto-optical disk has an easy axis of magnetization in a direction perpendicular to a film surface, for example, a rare earth-transition metal amorphous alloy (RE).
-TM) A recording medium in which a magneto-optical recording layer represented by a film is formed on a substrate. Recording on the magneto-optical disk is performed by irradiating the recording layer with a laser beam and, if necessary, further applying a magnetic field from the outside to invert the magnetization direction reversibly. Reproduction is performed using the polar Kerr effect according to the direction of magnetization of the recording layer.

このような光磁気ディスクは、基板上に記録層をスパ
ッタまたは蒸着等により成膜して作製される。成膜直後
の記録層はマクロ的には消磁状態にあるので、ディスク
として使用するに先立って着磁を行ない、磁化の向きを
トラック全域またはディスク全面にわたって揃える必要
がある。このようにして磁化の向きを一様にした記録層
の磁区を選択的に反転させるか、または消滅させるのが
記録・消去動作であり、磁化反転が生じている記録磁区
の有無をカー効果を利用して検出するのが再生動作であ
る。
Such a magneto-optical disk is manufactured by forming a recording layer on a substrate by sputtering or vapor deposition. Since the recording layer immediately after film formation is in a demagnetized state macroscopically, it is necessary to perform magnetization prior to use as a disk and make the direction of magnetization uniform over the entire track or over the entire disk. The recording / erasing operation selectively reverses or eliminates the magnetic domain of the recording layer in which the magnetization direction is made uniform in this manner. The Kerr effect is determined by the presence or absence of the recording magnetic domain in which the magnetization reversal occurs. The reproduction operation is used for detection.

再生信号強度は再生用レーザビームのレーザパワーP
と、カー回転角θkの積に比例する。従って再生信号の
C/N(キャリア・ノイズ比)を大きくする上では、レー
ザパワーPを大きくすることが望ましいが、あまり大き
くすると記録層の温度が上昇してカー回転角θkを低下
するので、従来ではP×θk積の極大を与えるようなP
を用いるのが好ましいとされてきた。
The reproduction signal intensity is the laser power P of the reproduction laser beam.
And the product of the car rotation angle θk. Therefore, the reproduction signal
In order to increase the C / N (carrier-to-noise ratio), it is desirable to increase the laser power P. However, if it is too high, the temperature of the recording layer increases and the Kerr rotation angle θk decreases. P that gives the maximum of the θk product
Has been preferred.

しかしながら、記録磁区は記録層自体の漏洩磁界Hlが
常に印加されている状態にあるので、再生用レーザビー
ムのレーザパワーPを増加させてゆき、再生用レーザビ
ーム照射部の記録層の保磁力Hcが漏洩磁界Hlよりも小さ
くなってしまうと、再生動作をしているつもりが記録ま
たは消去動作を行なってしまい、記録磁区の変形を引起
こす(但し、再生時の印加磁界Hexが0の場合)。この
ような記録磁区の変形を発生する最小のレーザパワー
(記録磁区を変形させない最大レーザパワー)Pcが、P
×θk積の極大を与えるPよりも十分に高ければ、実質
的に問題はない。ところが、光磁気ディスクの記録層と
して多く用いられるRE−TM膜等では、PcがP×θk積の
極大を与えるPより十分大きいという条件が満たされな
いことが多いので、容易にPの最適値をP×θk積の極
大に設定することは、記録磁区の変形を招く危険があ
り、好ましくない。
However, since the leakage magnetic field Hl of the recording layer itself is always applied to the recording magnetic domain, the laser power P of the reproducing laser beam is increased, and the coercive force Hc of the recording layer of the reproducing laser beam irradiation unit is increased. Is smaller than the leakage magnetic field Hl, the recording or erasing operation is performed as if the reproducing operation is performed, and the magnetic domain of the recording is deformed (however, when the applied magnetic field Hex at the time of reproducing is 0). . The minimum laser power Pc that causes such deformation of the recording magnetic domain (the maximum laser power that does not deform the recording magnetic domain) Pc is
As long as it is sufficiently higher than P that gives the maximum of the xθk product, there is substantially no problem. However, the RE-TM film or the like often used as a recording layer of a magneto-optical disk often does not satisfy the condition that Pc is sufficiently larger than P that gives a maximum of the product of P × θk. Setting the maximum of the product of P × θk is not preferable because there is a risk of causing deformation of the recording magnetic domain.

(発明が解決しようとする課題) このように光磁気ディスクの再生動作においては、再
生条件によっては再生用レーザビームの照射による再磁
化反転等の記録磁区の変形を起こし、記録された情報を
損なうおそれがあるが、従来ではこのような危険性に対
する考慮が特になされていない。
(Problems to be Solved by the Invention) As described above, in the reproducing operation of the magneto-optical disk, depending on the reproducing conditions, deformation of the recording magnetic domain such as re-magnetization reversal due to irradiation of the reproducing laser beam occurs, and recorded information is damaged. Although there is a possibility, conventionally, no particular consideration has been given to such danger.

本発明は記録された情報を損なうことなく、再生信号
のC/Nを高くすることができる光磁気ディスクの再生方
法を提供することを目的とする。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a method of reproducing a magneto-optical disk capable of increasing the C / N of a reproduction signal without impairing recorded information.

[発明の構成] (課題を解決するための手段) 本発明は、光磁気ディスクに記録された情報を再生す
る際に、光磁気ディスクにおける記録層の漏洩磁界をHl
とした時、0.5Hl≦Hex≦1.5Hlの範囲で、且つHlの向き
とは逆向きの印加磁界Hexを最適印加時間として指示す
るデータと、印加磁界Hexを上記範囲に選んで再生を行
なった時に光磁気ディスクに記録されている情報を損わ
ない最大レーザパワーをPcとした時、0.6Pc≦P≦Pcの
範囲のPを最適レーザパワーとして指示するデータとを
光磁気ディスク上の特定エリアに記録しておき、これら
のデータに基づいて印加磁界及び再生用レーザビームの
レーザパワーを設定することを特徴とする。
[Constitution of the Invention] (Means for Solving the Problems) The present invention reduces the leakage magnetic field of the recording layer of a magneto-optical disk when the information recorded on the magneto-optical disk is reproduced.
In the range, 0.5Hl ≦ Hex ≦ 1.5Hl, and data indicating the applied magnetic field Hex in the direction opposite to the direction of Hl as the optimal application time, and the reproduction was performed by selecting the applied magnetic field Hex in the above range. When the maximum laser power that does not impair the information recorded on the magneto-optical disk is Pc, data indicating P as the optimum laser power in the range of 0.6Pc ≦ P ≦ Pc is a specific area on the magneto-optical disk. In which the applied magnetic field and the laser power of the reproducing laser beam are set based on these data.

(作用) 本発明によると、再生時に必要な印加磁界及び再生用
レーザビームのレーザパワーが最適値に自動的に設定さ
れ、再生用レーザビームの照射により記録磁区を変形さ
せて記録された情報を損なうことはない。
(Function) According to the present invention, the applied magnetic field required for reproduction and the laser power of the reproduction laser beam are automatically set to optimal values, and the information recorded by deforming the recording magnetic domain by the irradiation of the reproduction laser beam is obtained. There is no loss.

また、本発明による再生方法では印加磁界Hexを漏洩
磁界Hlとは逆向きにした上で、0.5Hl≦Hex≦1.5Hlに範
囲に設定することにより、HlとHexとの相殺効果で再生
用レーザビーム照射部に加わる実効磁界Heff(HlとHex
とのベクトル和)が小さな値に抑えられるため、記録磁
区が変形するときの臨界保磁力Hc(≦Heff)が小さくな
る。この臨界保磁力Hcの低下に対応して記録磁区の変形
臨界レーザパワー(記録された情報を損わない最大レー
ザパワー)Pcが大きくなり、結果として再生信号のC/N
が向上する。0.5Hl≦Hex≦1.5Hlの範囲は、種々の記録
層について再生信号のC/N向上効果を確認して見出した
ものである。
Further, in the reproducing method according to the present invention, the applied magnetic field Hex is set in the range of 0.5Hl ≦ Hex ≦ 1.5Hl after the direction of the applied magnetic field Hex is set to be opposite to the leakage magnetic field Hl. Effective magnetic field Heff (Hl and Hex
) Is suppressed to a small value, so that the critical coercive force Hc (≦ Heff) when the recording magnetic domain is deformed becomes small. Corresponding to the decrease in the critical coercive force Hc, the deformation critical laser power Pc (maximum laser power that does not impair recorded information) Pc of the recording magnetic domain increases, and as a result, the C / N
Is improved. The range of 0.5Hl ≦ Hex ≦ 1.5Hl was found by confirming the effect of improving the C / N of the reproduced signal for various recording layers.

さらに、再生レーザパワーPを記録磁区の変形臨界レ
ーザパワーPc以下とすることでHex≒Hlの条件下でも記
録磁区の変形が確実に防止され、しかもPを0.6Pc以上
にすることによって、Hex≒Hlでない場合と比較して再
生信号のC/Nが大きくなる。
Further, by setting the reproducing laser power P to be equal to or less than the deformation critical laser power Pc of the recording magnetic domain, deformation of the recording magnetic domain is reliably prevented even under the condition of Hex ≒ H1, and by setting P to 0.6Pc or more, Hex ≒ The C / N of the reproduced signal is larger than in the case of not Hl.

(実施例) 以下、図面を参照して本発明の実施例を説明する。(Example) Hereinafter, an example of the present invention is described with reference to drawings.

第1図は本発明の一実施例の光磁気ディスクの概要を
示したもので、基板1上に光磁気記録媒体層2が形成さ
れている。光磁気記録媒体層2は例えばRE−TM膜からな
る記録層を少なくとも有する。この光磁気記録媒体層2
の内周部はリードインエリア3であり、他の部分はユー
ザデータエリア4となっている。ここで、リードインエ
リア3には光磁気ディスクの記録再生時に通常必要な各
種制御データの他、本発明に基づいて再生時の最適印加
磁界のデータと最適レーザパワーのデータが予め記録さ
れている。
FIG. 1 shows an outline of a magneto-optical disk according to one embodiment of the present invention. A magneto-optical recording medium layer 2 is formed on a substrate 1. The magneto-optical recording medium layer 2 has at least a recording layer made of, for example, an RE-TM film. This magneto-optical recording medium layer 2
Is the lead-in area 3 and the other part is the user data area 4. Here, in the lead-in area 3, in addition to various control data normally required at the time of recording / reproducing of the magneto-optical disk, data of the optimal applied magnetic field and data of the optimal laser power at the time of reproducing based on the present invention are recorded in advance. .

第1図の光磁気ディスクの製造方法の一例を説明す
る。まず、基板1としてトラッキング用溝が予め設けら
れた130mmφ,1.2mmtの樹脂基板を用意し、その上にスパ
ッタ法によりSiN膜/250Å厚のTb25Co75記録層/SiN膜/Ti
膜の4層膜を光磁気記録媒体層2として成膜した後、着
磁を行ない、ディスク全面にわたり記録層の磁化の向き
を基板1面から膜面の方向(第1図で上方向)に揃え
た。
An example of a method for manufacturing the magneto-optical disk shown in FIG. 1 will be described. First, a 130 mmφ, 1.2 mmt resin substrate provided with a tracking groove in advance as a substrate 1 is prepared, and a SiN film / 250 mm thick Tb25Co75 recording layer / SiN film / TiN film is formed thereon by sputtering.
After a four-layer film is formed as the magneto-optical recording medium layer 2, it is magnetized and the direction of magnetization of the recording layer is changed from the substrate 1 surface to the film surface (upward in FIG. 1) over the entire surface of the disk. Aligned.

次に、ディスクを120rpmで回転させ、ユーザデータエ
リア4(半径5cm)において記録試験を行なった。記録
条件は記録用レーザビームとして繰返し周波数1MHz,デ
ューティ50%のパルスを用い、さらに400 Oeの補助印加
磁界を基板1から膜面の方向(第1図で上方向)に向け
て印加した。このように着磁の向きと記録時の補助印加
磁界の向きが同じなのは、本実施例では記録層がTbリッ
チのフェリ磁性膜であることによる。
Next, the disk was rotated at 120 rpm, and a recording test was performed in the user data area 4 (radius 5 cm). Recording conditions were such that a pulse having a repetition frequency of 1 MHz and a duty of 50% was used as a recording laser beam, and an auxiliary applied magnetic field of 400 Oe was applied from the substrate 1 toward the film surface (upward in FIG. 1). The reason why the direction of magnetization is the same as the direction of the auxiliary applied magnetic field during recording is that the recording layer is a Tb-rich ferrimagnetic film in this embodiment.

記録用レーザビームを最適レーザパワーである5.5mW
に設定して記録磁区(記録ビット)列を形成した後、再
生試験を行なった。パラメータは再生時に印加磁界Hex
と、再生用レーザビームのレーザパワー(以下、再生レ
ーザパワーという)Pとした。第2図および第3図は再
生試験の結果を示したものである。
The recording laser beam is 5.5mW which is the optimum laser power.
After forming a recording magnetic domain (recording bit) row by setting to, a reproduction test was performed. The parameter is the applied magnetic field Hex during playback.
And the laser power of the reproducing laser beam (hereinafter referred to as reproducing laser power) P. FIG. 2 and FIG. 3 show the results of the regeneration test.

第2図は再生レーザパワーPに対する再生信号のC/N
及びノイズレベルの変化を、2種の印加磁界Hex=0,Hex
=+200 Oe(第1図で上方向を+方向とする)の場合に
ついて示している。同図から明らかなように、ノイズレ
ベル(但し、再生レーザパワーPの増加による戻り光ノ
イズ分は差引いて示している)は、ある再生レーザパワ
ーP(=Pc:記録磁区の変形臨界レーザパワー)までは
変化していないが、PがPcを越えると上昇する。また、
C/NはPcまではほぼPに比例して、つまりPが2倍にな
ると6dB上昇する割合いで大きくなるが、Pc以上になる
と低下することがわかる。またPcはHexに依存し、Hex=
0では約2mWであるのに対して、Hex=+200 Oeでは3.5m
Wと大きい。さらに、C/Nの最大値はHex=0では52dBな
のに対して、Hex=+200 Oeでは57dBとなっている。
FIG. 2 shows the C / N of the reproduction signal with respect to the reproduction laser power P.
And the change in the noise level, the two applied magnetic fields Hex = 0, Hex
= + 200 Oe (the upward direction is defined as the + direction in FIG. 1). As is clear from the figure, the noise level (however, the return light noise due to the increase in the reproduction laser power P is shown after subtraction) is a certain reproduction laser power P (= Pc: deformation critical laser power of the recording magnetic domain). , But rises when P exceeds Pc. Also,
It can be seen that C / N increases substantially in proportion to P up to Pc, that is, increases by a rate of 6 dB when P is doubled, but decreases when Pc or more. Pc also depends on Hex, Hex =
0m is about 2mW, whereas Hex = + 200 Oe is 3.5mW
W and big. Further, the maximum value of C / N is 52 dB at Hex = 0, whereas it is 57 dB at Hex = + 200 Oe.

ここで、記録層であるTbCo膜のカー回転角θkは膜温
度上昇(つまり再生レーザパワーPの上昇)によっては
ほとんど低下しない。従って、第2図において再生レー
ザパワーPがPcを越える領域でのC/Nの低下は、キャリ
アレベルがP×θkの極大を過ぎたためではなく、記録
磁区に変化が起こり、その結果としてノイズレベルが増
大したためと判断できる。実際、再生レーザパワーPを
Pcを越える値に設定して再生したトラックの記録磁区を
観察したところ、Hex=0においては記録磁区のエッジ
が揺いでおり、磁区の長さが短くなっていることが確認
された。これに対し、再生レーザパワーPがPc以下では
記録磁区は記録パルス幅相当の長さを有し、そのエッジ
は円形であった。
Here, the Kerr rotation angle θk of the TbCo film serving as the recording layer hardly decreases due to an increase in the film temperature (that is, an increase in the reproducing laser power P). Accordingly, in FIG. 2, the decrease in C / N in the region where the reproducing laser power P exceeds Pc is not caused by the carrier level exceeding the maximum of P × θk, but by a change in the recording magnetic domain, and as a result, the noise level is reduced. Can be determined to have increased. In fact, the reproduction laser power P
Observation of the recording magnetic domain of the track reproduced at a value exceeding Pc confirmed that at Hex = 0, the edge of the recording magnetic domain fluctuated, and the length of the magnetic domain was shortened. On the other hand, when the reproducing laser power P was equal to or less than Pc, the recording magnetic domain had a length corresponding to the recording pulse width, and the edge was circular.

このようにHex=0において再生レーザパワーPに応
じて記録磁区に影響が現われたり現われなかったりする
原因は、Hex=0では記録層の漏洩磁界Hlが再生レーザ
パワーPの大きい領域では記録磁区を消去する方向に作
用することにより、記録層の保磁力Hcが漏洩磁界Hlより
も小さくなるP>Pcの領域では記録磁区の局所的な再磁
化反転が起こり、その再磁化反転が微視的に不均一に発
生するためと考えられる。一方、印加磁界がHex=+200
Oeの領域ではHexが漏洩磁界Hlを完全に相殺してしまう
ので、再磁化反転を起こす保磁力Hcが小さくなり、結果
的に記録磁区の変形臨界レーザパワーPcが大きくなるも
のと考えられる。
As described above, when Hex = 0, the influence on the recording magnetic domain depending on the reproduction laser power P appears or does not appear. When Hex = 0, the leakage magnetic field Hl of the recording layer decreases the recording magnetic domain in the region where the reproduction laser power P is large. By acting in the erasing direction, local remagnetization reversal of the recording magnetic domain occurs in the region of P> Pc where the coercive force Hc of the recording layer is smaller than the leakage magnetic field Hl, and the remagnetization reversal is microscopic. This is considered to be due to uneven generation. On the other hand, the applied magnetic field is Hex = + 200
It is considered that in the Oe region, Hex completely cancels out the leakage magnetic field Hl, so that the coercive force Hc causing re-magnetization reversal decreases, and as a result, the deformation critical laser power Pc of the recording magnetic domain increases.

第3図は同一ディスクについて印加磁界Hexを種々変
えて取得した、記録磁区の変形臨界レーザパワーPcを示
したものであり、Hex≒+200 OeでPcは最大となってお
り、記録層の漏洩磁界HlはHexと向きが逆で大きさが同
じ、すなわちHl≒−200 Oeであることがわかる。
FIG. 3 shows the deformation critical laser power Pc of the recording magnetic domain obtained by changing the applied magnetic field Hex of the same disk at various values. Hex ≒ + 200 Oe shows the maximum Pc, and the leakage magnetic field of the recording layer. It can be seen that Hl has the opposite direction and the same size as Hex, that is, Hl ≒ −200 Oe.

第2図および第3図を用いて説明したように、再生時
の印加磁界Hexと再生レーザパワーPを適正にすれば、
記録磁区の変形を伴わずに再生レーザパワーPを大きく
でき、C/Nを高くすることが可能である。そこで、上述
のようにして記録試験を行なったユーザデータエリア4
内の情報を全て消去した後、リードインエリア3内にこ
の光磁気ディスクの最適再生条件を示すデータ、すなわ
ちHex:+100 Oe〜+300 Oe,P:2mW〜3.5mWという情報を
表わすデータを記録しておき、再生時にこれらのデータ
をリードインエリア3から読出して印加磁界Hexおよび
再生レーザパワーPを自動的な設定すれば、記録された
情報を損なうことなく、再生信号のC/Nを最大限に高く
することができる。
As described with reference to FIGS. 2 and 3, if the applied magnetic field Hex and the reproducing laser power P at the time of reproducing are made appropriate,
The reproducing laser power P can be increased without accompanying the deformation of the recording magnetic domain, and the C / N can be increased. Therefore, the user data area 4 in which the recording test was performed as described above
After erasing all the information in the data, data indicating the optimum reproduction condition of the magneto-optical disk, that is, data indicating information of Hex: +100 Oe to +300 Oe, P: 2 mW to 3.5 mW, is recorded in the lead-in area 3. If these data are read from the lead-in area 3 during reproduction and the applied magnetic field Hex and the reproduction laser power P are automatically set, the C / N of the reproduction signal can be maximized without losing the recorded information. Can be higher.

なお、上記実施例では記録層として漏洩磁界Hlが比較
的大きいTbCo膜を用いた光磁気ディスクについて説明し
たが、記録層がどのような材料であっても、Hlは0には
なり得ないので本発明は有効である。例えば補償組成の
TbCo膜は漏洩磁界Hlが最も小さくなる記録層の例である
が、数10Oe程度のHlは印加されるので、本発明に基づい
て印加磁界HexをHex≒Hl(但し向きは逆)として再生を
することは、再生レーザパワーPを大きくして再生信号
のC/Nを高くする上で有効となる。
In the above embodiment, a magneto-optical disk using a TbCo film having a relatively large leakage magnetic field Hl as the recording layer has been described. However, no matter what material the recording layer is, H1 cannot be 0. The present invention is effective. For example, the compensation composition
The TbCo film is an example of a recording layer in which the leakage magnetic field Hl is minimized. However, since Hl of about several tens Oe is applied, reproduction is performed based on the present invention by setting the applied magnetic field Hex to Hex ≒ Hl (however, in the opposite direction). This is effective in increasing the reproduction laser power P to increase the C / N of the reproduction signal.

本発明において、再生時の印加磁界Hexは上述したよ
うにHex≒Hl(0.9Hl〜1.1Hl程度)が特に望ましいが、T
bCo,TbFe,GdTbCo,TbFeCo,GdTbFe等の種々のRE−TM膜の
記録層について上記と同様の試験を行なったところ、He
xが0.5Hl≦Hex≦1.5Hlの範囲にあり、且つその向きがHl
と逆向きであれば、再生信号のC/N向上効果が顕著とな
ることが確認された。
In the present invention, the applied magnetic field Hex at the time of reproduction is particularly preferably Hex ≒ Hl (about 0.9Hl to 1.1Hl) as described above.
bCo, TbFe, GdTbCo, TbFeCo, GdTbFe etc.
x is in the range of 0.5Hl ≦ Hex ≦ 1.5Hl, and its direction is Hl
In the opposite direction, it was confirmed that the effect of improving the C / N of the reproduced signal was remarkable.

一方、再生レーザパワーPは0.6Pc〜Pcの範囲が望ま
しい。この根拠はPがPcを越えると、Hex≒Hlの条件で
も記録磁区の変形を起こす確率が著しく高くなること
と、Pが0.6Pcに満たなければHex≒Hlとしない場合に比
べて、再生信号のC/N向上効果がさほど期待できないた
めである。
On the other hand, the reproduction laser power P is preferably in the range of 0.6 Pc to Pc. The basis for this is that if P exceeds Pc, the probability of deforming the recording magnetic domain is significantly increased even under the condition of Hex ≒ Hl, and if the P is less than 0.6Pc, the reproduced signal is higher than when Hex ≒ Hl is not used. This is because the C / N improvement effect cannot be expected so much.

実用上はHexおよびPを上述した範囲内で、再生マー
ジン等を考慮して選択することが望ましい。
Practically, it is desirable to select Hex and P within the above-described range in consideration of a reproduction margin and the like.

[発明の効果] 本発明では再生時の最適印加磁界及び再生用レーザビ
ームの最適レーザパワーのデータをディスク上の特定エ
リアに記録しておくことにより、記録された情報を損わ
ずに大きな再生C/Nが得られる最適印加磁界及び最適レ
ーザパワーを再生時に自動設定することができる。
[Effects of the Invention] In the present invention, data of the optimum applied magnetic field during reproduction and the optimum laser power of the reproduction laser beam are recorded in a specific area on the disk, so that large reproduction can be performed without losing the recorded information. The optimum applied magnetic field and the optimum laser power for obtaining C / N can be automatically set at the time of reproduction.

さらに、本発明の再生方法はこのような光磁気ディス
クに記録された情報を再生する際に、記録層の漏洩磁界
をHlとして0.5Hl≦Hex≦1.5Hlの範囲で、且つHlの向き
とは逆向きの印加磁界Hexを最適印加磁界として指示す
るデータと、印加磁界Hexを上記範囲に選んで再生を行
なう時に光磁気ディスクに記録されている情報を損わな
い最大レーザパワー(記録磁区の変形臨界レーザパワ
ー)をPcとして0.6Pc≦P≦Pcの範囲のPを最適レーザ
パワーとして指示するデータとを光磁気ディスク上の特
定エリアから読出し、これらのデータに基づいて印加磁
界及び再生用レーザビームのレーザパワーを最適値に設
定することにより、記録磁区の変形臨界保磁力Hcを小さ
くできるので、記録磁区の変形臨界レーザパワーPcを大
きくとることが可能となり、再生信号のC/Nがより効果
的に向上する。
Further, the reproducing method of the present invention, when reproducing information recorded on such a magneto-optical disk, in the range of 0.5Hl ≦ Hex ≦ 1.5Hl with the leakage magnetic field of the recording layer as Hl, and the direction of Hl Data indicating the applied magnetic field Hex in the opposite direction as the optimum applied magnetic field, and the maximum laser power (deformation of the recording magnetic domain) which does not impair the information recorded on the magneto-optical disk when reproducing by selecting the applied magnetic field Hex within the above range. Critical laser power) as Pc, and read data from a specific area on the magneto-optical disk, which indicates P in the range of 0.6Pc ≦ P ≦ Pc as an optimum laser power, and apply an applied magnetic field and a reproducing laser beam based on these data. By setting the laser power of the recording domain to an optimum value, the critical deformation coercive force Hc of the recording magnetic domain can be reduced, so that the critical deformation laser power Pc of the recording magnetic domain can be increased, and the C of the reproduction signal can be increased. / N improves more effectively.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例に係る光磁気ディスクの構成を
示す図、第2図は本発明の実施例に基づく再生方法を説
明するための、再生レーザパワーの変化に対する再生信
号のC/N及びノイズレベルの変化を印加磁界をパラメー
タとして示す図、第3図は同じく印加磁界と記録磁区の
変形臨界レーザパワーとの関係を示す図である。 1…基板、2…光磁気記録媒体層、3…リードインエリ
ア、4…ユーザデータエリア。
FIG. 1 is a diagram showing a configuration of a magneto-optical disk according to an embodiment of the present invention, and FIG. 2 is a view for explaining a reproducing method based on the embodiment of the present invention. FIG. 3 is a diagram showing changes in N and noise level using an applied magnetic field as a parameter, and FIG. 3 is a diagram showing a relationship between the applied magnetic field and the deformation critical laser power of the recording magnetic domain. 1 ... substrate, 2 ... magneto-optical recording medium layer, 3 ... lead-in area, 4 ... user data area.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】光磁気ディスクにおける記録層の漏洩磁界
をHlとした時、0.5Hl≦Hex≦1.5Hlの範囲で、且つHlの
向きとは逆向きの印加磁界Hexを最適印加磁界として指
示するデータと、印加磁界Hexを上記範囲に選んで再生
を行なった時に光磁気ディスクに記録されている情報を
損なわない最大レーザパワーをPcとした時、0.6Pc≦P
≦Pcの範囲のPを最適レーザパワーとして指示するデー
タとを光磁気ディスク上の特定エリアに記録しておき、 光磁気ディスク上に記録された情報を再生する時、これ
らのデータに基づいて印加磁界及び再生用レーザビーム
のレーザパワーを設定することを特徴とする光磁気ディ
スクの再生方法。
When the leakage magnetic field of a recording layer in a magneto-optical disk is Hl, an applied magnetic field Hex in a range of 0.5Hl ≦ Hex ≦ 1.5Hl and opposite to the direction of Hl is designated as an optimum applied magnetic field. When the maximum laser power which does not impair the information recorded on the magneto-optical disk when the data and the applied magnetic field Hex are selected in the above range and the reproduction is performed is Pc, 0.6Pc ≦ Pc
Data indicating P as the optimum laser power in the range of ≤Pc is recorded in a specific area on the magneto-optical disk, and applied when reproducing the information recorded on the magneto-optical disk based on these data. A method for reproducing a magneto-optical disk, comprising setting a magnetic field and a laser power of a reproducing laser beam.
JP63023905A 1988-02-05 1988-02-05 Magneto-optical disk playback method Expired - Lifetime JP2573281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63023905A JP2573281B2 (en) 1988-02-05 1988-02-05 Magneto-optical disk playback method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63023905A JP2573281B2 (en) 1988-02-05 1988-02-05 Magneto-optical disk playback method

Publications (2)

Publication Number Publication Date
JPH01201846A JPH01201846A (en) 1989-08-14
JP2573281B2 true JP2573281B2 (en) 1997-01-22

Family

ID=12123482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63023905A Expired - Lifetime JP2573281B2 (en) 1988-02-05 1988-02-05 Magneto-optical disk playback method

Country Status (1)

Country Link
JP (1) JP2573281B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3615021B2 (en) 1997-06-30 2005-01-26 富士通株式会社 Optical storage device and optical storage medium recording / reproducing method
JP3778399B2 (en) 1998-03-16 2006-05-24 富士通株式会社 Optical storage device and optical storage medium recording / reproducing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721898B2 (en) * 1984-06-29 1995-03-08 株式会社日立製作所 Magneto-optical recording / reproducing method
JPH0756708B2 (en) * 1985-04-19 1995-06-14 三洋電機株式会社 Magneto-optical disk and its recording device

Also Published As

Publication number Publication date
JPH01201846A (en) 1989-08-14

Similar Documents

Publication Publication Date Title
JPH04123339A (en) Overwritable magneto-optical recording medium with high level margin extended
JP2573281B2 (en) Magneto-optical disk playback method
US5751669A (en) Overwritable magnetooptical recording method in which the recording medium is cooled after irradiation
US5233575A (en) Magneto-optical recording medium
US5587974A (en) Magneto-optical recording medium having two magnetic layers with perpendicular magnetic anisotropy, and information recording method having the same
JPH056588A (en) Magneto-optical recording medium and magneto-optical recording method
US5768218A (en) Magneto-optical recording medium having a plurality of magnetic layers
US5665467A (en) Magneto-optical recording medium
EP0740296A2 (en) Magneto-optical recording media
JPH04228138A (en) Method and device for magneto-optical recording and reproducing
KR100691196B1 (en) Magneto-optical recording medium
US5536570A (en) Overwrite capable magneto-optical recording medium having three magneto-optic layers
US5949743A (en) Magnetooptical recording medium having a bias layer related by Curie temperature to a writing layer, which is capable of being overwritten by light modulation
JPH076420A (en) Magneto-optical recording medium
JP3184272B2 (en) Magneto-optical recording method
US5683803A (en) Magneto-optical recording medium and method of recording and reproducing using the same
JP3071246B2 (en) Magneto-optical recording method
JP2893089B2 (en) Magneto-optical recording method
JP2796602B2 (en) Magneto-optical recording method
US6139949A (en) Magneto optical recording medium
JPH07161082A (en) Magneto-optical recording medium and magneto-optical recording method
JP3184273B2 (en) Magneto-optical recording method
JP3000385B2 (en) Magneto-optical recording method
JP2782957B2 (en) Magneto-optical recording medium
JP3009211B2 (en) Magneto-optical recording medium

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12