JP2573186B2 - Satellite attitude control system - Google Patents

Satellite attitude control system

Info

Publication number
JP2573186B2
JP2573186B2 JP61142696A JP14269686A JP2573186B2 JP 2573186 B2 JP2573186 B2 JP 2573186B2 JP 61142696 A JP61142696 A JP 61142696A JP 14269686 A JP14269686 A JP 14269686A JP 2573186 B2 JP2573186 B2 JP 2573186B2
Authority
JP
Japan
Prior art keywords
attitude
control
drive signal
satellite
control gain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61142696A
Other languages
Japanese (ja)
Other versions
JPS62299499A (en
Inventor
信一郎 市川
仁 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP61142696A priority Critical patent/JP2573186B2/en
Publication of JPS62299499A publication Critical patent/JPS62299499A/en
Application granted granted Critical
Publication of JP2573186B2 publication Critical patent/JP2573186B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) ガスジエツト装置あるいはリアクシヨンホイール装置
をトルク発生源として用いる太陽電池パネルなどの柔軟
構造物の備えた人工衛星の姿勢制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial application field) The present invention relates to an attitude control method for a satellite equipped with a flexible structure such as a solar cell panel using a gas jet device or a reaction wheel device as a torque generating source. .

(従来の技術) 一般に人工衛星の軌道制御は、ガスジエツト装置など
の軌道制御用スラスタ(以下スラスタと称す)を用いて
行なわれる。このスラスタは、その推力ベクトルが人工
衛星の重心上を通過する様に配置され、このスラスタの
動作時にこの噴射による反作用力が人工衛星自体に対す
る外乱トルクとならないように設計されている。
(Prior Art) Orbit control of an artificial satellite is generally performed using an orbit control thruster (hereinafter, referred to as a thruster) such as a gas jet device. The thruster is arranged so that its thrust vector passes over the center of gravity of the satellite, and is designed so that the reaction force due to the injection does not become a disturbance torque to the satellite itself during operation of the thruster.

しかしながら、実際には製造上の誤差などからスラス
タの推力ベクトルが衛星の重心上を通過せず、外乱トル
クを発生する。あるいは推力ベクトルが重心上を通過し
たとしてもスラスタが特にガスジエツトタイプのもので
あれば、その噴射ガスが人工衛星の一部、例えば太陽電
池パネルに衝突して外乱トルクを誘発してしまうのが一
般的である。
However, the thrust vector of the thruster does not actually pass over the center of gravity of the satellite due to a manufacturing error or the like, and a disturbance torque is generated. Or, even if the thrust vector passes over the center of gravity, if the thruster is of a gas jet type in particular, the injected gas collides with a part of the satellite, for example, a solar panel, and induces disturbance torque. Is common.

このスラスタによつて発生する外乱トルクは太陽放射
圧などの他の自然外乱トルクに比較してはるかに大きい
ために、何らかの対策を講じない限り大きな姿勢変動が
生じることになる。
Since the disturbance torque generated by this thruster is much larger than other natural disturbance torques such as the solar radiation pressure, a large attitude change occurs unless any countermeasure is taken.

このため、従来は、姿勢変動を低減するために姿勢制
御系の制御利得を高めたり、あるいはスラスタの発生す
る外乱トルクを小さくするために、衛星の形状に制約を
与えたり、スラスタのアライメント(関係位置)を厳し
く管理するなどの対策がとられてきた。
For this reason, conventionally, the control gain of the attitude control system is increased in order to reduce the attitude fluctuation, or the satellite shape is restricted in order to reduce the disturbance torque generated by the thruster, or the thruster alignment (relationship) Measures have been taken, such as strictly controlling the position).

しかしながら、この姿勢制御利得を高めるにあたつて
は、このこと自体にも種々問題があつた。すなわち、第
3図及び第4図に示される従来の方式について説明する
と、 姿勢変動を姿勢誤差として検出する姿勢誤差検出器
(1)により、位相進み補償器(2)を介して、直接及
び積分器(3)を通して制御利得発生器(4)へ入力
し、この制御利得発生器(4)により姿勢制御用駆動信
号を得るようにしている。
However, this itself has various problems in increasing the attitude control gain. That is, the conventional method shown in FIGS. 3 and 4 will be described. An attitude error detector (1) that detects attitude fluctuation as an attitude error is directly and integrated via a phase lead compensator (2). A control gain generator (4) is input to the control gain generator (4) through the controller (3), and a drive signal for attitude control is obtained by the control gain generator (4).

この駆動信号を得るにあたつて、前記制御利得発生器
(4)による制御利得値を、その衛星を制御する上で効
率的な値がとられるが、例えば、この制御利得を比較的
大きくとれば、第5図(a)に示されるように、軌道制
御開始時点(イ)より制御動作が開始され、衛星の本体
部は当初最大の姿勢誤差α(θ)の比較的小巾の姿勢誤
差の範囲に抑えることが柔軟構造物の影響による干渉作
用によりβ(時間)の領域で更に大きな姿勢誤差α′を
生じることである。
In obtaining the drive signal, the control gain value by the control gain generator (4) is set to an effective value for controlling the satellite. For example, the control gain can be set relatively large. For example, as shown in FIG. 5 (a), the control operation is started from the start of the orbit control (a), and the main body of the satellite has a relatively small attitude error of the initially maximum attitude error α (θ). Is that a larger attitude error α ′ is generated in the region of β (time) due to the interference effect due to the influence of the flexible structure.

また逆に制御系の制御利得を比較的小さくとればその
前記柔軟構造物の干渉作用から第5図(b)に示される
ように抑制することができるので、あるが、衛星本体部
の姿勢変動はイ′時点から変動を開始して、その姿勢誤
差はα′(θ)まで大きくなつていた。
Conversely, if the control gain of the control system is relatively small, the interference effect of the flexible structure can be suppressed as shown in FIG. 5 (b). Has started to fluctuate from point a ', and the attitude error has increased to α' (θ).

このことは、外乱による人工衛星の姿勢変動と、この
人工衛星と一体の柔軟構造物の姿勢変動とは、それぞれ
前記外乱により受ける影響が物理的に異なることから、
その姿勢変動の時間帯、変動特性が異なることが原因に
なつているからである。
This means that the attitude change of the satellite due to the disturbance and the attitude change of the flexible structure integrated with the satellite are physically different from each other due to the influence of the disturbance,
This is because the time period and the fluctuation characteristics of the posture change are different.

(発明が解決しようとする問題点) このような原因から、上述第5図(a)及び(b)の
何れの場合にも、姿勢変動が一時的に相当大きくなるこ
とから結果的に姿勢制御動作の時間を不必要に長びか
せ、スラスタの寿命を短くすることになるなどの欠点が
あつた。
(Problems to be Solved by the Invention) Due to such a cause, in any of the above-described FIGS. 5 (a) and 5 (b), the posture variation temporarily becomes considerably large, and consequently the posture control is performed. There are drawbacks such as unnecessarily prolonging the operation time and shortening the life of the thruster.

本発明は以上の点に鑑みてなされたもので、姿勢誤差
(θ)を極力小さくし安定な姿勢制御ができるようにし
たものである。
The present invention has been made in view of the above points, and is intended to minimize the posture error (θ) and perform stable posture control.

〔発明の構成〕[Configuration of the invention]

(問題点を解決するための手段) すなわち、駆動信号を発生させる際、発生する駆動信
号を切り換えることにより、姿勢変動の大きい初期の時
間帯において、その姿勢制御系を高制御利得の下で行な
い、柔軟構造物などの影響で発生する姿勢変動は低制御
の下で行なうようにし、姿勢制御中の姿勢誤差を全体と
して小さい範囲に抑えることができるようにしたもので
ある。
(Means for Solving the Problems) That is, when the drive signal is generated, the generated drive signal is switched so that the attitude control system is operated under a high control gain in the initial time zone in which the attitude variation is large. In addition, the posture variation caused by the influence of the flexible structure or the like is performed under low control, and the posture error during the posture control can be suppressed to a small range as a whole.

(作用) しかして、外乱トルク等により、姿勢変動の大きい初
期の時間帯においては、高制御利得器(24)により高利
得駆動信号を得るようにし、この信号に基くスラスタの
作用により人工衛星全体の姿勢誤差(θ)が所定値まで
低下すると、低制御利得器(25)により低制御駆動信号
を得るようにして主として柔軟構造物などにより起生す
る姿勢変動が引続き抑制され、全体として大きな変動を
伴なわず短時間のうちに安定に姿勢が保たれる。
(Operation) In the initial time zone in which the attitude fluctuation is large due to disturbance torque or the like, a high-gain drive signal is obtained by the high-control gain device (24), and the thruster based on this signal operates the entire artificial satellite. When the attitude error (θ) decreases to a predetermined value, the low control gain signal (25) is used to obtain a low control drive signal, so that the attitude fluctuation mainly caused by a flexible structure or the like is continuously suppressed, and the overall large fluctuation The posture can be stably maintained within a short time without accompanying.

(実施例) 以下第1図〜第3図に示される本発明の一実施例につ
いて説明すると、(11)は人工衛星本体で、この両側に
通常太陽電池パネル(12),(12)が回転支持軸(1
3),(13)を介して設けられる。(14)…は、姿勢制
御用スラスタで、ガスジエツトを噴出することにより衛
星全体に対して駆動トルクを発生させることができるも
のである。このスラスタ(14)…は、第1図に示される
フローに従つて得られる駆動信号により動作するように
なつているものである。
(Embodiment) An embodiment of the present invention shown in FIG. 1 to FIG. 3 will be described below. Support shaft (1
3), provided via (13). (14) are attitude control thrusters capable of generating driving torque for the entire satellite by jetting a gas jet. The thrusters (14)... Are operated by driving signals obtained according to the flow shown in FIG.

すなわち、(21)は、姿勢誤差検出器で、人工衛星本
体(11)内に備えられ姿勢誤差に比例した信号を生成す
る。位相進み補償器(22)は制御安定制を高める為に具
備されたものであり、姿勢誤差検出器(21)の出力に対
して位相進み補償を行なう。
That is, (21) is an attitude error detector, which generates a signal provided in the artificial satellite body (11) and proportional to the attitude error. The phase lead compensator (22) is provided to enhance control stability, and performs phase lead compensation on the output of the attitude error detector (21).

姿勢誤差検出器(21)及び位相進み補償器(22)から
出力された姿勢誤差信号は駆動信号発生器(31)に入力
される。
The attitude error signals output from the attitude error detector (21) and the phase lead compensator (22) are input to the drive signal generator (31).

上記信号は直接及び積分器(23)を介して後段の低制
御利得器(24)あるいは高制御利得器(25)に切替えス
イツチ(30)を介して入力され制御用の駆動信号を得
る。積分器(23)は、姿勢誤差の定常偏差を小さくする
為に具備されている補償器である。(26)は積分初期化
信号発生装置で、低制御利得と、高制御利得の相互の切
替え時、積分器(23)内の値を切替えた時に、連続性を
保つために、低制御利得から高制御利得へ切替えたとき
に接続される積分器初期化利得器a(27),高制御利得
から低制御利得へ切替えたときに接続する積分器初期化
利得器b(28)及びこの両者に対する切替スイツチ(2
9)とにより構成されるもので、前記駆動信号を入力
し、前記積分器(23)に所定の制御時間帯に連続して入
力するものである。
The above-mentioned signal is directly input to the low control gain unit (24) or the high control gain unit (25) of the subsequent stage via the integrator (23) and input via the switch (30) to obtain a drive signal for control. The integrator (23) is a compensator provided to reduce the steady-state error of the attitude error. ( 26 ) is an integral initialization signal generator, which switches from low control gain to low continuity when switching between low control gain and high control gain and when switching the value in the integrator (23). Integrator initialization gain unit a (27) connected when switching to high control gain, integrator initialization gain unit b (28) connected when switching from high control gain to low control gain, and both Switching switch (2
9), wherein the drive signal is inputted and inputted to the integrator (23) continuously during a predetermined control time period.

これら制御系における利得の変換にあたつては、地上
あるいは人工衛星本体自体からの指令によつて行なうこ
とができる。
The conversion of the gain in these control systems can be performed on the ground or by a command from the satellite itself.

しかして、姿勢誤差を姿勢誤差検出器(21)が検出す
ると、これが信号化したものを位相進み補償器(22)に
入力する。この位相進み補償器(22)から位相進み補償
情報が積分器(23)で積分され、積分補償情報として出
力される。前記位相進み補償情報及び積分補償情報がp
点で加算される。
When the attitude error is detected by the attitude error detector (21), the attitude error is signalized and input to the phase lead compensator (22). The phase advance compensation information is integrated by the integrator (23) from the phase advance compensator (22) and output as integral compensation information. The phase lead compensation information and the integral compensation information are p
The points are added.

ここで切替えスイツチ(30)は、当初高制御利得器
(24)側に接続され、この高制御利得器(24)で所定の
高利得駆動信号が出力される。
Here, the switching switch (30) is initially connected to the high control gain unit (24), and the high control gain unit (24) outputs a predetermined high gain drive signal.

この駆動信号は、積分初期化信号発生装置(26)にお
いて検出し、この発信状態を連続的に保つために積分器
(23)に入力される。このとき、、切替えスイツチ(2
9)は例えば積分器初期化利得器a(27)に接続され、
この状態が維持される。
This drive signal is detected by the integration initialization signal generator ( 26 ) and is input to the integrator (23) in order to maintain this transmission state continuously. At this time, the switching switch (2
9) is connected to, for example, an integrator initialization gain unit a (27),
This state is maintained.

この駆動信号により姿勢制御が開始するのが第2図の
時点イである。これが高制御利得のまま時点ロまでの
間、人工衛星本体部が姿勢制御される。このときの姿勢
の姿勢誤差(θ)はαで示されるように小さい値であ
る。
At time A in FIG. 2, the attitude control is started by this drive signal. The attitude of the main body of the artificial satellite is controlled until the time point B with the high control gain. At this time, the posture error (θ) of the posture is a small value as indicated by α.

次に、ロの時点より切替スイツチ(30)と同時に積分
初期化信号発生装置(26)をその積分初期化利得bに切
替える。すなわち、低制御利得の側に切替える。
Next, from the time point b, the integral initialization signal generator ( 26 ) is switched to the integral initialization gain b simultaneously with the switching switch (30). That is, it is switched to the low control gain side.

これにより柔軟構造物などにより起生する姿勢変動が
引続き抑制され、全体として大きな変動がなく短時間の
うちに安定に姿勢を保つようになる。
As a result, the posture change caused by the flexible structure or the like is continuously suppressed, and the posture is stably maintained within a short time without a large change as a whole.

〔発明の効果〕〔The invention's effect〕

以上詳細に述べたように、本発明によれば、駆動信号
を切り換えて発生させることにより、外乱トルク等によ
り姿勢変動の大きい初期の時間帯において、その姿勢制
御系を高制御利得の下で行ない、柔軟構造物などの影響
で発生する姿勢変動は低制御利得の下で行なうようにし
たから、太陽電池パネルなどの柔軟構造物を備えた人工
衛星において、スラスタによる外乱トルクを受けた場合
にでも、大きな姿勢変動もなく短時間で安定にすること
ができ、従つてスラスタの作用に要する燃料も少なくて
すみ、その分スラスタの寿命を長期化することも可能と
なる。
As described in detail above, according to the present invention, by switching and generating a drive signal, the attitude control system is operated under a high control gain in an initial time zone in which attitude fluctuation is large due to disturbance torque or the like. Since the attitude fluctuation caused by the influence of the flexible structure is performed under a low control gain, even if the satellite equipped with the flexible structure such as the solar panel receives the disturbance torque by the thruster, Therefore, it is possible to stabilize the operation in a short time without a large change in attitude, and therefore, the fuel required for the operation of the thruster is reduced, and the life of the thruster can be prolonged.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の姿勢制御系のフロー図、第2図は本発
明を実施した場合の人工衛星の姿勢誤差と時間との関係
を示す図、第3図は、本発明を実施するに適する人工衛
星の斜視図、第4図は従来の姿勢制御系のフロー図で、
第5図(a)及び(b)は従来の姿勢制御系を実施した
場合の姿勢誤差と時間との関係を示す図である。 (11)……人工衛星本体、(12)……太陽電池パネル、
(14)……スラスタ、(21)……姿勢誤差検出器、(2
3)……位相進み補償器、(23)……積分器、(24)…
…高制御利得器、(25)……低制御利得器、(26)……
積分初期化信号発生装置、(27)……積分器初期化利得
器a、(28)……積分器初期化利得器b、(29),(3
0)……切替スイッチ、(31)……駆動信号発生部。
FIG. 1 is a flowchart of the attitude control system of the present invention, FIG. 2 is a view showing the relationship between the attitude error of an artificial satellite and time when the present invention is implemented, and FIG. FIG. 4 is a perspective view of a suitable satellite, and FIG. 4 is a flowchart of a conventional attitude control system.
FIGS. 5 (a) and 5 (b) are diagrams showing the relationship between attitude error and time when a conventional attitude control system is implemented. (11) ... satellite body, (12) ... solar panel,
(14) thruster, (21) attitude error detector, (2
3)… Phase lead compensator, (23)… Integrator, (24)…
… High control gainer, (25) …… Low control gainer, ( 26 ) ……
Integral initialization signal generator, (27) ... integrator initialization gain unit a, (28) ... integrator initialization gain unit b, (29), (3
0) Changeover switch, (31) Drive signal generator.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】人工衛星の姿勢誤差を検出する姿勢誤差検
出部と、 この検出された姿勢誤差に基づいて人工衛星の姿勢制御
を行なう駆動信号を発生する駆動信号発生部と を具備する人工衛星の姿勢制御方式において、 前記駆動信号発生部は、 姿勢変動の大きい時間帯では高制御利得の下で姿勢制御
を行なう駆動信号を発生し、姿勢変動の小さい時間帯で
は低制御利得の下で姿勢制御を行なう駆動信号を発生
し、発生する駆動信号を切り換えることを特徴とする人
工衛星の姿勢制御方式。
An artificial satellite, comprising: an attitude error detecting section for detecting an attitude error of an artificial satellite; and a drive signal generating section for generating a drive signal for controlling the attitude of the artificial satellite based on the detected attitude error. In the attitude control method, the drive signal generating section generates a drive signal for performing attitude control under a high control gain in a time zone in which the attitude variation is large, and generates an attitude signal under a low control gain in a time zone in which the attitude variation is small. An attitude control method for an artificial satellite, wherein a driving signal for controlling is generated, and the generated driving signal is switched.
JP61142696A 1986-06-20 1986-06-20 Satellite attitude control system Expired - Fee Related JP2573186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61142696A JP2573186B2 (en) 1986-06-20 1986-06-20 Satellite attitude control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61142696A JP2573186B2 (en) 1986-06-20 1986-06-20 Satellite attitude control system

Publications (2)

Publication Number Publication Date
JPS62299499A JPS62299499A (en) 1987-12-26
JP2573186B2 true JP2573186B2 (en) 1997-01-22

Family

ID=15321415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61142696A Expired - Fee Related JP2573186B2 (en) 1986-06-20 1986-06-20 Satellite attitude control system

Country Status (1)

Country Link
JP (1) JP2573186B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61102398A (en) * 1984-10-24 1986-05-21 三菱電機株式会社 Method of determining attitude of space missile

Also Published As

Publication number Publication date
JPS62299499A (en) 1987-12-26

Similar Documents

Publication Publication Date Title
US5100084A (en) Method and apparatus for inclined orbit attitude control for momentum bias spacecraft
US7988097B2 (en) Precision attitude control system for gimbaled thruster
JPH0450239B2 (en)
JPH0624397A (en) Control of spaceship position using ginbal and adjustably drawn thruster and momentum unloading method and device
EP0251692B1 (en) Orbit control system for a satellite
EP2204321B1 (en) System for improving maneuverability and controllability by simultaneously applying both reaction wheel-based attitude controller and thruster-based attitude controller
JPH06227498A (en) East west orbit control device between north and south stationary operations of space flight body
JP2001270499A (en) Magnetic torquer control with thruster augmentation
US6622969B2 (en) Maneuver device for artificial satellite
US5687933A (en) Attitude control for spacecraft with movable appendages such as solar panels
JP2573186B2 (en) Satellite attitude control system
US5984237A (en) Delta-V targeting system for three-axis controlled spacecraft
US4023752A (en) Elimination of residual spacecraft nutation due to propulsive torques
JPH10287299A (en) Attitude control device of artificial satellite
JP3135601B2 (en) Spacecraft attitude control system
JPH08310500A (en) Orbit controller
JP2942568B2 (en) Orbit conversion propulsion device
JPH07223600A (en) Attitude controller for space shuttle
JPH08310499A (en) Attitude controller
JPH10250697A (en) Thruster controller
JPH03182900A (en) Attitude control equipment for artificial satellite
Siegel et al. Unusual maneuvers on Nimbus and Landsat spacecraft
JPH0569899A (en) Motion control device for space navigating object
JPH0218198A (en) Attitude controlling method of space flying object by wheel
JPH09315397A (en) Attitude control device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees