JP2570842B2 - Damping composite material - Google Patents

Damping composite material

Info

Publication number
JP2570842B2
JP2570842B2 JP1002243A JP224389A JP2570842B2 JP 2570842 B2 JP2570842 B2 JP 2570842B2 JP 1002243 A JP1002243 A JP 1002243A JP 224389 A JP224389 A JP 224389A JP 2570842 B2 JP2570842 B2 JP 2570842B2
Authority
JP
Japan
Prior art keywords
vibration
graphite
test
damping
composite material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1002243A
Other languages
Japanese (ja)
Other versions
JPH02182847A (en
Inventor
廉一 磯村
秀敏 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyoda Jidoshokki Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Jidoshokki Seisakusho KK filed Critical Toyoda Jidoshokki Seisakusho KK
Priority to JP1002243A priority Critical patent/JP2570842B2/en
Publication of JPH02182847A publication Critical patent/JPH02182847A/en
Application granted granted Critical
Publication of JP2570842B2 publication Critical patent/JP2570842B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、軽量、かつ高い振動減衰能を備えた制振複
合材料に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a vibration-damping composite material having a light weight and high vibration damping ability.

[従来の技術] 振動と騒音による公害が重大な社会問題の一つとして
注目され、その対策の中で最も積極的、かつ抜本的なも
のとして考えられたのが防振合金の利用である。防振合
金とは振動、騒音を発生する機械や構造体などの構成材
料である金属材料そのものに高い減衰能を付与したもの
である。
[Prior Art] Pollution due to vibration and noise has been attracting attention as one of the serious social problems, and the use of vibration-proof alloys has been considered as the most aggressive and drastic one of the countermeasures. An anti-vibration alloy is obtained by imparting high damping ability to a metal material itself, which is a constituent material of a machine or a structure that generates vibration and noise.

一方、軽いという大きな特徴の故に広汎な分野機械構
造用材料として使用されているアルミニウム合金は、上
記減衰能が至って低い(減衰係数=0.3%)ことで知ら
れている。勿論アルミニウム合金の中でも上記防振合金
として実用に供されているAl−78Zn合金は、同Mg合金に
次く優れた減衰能(減衰係数=30%)を有するものの、
Alの約2.6倍の比重をもつZnを多量に含有するため、逆
に本来の軽量特性が失われるという点に問題がある。
On the other hand, an aluminum alloy used as a material for mechanical structures in a wide range of fields due to its large feature of being light is known to have the extremely low damping ability (damping coefficient = 0.3%). Of course, among the aluminum alloys, the Al-78Zn alloy which is practically used as the above vibration damping alloy has the next highest damping ability (damping coefficient = 30%) next to the Mg alloy,
Since a large amount of Zn having a specific gravity of about 2.6 times that of Al is contained, there is a problem in that the original lightweight characteristics are lost.

[発明が解決しようとする課題] 上述したように、優れた軽量特性並びに経済的実用性
を兼備した制振材料は未だ報告されていない。
[Problem to be Solved by the Invention] As described above, a vibration damping material having both excellent lightweight properties and economic practicality has not been reported yet.

本発明は、マトリックス金属としてアルミニウム合金
の特性を活かし、しかも減衰能の付与とは反比例的に生
じる強度低下を、強化繊維との複合技術によって補填し
た制振材料の創出を、解決すべき技術課題とするもので
ある。
The present invention is to solve the technical problem to solve the problem of creating a vibration damping material utilizing the properties of an aluminum alloy as a matrix metal and compensating for a decrease in strength that occurs in inverse proportion to the provision of damping ability by a composite technology with reinforcing fibers. It is assumed that.

[課題を解決するための手段] 本発明は上記課題解決のため、りん状黒鉛を保持した
セラミックス繊維集積体と、アルミニウム合金とを複合
させた制振複合材料であって、りん状黒鉛の体積率を2
〜8%とした新規な構成を採用している。
[Means for Solving the Problems] To solve the above problems, the present invention is a vibration damping composite material obtained by combining a ceramic fiber assembly holding phosphorous graphite and an aluminum alloy, and has a volume of phosphorous graphite. Rate 2
A new configuration of ~ 8% is adopted.

本発明に使用されるセラミックス繊維には、長繊維、
短繊維又はウイスカの何れもが使用でき、その体積率は
10〜20%程度が好ましい。りん状黒鉛は黒鉛原鉱から摩
砕、分級された1〜50μm程度の微粉末であり、集積体
として形成された微細な繊維狭間に巧みに保持されてア
ルミニウム合金中に均一に分散する。
The ceramic fibers used in the present invention include long fibers,
Either short fiber or whisker can be used, and its volume fraction is
About 10 to 20% is preferable. Phosphorous graphite is a fine powder of about 1 to 50 μm ground and classified from a graphite ore, and is finely held between fine fibers formed as an aggregate and is uniformly dispersed in an aluminum alloy.

上記制振複合材料の製造方法の概要は次のとおりであ
る。所要のセラミックス繊維とりん状黒鉛とを必要なら
ば小量の界面活性剤を添加して液媒(例えば水)中に分
散させ、既知の圧縮形成法によにこれを集積体に成形し
て乾燥させる。その後繊維集積体を予熱して同様に予熱
された金型内にセットし、高圧凝固鋳造法によりアルミ
ニウム合金を溶浸させてこれを冷却固化させる。
The outline of the manufacturing method of the above-mentioned vibration damping composite material is as follows. If necessary, a small amount of a surfactant is added to the required ceramic fiber and phosphorous graphite, if necessary, dispersed in a liquid medium (eg, water), and formed into an integrated body by a known compression forming method. dry. Thereafter, the fiber assembly is preheated and set in a preheated mold, and the aluminum alloy is infiltrated by high-pressure solidification casting and cooled and solidified.

[試験例1] アルミナーシリカ繊維とりん状黒鉛とを水中に分散さ
せ、圧縮成形法によりこれを集積体に成形して乾燥させ
た。この場合マトリックス金属との複合化時における繊
維の体積率が約15%、りん状黒鉛の体積率が約4%とな
るよう予め計量の上調整した。その後繊維集積体を窒素
ガス雰囲気中で約350℃に予熱し、同じく約250℃に予熱
された金型内にセットした。そして高圧凝固鋳造法によ
りアルミニウム合金(Al−6Cu−0.5Zr)を溶浸させ、こ
れを冷却固化したのち、幅10mm、厚さ2mm、長さ70mmの
試験片1を切出した。
[Test Example 1] Alumina-silica fiber and phosphorous graphite were dispersed in water, formed into an aggregate by a compression molding method, and dried. In this case, the volume ratio of the fibers at the time of compounding with the matrix metal was adjusted about 15% in advance and the volume ratio of the phosphorous graphite was adjusted to about 4%. Thereafter, the fiber assembly was preheated to about 350 ° C. in a nitrogen gas atmosphere, and set in a mold also preheated to about 250 ° C. Then, an aluminum alloy (Al-6Cu-0.5Zr) was infiltrated by high-pressure solidification casting, cooled and solidified, and then a test piece 1 having a width of 10 mm, a thickness of 2 mm and a length of 70 mm was cut out.

[試験例2] りん状黒鉛に代えて、土状黒鉛、グラファイトウイス
カ、活性炭を使用した以外、試験例1と同一の条件で試
験片2〜4を切出した。
Test Example 2 Test pieces 2 to 4 were cut out under the same conditions as in Test Example 1 except that earth graphite, graphite whisker, and activated carbon were used instead of phosphorous graphite.

[試験条件] 第1図に示すように隔設した支台10間に2条の糸12を
張架し、その上に上記試験片Pを載置して、そのほぼ中
央部をハンマ14でインパクト加振し、そのときの振動減
衰形をレーザドップラ振動計により検出した。
[Test Conditions] As shown in FIG. 1, two yarns 12 are stretched between supports 10 which are spaced apart from each other, and the test piece P is placed thereon. Impact vibration was applied, and the vibration attenuation type at that time was detected by a laser Doppler vibrometer.

そして第2図に示す振動減衰波形により全振幅Xnを10
点読み取り、振動繰返し数nとlogeXnの関係を最小2乗
法により算出し、対数減衰率(△)を求めた。
The total amplitude Xn is set to 10 by the vibration damping waveform shown in FIG.
The relationship between the point reading and the number of vibration repetitions n and logeXn was calculated by the least square method, and the logarithmic decay rate (△) was obtained.

なお、上記試験には参考試験片としてFc25、Al−56Zn
(コスマール)、Al−6Cu−0.5Zrの各素材から同様に切
出した試験片5〜7を加えて評価した。
In the above test, Fc25, Al-56Zn
(Cosmar), and test pieces 5 to 7 similarly cut out from each material of Al-6Cu-0.5Zr were added and evaluated.

試験の結果は、第3図に示す振動減衰波形と、表1に
示す評価によって理解できるように、本発明になる試験
片1は、一般に振動減衰能が高く工作機械のベッドなど
に使用されている普通鋳鉄(Fc25)に匹敵する良好な結
果が得られた。
As can be understood from the test results obtained by the vibration damping waveform shown in FIG. 3 and the evaluation shown in Table 1, the test piece 1 according to the present invention generally has a high vibration damping ability and is used for a bed of a machine tool. The results were as good as those of ordinary cast iron (Fc25).

[試験例3] 次いでりん状黒鉛の体積率が振動減衰能と強度に及ぼ
す影響を観察するため、繊維の体積率は10%に固定し、
りん状黒鉛の体積率のみを段階的に変化させた以外は試
験片1と同一の条件で数種の試験片を切出した。なお、
曲げ試験に用いた試験片寸法は、幅4mm、厚さ2mm、長さ
45mmであり、試験は30mmのスパン、1mm/分の荷重速度で
行った。
[Test Example 3] Next, in order to observe the effect of the volume fraction of phosphorous graphite on the vibration damping capacity and strength, the volume fraction of the fiber was fixed at 10%.
Several kinds of test pieces were cut out under the same conditions as test piece 1 except that only the volume ratio of phosphorous graphite was changed stepwise. In addition,
The test piece dimensions used for the bending test were 4 mm wide, 2 mm thick, and
The test was performed with a span of 30 mm and a load speed of 1 mm / min.

試験の結果は第4図にみられるように、対数減衰率は
りん状黒鉛の体積率に比例的に上昇するが、一方、第5
図のように曲げ強さはりん状黒鉛の体積率に反比例的に
低下する傾向を示す。これはりん状黒鉛自体がアルミニ
ウム合金とぬれ性が悪く、両者の界面結合力が低いこと
によるが、振動が加わると該界面に内部摩擦が生起し、
振動のエネルギは熱エネルギに変換されて消散すること
となり、とくに微粉状りん状黒鉛の大きな表面積がエネ
ルギ損失界面の拡大を伴って逆に減衰能を効果的に高め
るためである。したがって上記試験結果から、十分実用
に供しうるりん状黒鉛の体積率は2〜8%であることが
判明した。
As can be seen from the results of the test, the logarithmic decay rate increases in proportion to the volume fraction of the phosphorous graphite, as shown in FIG.
As shown in the figure, the bending strength tends to decrease in inverse proportion to the volume fraction of the phosphorous graphite. This is due to the fact that phosphorous graphite itself has poor wettability with aluminum alloys and low interfacial bonding strength between them, but when vibration is applied, internal friction occurs at the interface,
Vibration energy is converted to heat energy and dissipated, and in particular, the large surface area of the finely powdered phosphorous graphite is accompanied by the expansion of the energy loss interface, and conversely the damping ability is effectively increased. Therefore, from the above test results, it was found that the volume fraction of phosphorous graphite which can be sufficiently used practically is 2 to 8%.

[発明の効果] 以上説明したように本発明は、特定量のりん状黒鉛を
保持したセラミックス繊維集積体と、アルミニウム合金
とを複合させたものであるから、軽量、高強度のアルミ
ニウム合金特性を維持しつつ高い振動減衰能が得られる
とともに、セラミックス繊維及びりん状黒鉛のもつ他面
的効能により、優れた対摩耗性、耐焼付性、自己潤滑性
をも兼備することができる。
[Effect of the Invention] As described above, the present invention is a composite of a ceramic fiber assembly holding a specific amount of phosphorous graphite and an aluminum alloy. While maintaining the high vibration damping ability, the ceramic fiber and the phosphorous graphite have the other-side effect, and can also have excellent wear resistance, seizure resistance, and self-lubrication.

【図面の簡単な説明】[Brief description of the drawings]

第1図は振動減衰試験方法の概要を示す模式図、第2図
は対数減衰率の求め方を示したもので、 (a)は振動減衰波形を(b)は波数と振幅の関係を示
す線図、第3図は各試験片の振動減衰波形を比較して示
す線図、第4図はりん状黒鉛体積率と対数減衰率との関
係を示す線図、第5図はりん状黒鉛体積率と曲げ強さと
の関係を示す線図である。
FIG. 1 is a schematic diagram showing an outline of a vibration damping test method, and FIG. 2 shows a method of obtaining a logarithmic damping rate, where (a) shows a vibration damping waveform and (b) shows a relationship between wave number and amplitude. FIG. 3 is a diagram comparing the vibration attenuation waveforms of the test pieces, FIG. 4 is a diagram illustrating the relationship between the volume ratio of phosphorous graphite and logarithmic decrement, and FIG. 5 is a diagram illustrating phosphorous graphite. It is a diagram which shows the relationship between volume ratio and bending strength.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】りん状黒鉛を保持したセラミックス繊維集
積体と、アルミニウム合金とを複合させた複合材料であ
って、上記りん状黒鉛の体積率が2〜8%であることを
特徴とする制振複合材料。
1. A composite material comprising a ceramic fiber assembly holding phosphor graphite and an aluminum alloy, wherein the volume ratio of the phosphor graphite is 2 to 8%. Vibration composite materials.
JP1002243A 1989-01-09 1989-01-09 Damping composite material Expired - Lifetime JP2570842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1002243A JP2570842B2 (en) 1989-01-09 1989-01-09 Damping composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1002243A JP2570842B2 (en) 1989-01-09 1989-01-09 Damping composite material

Publications (2)

Publication Number Publication Date
JPH02182847A JPH02182847A (en) 1990-07-17
JP2570842B2 true JP2570842B2 (en) 1997-01-16

Family

ID=11523915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1002243A Expired - Lifetime JP2570842B2 (en) 1989-01-09 1989-01-09 Damping composite material

Country Status (1)

Country Link
JP (1) JP2570842B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110343897B (en) * 2019-08-02 2020-11-03 青岛滨海学院 Preparation method and application of flake graphite reinforced aluminum-based composite material
JP2021080958A (en) * 2019-11-15 2021-05-27 本田技研工業株式会社 Fixing structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5881948A (en) * 1981-11-11 1983-05-17 Nissan Motor Co Ltd Aluminum composite material excellent in wear resistance and vibration attenuating capacity

Also Published As

Publication number Publication date
JPH02182847A (en) 1990-07-17

Similar Documents

Publication Publication Date Title
Mishra et al. A study on processing, characterization and erosion wear behavior of silicon carbide particle filled ZA-27 metal matrix composites
Wu et al. Wear behavior of in situ Al-based composites containing TiB2, Al2O3, and Al3Ti particles
JPH0696188B2 (en) Fiber reinforced metal composite material
Siva Prasad et al. Damping behavior of metal matrix composites
Gaitonde et al. Some studies on wear and corrosion properties of AL5083/Al 2 O 3/graphite hybrid composites
Prashant et al. Preparation and evaluation of mechanical and wear properties of Al6061 reinforced with graphite and SiC particulate metal matrix composites
JP2570842B2 (en) Damping composite material
Asthana Processing effects on the engineering properties of cast metal-matrix composites
Rao et al. Dry sliding wear behavior of Al7075 reinforced with titanium carbide (TiC) particulate composites
Bujari et al. A review on processing and tribological properties of metal matrix composites
Wang et al. Silicon Carbide Whisker-Reinforced Silicon Nitride Composite
JP3345640B2 (en) High-strength vibration damping alloy and its manufacturing method
Yu et al. Corrosion fatigue of SiC whisker or SiC particulate reinforced 6061 aluminum alloy
Palanichamy et al. Mechanical Characteristics of Fly Ash Reinforced Aluminium Metal Matrix Composite-Art of Review
CN105822707A (en) Friction material for braking, brake pad and preparation method of brake pad
CA2209244A1 (en) Noise abating components
Fu et al. Fabrication and properties of Al matrix composites strengthened by in situ alumina particulates
JP2021011609A (en) Sintered body for friction dampers and method for producing the same
JPH0634045A (en) Graphite-aluminium alloy complex piston
CA2219169A1 (en) In-situ strengthened metal matrix composite
Vannan et al. Dry sliding wear behaviour of basalt short fiber reinforced aluminium metal matrix composites
Visnapuu et al. Damping properties of selected steels and cast irons
Jawahar The Mechanical &Thermal Properties of Various Brake Rotors Materials: A Review
JPH02163530A (en) Fiber-reinforced light alloy composite member and clutch using the same
Chaitanya et al. Effect of Porosity on the Tribological Behaviour of Syntactic Foams in Dry Sliding Conditions