JP2570839B2 - Al-Cu alloy thin film forming method - Google Patents

Al-Cu alloy thin film forming method

Info

Publication number
JP2570839B2
JP2570839B2 JP63325197A JP32519788A JP2570839B2 JP 2570839 B2 JP2570839 B2 JP 2570839B2 JP 63325197 A JP63325197 A JP 63325197A JP 32519788 A JP32519788 A JP 32519788A JP 2570839 B2 JP2570839 B2 JP 2570839B2
Authority
JP
Japan
Prior art keywords
thin film
alloy thin
temperature
film forming
forming method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63325197A
Other languages
Japanese (ja)
Other versions
JPH02170419A (en
Inventor
勉 新澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP63325197A priority Critical patent/JP2570839B2/en
Publication of JPH02170419A publication Critical patent/JPH02170419A/en
Application granted granted Critical
Publication of JP2570839B2 publication Critical patent/JP2570839B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、集積回路装置などを構成する配線用のAl−
Cu合金薄膜を形成する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an Al-based wiring for an integrated circuit device or the like.
The present invention relates to a method for forming a Cu alloy thin film.

〔従来の技術〕[Conventional technology]

集積回路装置の配線を形成するためのアルミニウム系
薄膜は段差部に被覆性良く堆積される必要があり、その
方法としてバイアススパッタリング法(J.Electrochem.
Soc.誌、1985年第132巻、1466頁所載論文)や化学気相
成長法(J.Eletcrochem.Soc、誌、1984年第131巻、2175
頁所載論文)(以降CVD法と略記する)が検討されてい
る。
The aluminum-based thin film for forming the wiring of the integrated circuit device needs to be deposited on the step portion with good coverage, and the bias sputtering method (J. Electrochem.
Soc., 1985, 132, 1466) and chemical vapor deposition (J. Eletcrochem. Soc, Magazine, 1984, 131, 2175).
Page published paper) (hereinafter abbreviated as CVD method).

また、段差被覆性に優れたCVD法ではAlにSiを添加し
た報告(第35回応用物理学関係連合講演会講演予稿集第
2分冊p605講演番号28a−v−6)がある。
In addition, there is a report in which Si is added to Al in the CVD method having excellent step coverage (Paper No. 28a-v-6, second edition, p. 605, Proceedings of the 35th Federation of Applied Physics Related Lectures, p. 605).

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

しかしながら、LSIの微細化に伴い、使用される配線
幅や電極のコンタクト孔の微細化が必要であり、このた
め、電流密度の増大に起因するエレクトロマイグレーシ
ョンおよびストレスマイグレーションが問題となってい
る。一般にAlは原子量が小さく、動き易いため上記のよ
うな問題が生じる。スパッタリング法ではAlへのCu添加
がマイグレーションに対して効果があることが知られて
いるが、通常のスパッタリング法ではLSIの微細化に対
応できない。バイアススパッタリング法でも同様の添加
が可能であるが、バイアスを加えるため試料は、イオン
や電子等の荷電粒子の衝撃に曝されて素子や配線に特性
変動を生じ、特に配線においてはマイグレーション耐性
が劣化することが知られている。
However, along with the miniaturization of LSIs, it is necessary to miniaturize the wiring width used and the contact holes of the electrodes, and therefore, electromigration and stress migration due to an increase in current density have become a problem. Generally, Al has a small atomic weight and is easy to move, so that the above-described problem occurs. It is known that the addition of Cu to Al has an effect on migration in the sputtering method, but the conventional sputtering method cannot cope with miniaturization of LSI. The same addition is possible by the bias sputtering method, but the sample is exposed to the impact of charged particles such as ions and electrons due to the application of a bias, causing the characteristics of the element and wiring to fluctuate. It is known to

また、Al−Si膜は、段差被覆性のよいCVDを用いた形
成法が報告されているが、通常必要とされるプロセス温
度ではコンタクト部においてSiが析出し、コンタクト抵
抗の増加がみられてコンタクト不良となることが報告さ
れている(Digest of Technical Papers,1986 Symposiu
m on VLSI Technology論文番号V−4,pp.55−56,May 19
86)。
Although a method of forming an Al-Si film using CVD with good step coverage has been reported, Si is deposited at a contact portion at a normally required process temperature, and an increase in contact resistance is observed. Contact failure has been reported (Digest of Technical Papers, 1986 Symposiu
m on VLSI Technology Paper No. V-4, pp. 55-56, May 19
86).

このような理由から段差被覆性およびエレクトロマイ
グレーション耐性を同時に満足する技術は今まで実現さ
れていない。
For this reason, a technique that simultaneously satisfies both step coverage and electromigration resistance has not been realized.

本発明の目的は段差被覆性およびエレクトロマイグレ
ーション耐性を同時に満足したAl−Cu合金薄膜形成方法
を提供することにある。
An object of the present invention is to provide a method for forming an Al—Cu alloy thin film that simultaneously satisfies step coverage and electromigration resistance.

〔課題を解決するための手段〕[Means for solving the problem]

上記目的を達成するため、本発明のAl−Cu合金薄膜形
成方法においては、有機アルミニウムをアルミニウム原
料とし、シクロペンタジエニル銅トリエチルフォスフィ
ンアダクトCu(C5H5)・P(C2H5を銅原料とし、化
学気相堆積法を用いてこれら原料からAl−Cu合金薄膜を
生成させるものである。
To achieve the above object, in the Al-Cu alloy thin film forming method of the present invention, the organic aluminum as a raw material of aluminum, cyclopentadienyl copper triethyl phosphine adduct Cu (C 5 H 5) · P (C 2 H 5 3 ) A copper raw material is used, and an Al—Cu alloy thin film is formed from these raw materials using a chemical vapor deposition method.

〔作用〕[Action]

本発明では、原料ガス同士が輸送の途中で混合しただ
けではほとんど反応せず、ウェハ表面でそれぞれの金属
が熱分解により生成することを利用している。すなわ
ち、分解温度はAl原料の有機アルミが250℃以上、Cu原
料のシクロジエニル銅トリエチルフォスフィンアダクト
が130℃以上であり、Alが堆積する250℃以上にしておけ
ばCuも熱分解によりウェハ上に堆積する。また、各原料
ガスの流量を制御することにより、堆積膜中のAlおよび
Cuの成分比を制御することができる。
The present invention utilizes the fact that the source gases are hardly reacted only by being mixed during transportation, and that the respective metals are generated by thermal decomposition on the wafer surface. In other words, the decomposition temperature is 250 ° C or higher for organic aluminum as an Al raw material, and 130 ° C or higher for cyclodienyl copper triethylphosphine adduct as a Cu raw material. accumulate. Further, by controlling the flow rate of each source gas, Al and
The composition ratio of Cu can be controlled.

スパッタにより形成されたAl−Cu合金膜がストレスマ
イグレーションに有効と報告されている(Proceeding o
f Second International IEEE VLSI Mulilevel Interco
nnection Conference pp.173−179,June 1985)。これ
は、Cuの添加でAl原子の移動が抑えられるので、Alのマ
イグレーション耐性が強くなると考えられる。したがっ
て、CVDで形成したAl−Cu合金膜も、マイグレーション
耐性に優れているものと期待される。
It has been reported that an Al-Cu alloy film formed by sputtering is effective for stress migration (Proceeding o
f Second International IEEE VLSI Mulilevel Interco
nnection Conference pp.173-179, June 1985). This is thought to be because the migration of Al atoms is suppressed by the addition of Cu, and thus the migration resistance of Al is enhanced. Therefore, an Al—Cu alloy film formed by CVD is also expected to have excellent migration resistance.

〔実施例〕〔Example〕

第1図は、Al−Cu合金薄膜の形成を実施するためのガ
スミキサおよび減圧CVD装置の構成図である。図におい
て、1は水素ガスのボンベ、2は水素ガスの流量を調整
するマスフローコントローラ、3は有機Al原料を水素ガ
スと混合するためのバブラ容器、4はバブラの温度を制
御するための温度調整器、9は銅原料を水素ガスと混合
するための容器、10は容器の温度を制御する温度調整
器、11は銅原料の流量を制御するための水素ガスの流量
を制御するためのマスフローコントローラであり、5は
成長室、6はウェハ、7はウェハの温度を制御するヒー
タ、8は排気系である。
FIG. 1 is a configuration diagram of a gas mixer and a low-pressure CVD apparatus for forming an Al—Cu alloy thin film. In the figure, 1 is a hydrogen gas cylinder, 2 is a mass flow controller for adjusting the flow rate of hydrogen gas, 3 is a bubbler container for mixing organic Al raw material with hydrogen gas, and 4 is a temperature control for controlling the temperature of the bubbler. Vessel, 9 is a vessel for mixing the copper raw material with hydrogen gas, 10 is a temperature controller for controlling the temperature of the vessel, 11 is a mass flow controller for controlling the flow rate of hydrogen gas for controlling the flow rate of the copper raw material. 5 is a growth chamber, 6 is a wafer, 7 is a heater for controlling the temperature of the wafer, and 8 is an exhaust system.

まず、バブラ容器3にジメチルアルミハイドライドを
封入し、水素ガスの流量をマスフローコントローラ2で
制御しながらフローさせ、バブラ容器3で原料の蒸気圧
成分を分圧比で混合する。また、容器9にシクロペンタ
ジエニル銅トリエチルフォスフィンアダクト(Cu(C
5H5)・P(C2H5)を封入し、水素ガスの流量をマ
スフローコントローラ11で制御しながらフローさせ、容
器9で原料の蒸気圧成分を分圧比で混合する。これらの
原料を含むキャリアガスを混合して、排気系8にて減圧
(数Torr)された成長室5へ導入する。このとき成長室
5内の圧力は1Torr、キャリアガスは水素で前記マスフ
ローコントローラ2で60SCCMに制御し、バブラ容器3の
温度は温度調整器4で25℃に、また、容器9の温度は温
度調整器10で80℃に保たれている。このとき成長室内の
Al原料ガスの分圧は0.1Torr、銅原料ガスの分圧は0.05t
orrと見積られた。成長室5のなかに設置されたウェハ
6は、ヒータ7により250℃に保たれている。導入され
た原料はウェハ6で加熱され熱分解によりAl−Cu合金を
堆積させる。このようにして堆積した膜は段差被覆性に
優れ、Al中に1%程度のCuを含みマイグレーション耐性
の優れたものであった。
First, dimethyl aluminum hydride is sealed in the bubbler container 3, the hydrogen gas is caused to flow while being controlled by the mass flow controller 2, and the vapor pressure component of the raw material is mixed in the bubbler container 3 at a partial pressure ratio. In addition, a cyclopentadienyl copper triethylphosphine adduct (Cu (C
5 H 5 ) · P (C 2 H 5 ) 3 ) is sealed, and the hydrogen gas is allowed to flow while being controlled by the mass flow controller 11, and the vapor pressure component of the raw material is mixed in the vessel 9 at a partial pressure ratio. The carrier gas containing these raw materials is mixed and introduced into the growth chamber 5 which has been reduced in pressure (several Torr) by the exhaust system 8. At this time, the pressure in the growth chamber 5 is 1 Torr, the carrier gas is hydrogen and the mass flow controller 2 controls the pressure to 60 SCCM, the temperature of the bubbler vessel 3 is adjusted to 25 ° C. by the temperature controller 4, and the temperature of the vessel 9 is adjusted to the temperature. The temperature is kept at 80 ° C. in the vessel 10. At this time,
The partial pressure of the Al source gas is 0.1 Torr, and the partial pressure of the copper source gas is 0.05 t
estimated as orr. The wafer 6 placed in the growth chamber 5 is maintained at 250 ° C. by the heater 7. The introduced raw material is heated on the wafer 6 to deposit an Al-Cu alloy by thermal decomposition. The film deposited in this manner was excellent in step coverage, and contained about 1% of Cu in Al and had excellent migration resistance.

なお、本発明では以下の応用が可能である。原料とし
てはジメチルアルミハイドライドに替えて、例えばトリ
イソブチルアルミやジメチルアルミクロライドやメチル
アルミジクロライドなどの他の有機アルミが使用でき
る。
In the present invention, the following applications are possible. As a raw material, other organic aluminum such as triisobutylaluminum, dimethylaluminum chloride and methylaluminum dichloride can be used instead of dimethylaluminum hydride.

〔発明の効果〕〔The invention's effect〕

以上のように本発明によれば、微細なコンタクトホー
ルを埋め込むことが可能なCVD法を用いてマイグレーシ
ョン耐性の高いAl−Cu合金薄膜を形成することができる
効果を有する。
As described above, according to the present invention, there is an effect that an Al—Cu alloy thin film having high migration resistance can be formed by using a CVD method capable of filling a fine contact hole.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明方法を実施する装置の構成図である。 1……水素ボンベ 2……マスフローコントローラ 3……バブラ容器、4……温度調整器 5……成長室、6……ウェハ 7……ヒータ、8……排気系 9……容器、10……温度調整器 11……マスフローコントローラ FIG. 1 is a block diagram of an apparatus for implementing the method of the present invention. DESCRIPTION OF SYMBOLS 1 ... Hydrogen cylinder 2 ... Mass flow controller 3 ... Bubbler container 4 ... Temperature controller 5 ... Growth chamber, 6 ... Wafer 7 ... Heater, 8 ... Exhaust system 9 ... Container, 10 ... Temperature controller 11 ... Mass flow controller

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭59−74650(JP,A) 特開 昭63−179076(JP,A) 特開 昭62−202079(JP,A) 特開 昭55−138856(JP,A) 特開 平1−11975(JP,A) 米国特許3375129(US,A) Japrnese Jourhol of Appliecl Physic s 26(7)(1987−7)L1107−L 1109 Jowrhal of the Am erican Chemical So ciety 92:17(1970−8)5114− 5117 IEEE IEDM Proceed ing(1993)277−280 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-59-74650 (JP, A) JP-A-63-179076 (JP, A) JP-A-62-202079 (JP, A) JP-A 55-746 138856 (JP, A) JP-A-1-11975 (JP, A) U.S. Pat. Society 92:17 (1970-8) 5114-5117 IEEE IEDM Proceeding (1993) 277-280.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機アルミニウムをアルミニウム原料と
し、シクロペンタジエニル銅トリエチルフォスフィンア
ダクトCu(C5H5)・P(C2H5を銅原料とし、化学気
相堆積法を用いてこれら原料からAl−Cu合金薄膜を生成
させることを特徴とするAl−Cu合金薄膜形成方法。
An organic aluminum is used as an aluminum source, a cyclopentadienyl copper triethylphosphine adduct Cu (C 5 H 5 ) .P (C 2 H 5 ) 3 is used as a copper source, and a chemical vapor deposition method is used. A method for forming an Al-Cu alloy thin film, comprising forming an Al-Cu alloy thin film from these raw materials.
JP63325197A 1988-12-22 1988-12-22 Al-Cu alloy thin film forming method Expired - Lifetime JP2570839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63325197A JP2570839B2 (en) 1988-12-22 1988-12-22 Al-Cu alloy thin film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63325197A JP2570839B2 (en) 1988-12-22 1988-12-22 Al-Cu alloy thin film forming method

Publications (2)

Publication Number Publication Date
JPH02170419A JPH02170419A (en) 1990-07-02
JP2570839B2 true JP2570839B2 (en) 1997-01-16

Family

ID=18174101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63325197A Expired - Lifetime JP2570839B2 (en) 1988-12-22 1988-12-22 Al-Cu alloy thin film forming method

Country Status (1)

Country Link
JP (1) JP2570839B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PT95232B (en) * 1989-09-09 1998-06-30 Canon Kk PRODUCTION PROCESS OF A DEPOSITED ALUMINUM FILM
US5196372A (en) * 1989-09-09 1993-03-23 Canon Kabushiki Kaisha Process for forming metal deposited film containing aluminum as main component by use of alkyl hydride
DE69026566T2 (en) * 1989-09-26 1996-11-14 Canon Kk Process for the production of a deposited metal layer containing aluminum as the main component using alkali metal aluminum hydrides
JP2726118B2 (en) * 1989-09-26 1998-03-11 キヤノン株式会社 Deposition film formation method
SG45420A1 (en) * 1989-09-26 1998-01-16 Canon Kk Process for forming deposited film by use of alkyl aluminum hydride and process for preparing semiconductor device
JP2721023B2 (en) * 1989-09-26 1998-03-04 キヤノン株式会社 Deposition film formation method
ATE139580T1 (en) * 1989-09-26 1996-07-15 Canon Kk GAS SUPPLY DEVICE AND USE THEREOF FOR A FILM DEPOSITION SYSTEM
KR100320364B1 (en) * 1993-03-23 2002-04-22 가와사키 마이크로 엘렉트로닉스 가부시키가이샤 Metal wiring and its formation method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375129A (en) 1966-09-22 1968-03-26 Ethyl Corp Aluminum plating employing amine complex of aluminum hydride

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4393096A (en) * 1981-11-16 1983-07-12 International Business Machines Corporation Aluminum-copper alloy evaporated films with low via resistance
JPH07110992B2 (en) * 1986-03-03 1995-11-29 富士通株式会社 Selective vapor growth method
JPS63179076A (en) * 1987-01-20 1988-07-23 Toshiba Corp Formation of thin film

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3375129A (en) 1966-09-22 1968-03-26 Ethyl Corp Aluminum plating employing amine complex of aluminum hydride

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
IEEE IEDM Proceeding(1993)277−280
Japrnese Jourhol of Appliecl Physics 26(7)(1987−7)L1107−L1109
Jowrhal of the American Chemical Society 92:17(1970−8)5114−5117

Also Published As

Publication number Publication date
JPH02170419A (en) 1990-07-02

Similar Documents

Publication Publication Date Title
US6120844A (en) Deposition film orientation and reflectivity improvement using a self-aligning ultra-thin layer
US5173327A (en) LPCVD process for depositing titanium films for semiconductor devices
US6355106B1 (en) Deposition of copper with increased adhesion
EP0414267B1 (en) Process for deposition of a tungsten layer on a semiconductor wafer
US6399490B1 (en) Highly conformal titanium nitride deposition process for high aspect ratio structures
US5322712A (en) Process for improved quality of CVD copper films
EP0797249A1 (en) Single step process for blanket-selective CVD metal deposition
JPH04318170A (en) Chemical vapor deposition method and selective melting method of copper metallic film and method of synthesizing cu+1(beta-diketonate)-olefin complex
US6080665A (en) Integrated nitrogen-treated titanium layer to prevent interaction of titanium and aluminum
JPH08319566A (en) Method for chemically depositing vapor of copper and aluminum
US6066358A (en) Blanket-selective chemical vapor deposition using an ultra-thin nucleation layer
US4751101A (en) Low stress tungsten films by silicon reduction of WF6
WO1999063590A9 (en) A method for treating a deposited film for resistivity reduction
JP2570839B2 (en) Al-Cu alloy thin film forming method
US6039808A (en) CVD apparatus for Cu formation
JPS6248752B2 (en)
JPH0689452B2 (en) Al-Cu alloy thin film forming method
JP2831770B2 (en) Deposition film formation method
JP2721013B2 (en) Deposition film formation method
WO1997047783A1 (en) Methodology and apparatus for in-situ doping of aluminum coatings
KR940011006B1 (en) Process for forming metal deposited film containing aluminum as main component by use of alkyl hydride
JP2752961B2 (en) Deposition film formation method
JP2781220B2 (en) Deposition film formation method
JP3031314B2 (en) Method for manufacturing semiconductor device
JP2670151B2 (en) Deposition film formation method