JP2570803B2 - Pattern formation method - Google Patents

Pattern formation method

Info

Publication number
JP2570803B2
JP2570803B2 JP63090833A JP9083388A JP2570803B2 JP 2570803 B2 JP2570803 B2 JP 2570803B2 JP 63090833 A JP63090833 A JP 63090833A JP 9083388 A JP9083388 A JP 9083388A JP 2570803 B2 JP2570803 B2 JP 2570803B2
Authority
JP
Japan
Prior art keywords
resist
pattern
rays
ray
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63090833A
Other languages
Japanese (ja)
Other versions
JPH01261636A (en
Inventor
日出夫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63090833A priority Critical patent/JP2570803B2/en
Publication of JPH01261636A publication Critical patent/JPH01261636A/en
Application granted granted Critical
Publication of JP2570803B2 publication Critical patent/JP2570803B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/7005Production of exposure light, i.e. light sources by multiple sources, e.g. light-emitting diodes [LED] or light source arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2037Exposure with X-ray radiation or corpuscular radiation, through a mask with a pattern opaque to that radiation
    • G03F7/2039X-ray radiation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/7045Hybrid exposures, i.e. multiple exposures of the same area using different types of exposure apparatus, e.g. combining projection, proximity, direct write, interferometric, UV, x-ray or particle beam

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はIC、LSI等の半導体素子を製造する際の電子
回路パターン等の微細なパターンをウエハ面上に転写す
るリソグラフィに好適なパターン形成法に関し、特に波
長1Å〜150Å程度のX線を用いたときのレジストの実
効感度を高めたパターン形成法に関するものである。
The present invention relates to pattern formation suitable for lithography for transferring a fine pattern such as an electronic circuit pattern onto a wafer surface when manufacturing semiconductor elements such as ICs and LSIs. More particularly, the present invention relates to a pattern forming method that enhances the effective sensitivity of a resist when X-rays having a wavelength of about 1 ° to 150 ° are used.

(従来の技術) 最近IC、LSI等の半導体素子製造用の露光装置におい
ては半導体素子の高集積化に伴って、より高分解能の焼
付けが可能な例えば波長1Å〜150Å程度のX線を利用
した露光装置が種々と提案されている。
(Prior art) Recently, in an exposure apparatus for manufacturing semiconductor devices such as ICs and LSIs, X-rays having a wavelength of, for example, about 1 mm to 150 mm that can be printed with higher resolution have been used as semiconductor devices become more highly integrated. Various exposure apparatuses have been proposed.

この所謂、X線リソグラフィは直進性、非干渉性およ
び低回析性等のX線固有の性質に基づき、これまでの可
視光線や紫外線光によるリソブラフィと比べて多くのよ
り優れた点を有している。そのため、近年ではサブミク
ロン用のリソブラフィやクウォーターミクロン用のリソ
グラフィの有力な手段として注目されてきている。X線
リソグラフィは可視光線や紫外線光によるリソグラフィ
に比較して多くの優位点を持っているが、X線源のパワ
ー不足、レジストの低感度、アライメントの困難さ、マ
スク材料の選定および加工法の困難さ等の問題点があっ
た。
This so-called X-ray lithography is based on the inherent properties of X-rays such as straightness, incoherence and low diffraction, and has many advantages over conventional lithography using visible or ultraviolet light. ing. Therefore, in recent years, attention has been paid to lithography for submicron and lithography for quarter micron as a powerful means. X-ray lithography has many advantages over lithography using visible light or ultraviolet light. There were problems such as difficulty.

X線リソグラフィ用としてのレジストとしては、ポジ
型として例えばポリメチルメタクリレート(PMMA)があ
る。
As a resist for X-ray lithography, there is, for example, polymethyl methacrylate (PMMA) as a positive type.

又、ネガ型としては例えばクロロメチルスチレン(CM
S)がある。
As the negative type, for example, chloromethylstyrene (CM
S) there.

これらのレジスト材料はいずれも有機の高分子材料で
あり、ポジ型のレジスト材料は感度及びドライエッチン
グ耐性、ネガ型のレジスト材料は現像におけるレジスト
膜の膨潤に起因する低解像性等が問題点となっている。
All of these resist materials are organic polymer materials.Positive resist materials have problems such as sensitivity and dry etching resistance, and negative resist materials have problems such as low resolution caused by swelling of the resist film during development. It has become.

これらの問題点のうちX線リソグライフィにおいて特
に大きな問題点の1つに感度がある。
Among these problems, one of the most serious problems in the X-ray lithography is sensitivity.

通常、X線リソグライフィにおけるレジストのX線利
用効率は0.3%以下といわれており、これが感度の低下
を来たしている。例えばPMMAの場合、X線としてPdKa線
を使用する実効感度は1000〜2000mJ/cm2程度である。
Usually, the X-ray utilization efficiency of the resist in the X-ray lithography is said to be 0.3% or less, which lowers the sensitivity. For example, in the case of PMMA, the effective sensitivity using PdKa rays as X-rays is about 1000 to 2000 mJ / cm 2 .

ここで、感度は露光時のX線照射量で示している。す
なわち、照射量が低い程度感度である。高感度のレジス
トとクロロメチル化ポリスチレン(CMS、東洋ソーダ
製)であるが、上述と同様の条件で実効感度は約100mJ/
cm2である。
Here, the sensitivity is indicated by the amount of X-ray irradiation at the time of exposure. That is, the sensitivity is as low as the irradiation amount. High-sensitivity resist and chloromethylated polystyrene (CMS, manufactured by Toyo Soda), but effective sensitivity is about 100 mJ /
It is cm 2.

現在X線用レジストの実効感度を10mJ/cm2以下にする
ことが望まれている。
At present, it is desired to reduce the effective sensitivity of the X-ray resist to 10 mJ / cm 2 or less.

しかしながら一般にレジストの感度を増大させること
は大変困難である。
However, it is generally very difficult to increase the sensitivity of the resist.

(発明が解決しようとする問題点) 本発明は有機の高分子材料より成るレジストとして、
従来より存在しえなかった性能、例えば非帯電性、高熱
伝導性そして高耐ドライエッチング性等の性能を有する
新規なレジストを用いて、特にX線を用いたときのレジ
ストの実効感度を増強させた高性能なパターン転写が可
能なパターン形成法の提供を目的とする。
(Problems to be Solved by the Invention) The present invention relates to a resist made of an organic polymer material,
By using a new resist that has performance that has not existed before, such as non-charging properties, high thermal conductivity, and high dry etching resistance, the effective sensitivity of the resist, especially when X-rays are used, is enhanced. Another object of the present invention is to provide a pattern forming method capable of performing high-performance pattern transfer.

(問題点を解決するための手段) レジスト層にX線により照射されたパターンを転写す
る際、該レジストの主たる組成物をフッ化黒鉛より構成
し、該レジストへのX線照射中に紫外線又は/及び可視
光線を照射して該レジスト層にパターンを形成するよう
にしたことである。
(Means for Solving the Problems) When transferring a pattern irradiated with X-rays to a resist layer, the main composition of the resist is made of graphite fluoride, and ultraviolet rays or X-rays are irradiated during X-ray irradiation to the resist. And / or irradiating visible light to form a pattern on the resist layer.

(実施例) 第1図は本発明のパターン形成法をX線用露光装置に
適用したときの一実施例の概略図である。
(Embodiment) FIG. 1 is a schematic view of an embodiment when the pattern forming method of the present invention is applied to an X-ray exposure apparatus.

同図において1はX線源で例えば金属(Pd、Rh、Mo、
W、Cn、Al、Si等)のK、L特性線で、波長は4〜13Å
程度の光を放射している。
In FIG. 1, reference numeral 1 denotes an X-ray source such as a metal (Pd, Rh, Mo,
W, Cn, Al, Si etc.) K, L characteristic line, wavelength is 4 ~ 13Å
It emits a degree of light.

2は補助光源で、紫外線又は可視光線を放射する光源
で、例えば水銀灯、クセノンランプ、ブラックライト、
ハロゲンランプ等である。3は環状のマスク枠で石英、
パイレックス、ステンレス、シリコン等から成ってい
る。4はX線透過膜でポリイミド、SiN、AlN、SiC等か
ら成っている。5はマスクパターンでX線透過膜4面上
に設けられており、Au、Pt、W、Mo等から成っている。
Reference numeral 2 denotes an auxiliary light source that emits ultraviolet light or visible light, such as a mercury lamp, a xenon lamp, or a black light.
Halogen lamps and the like. 3 is an annular mask frame made of quartz,
It is made of Pyrex, stainless steel, silicon, etc. Reference numeral 4 denotes an X-ray transmission film made of polyimide, SiN, AlN, SiC or the like. Reference numeral 5 denotes a mask pattern provided on the surface of the X-ray transmission film 4 and made of Au, Pt, W, Mo, or the like.

6はレジストでフッ化黒鉛(CF)を主成分として構成
されている。
Reference numeral 6 denotes a resist which is mainly composed of graphite fluoride (CF).

7はウエハでシリコン、ガリウムヒ素、ガラス等から
成っている。
Reference numeral 7 denotes a wafer made of silicon, gallium arsenide, glass, or the like.

本実施例ではX線源1から発生したX線によりマスク
パターン5を照射し、該マスクパターン5をレジスト6
に転写している。このとき、X線の照射中に補助光源2
からの光束をX線源1と同方向からマスクパターン5を
介してレジスト6面上を照射している。
In this embodiment, the mask pattern 5 is irradiated with X-rays generated from the X-ray source 1, and the mask pattern 5 is
Transcribed to At this time, during the X-ray irradiation,
The light flux from the resist 6 is irradiated on the surface of the resist 6 through the mask pattern 5 in the same direction as the X-ray source 1.

同図においてレジスト6の斜線部はX線によるパター
ン露光部である。
In the figure, the hatched portions of the resist 6 are pattern exposure portions by X-rays.

第2図は第1図でX線により照射されたマスクパター
ン5をウエハ面7上のレジストに転写し、該ウエハ7を
現像した後のパターンの様子を示している。
FIG. 2 shows the state of the pattern after the mask pattern 5 irradiated with X-rays in FIG. 1 is transferred to a resist on the wafer surface 7 and the wafer 7 is developed.

本実施例ではネガ型のパターンの示している。 In this embodiment, a negative pattern is shown.

このように本実施例ではフッ化黒鉛(CF)を主成分と
したレジスト6にX線を照射している間に紫外線(2000
〜4000Å)又は/及び可視光線(4000〜8000Å)を所定
量照射して、これによりレジストの実効感度を増強させ
ている。
As described above, in this embodiment, while the resist 6 containing graphite fluoride (CF) as a main component is irradiated with X-rays, the ultraviolet rays (2000
Å4000 °) and / or a predetermined amount of visible light (4000 to 8000 °), thereby increasing the effective sensitivity of the resist.

本実施例におけるレジスト材料は無機化合物で特にフ
ッ化黒鉛(CF)を主体とするもので、原理的にはX線の
照射によりフッソ(F)が分離してカーボンになる(も
どる)ものである。カーボンは導電性、高熱電導性、高
耐ドライエッチング性、アッシング性に優れており、本
発明はこの性質を利用していることを特長としている。
The resist material in the present embodiment is an inorganic compound mainly composed of fluorinated graphite (CF), and in principle, fluorine (F) is separated (returns) into carbon by X-ray irradiation. . Carbon is excellent in conductivity, high thermal conductivity, high dry etching resistance, and ashing property, and the present invention is characterized by utilizing this property.

本実施例において紫外線や可視光線はパターン化に不
必要なのでこれらの光を例えばレジスト6面上にマスク
のパターン5を介さずに斜方向から照射しても良い。
In the present embodiment, since ultraviolet light and visible light are unnecessary for patterning, these lights may be irradiated on the resist 6 surface, for example, from an oblique direction without passing through the mask pattern 5.

本実施例において紫外線及び可視光線は還元剤及びフ
ッ化黒鉛固有の吸収に対応したものが効果的である。
In this embodiment, it is effective that the ultraviolet light and the visible light correspond to the absorption specific to the reducing agent and the fluorinated graphite.

又、照射される紫外線や可視光線の照射量はパターン
形成の為のしきい値以下であることが望ましい。
Further, it is desirable that the irradiation amount of the ultraviolet light or visible light to be irradiated is equal to or less than a threshold value for forming a pattern.

本実施例で用いるフッ化黒鉛(CF)は黒鉛(カーボ
ン)の超微粉末をフッ素化して作成している。このとき
の粒状性は0.05μ程度に分布しているが更に微細な粒状
性のものであっても良い。
The fluorinated graphite (CF) used in this embodiment is prepared by fluorinating ultrafine graphite (carbon) powder. The granularity at this time is distributed to about 0.05 μ, but may be finer.

フッ化黒鉛は何らかの手段を用いて製膜する必要があ
り、例えばバインダー材に分散懸架した後、塗工手段
(バーコート、デメップコート、スピンコート、スプレ
ーコート等)を用いて製膜している。
It is necessary to form a film of fluorinated graphite using some means. For example, after being dispersed and suspended in a binder material, the film is formed using a coating means (a bar coat, a demep coat, a spin coat, a spray coat, etc.).

バインダー材料としてはゼラチン、カゼイン、PVR、P
VP、CMC、ポリアクリル酸、アクリルアシド、アラビア
ゴム、ナイロン、ノボラック等、水、アルコール、ケト
ン、アルカリ水溶液、可溶性樹脂が適している。又、潜
像を安定させる即ち感度を上げる手段の一つとしてハロ
ゲンアクセプターを添加することも有効である。
Gelatin, casein, PVR, P as binder material
VP, CMC, polyacrylic acid, acrylic acid, gum arabic, nylon, novolak and the like, water, alcohol, ketone, aqueous alkali solution, and soluble resin are suitable. It is also effective to add a halogen acceptor as one of means for stabilizing the latent image, that is, as a means for increasing the sensitivity.

ハロゲンアクセプターとしてはゼラチン、カゼイン等
の膠質類、アルミニウムジ(イソプロポキシド)モノメ
チルエーテルアセテート、アルミニウムジ(プトキシ
ド)モノエチルアセテート、アルミニウムトリス(エチ
ルアセトアセテート)等のアルミニウムキレート化合
物、アセトンセシヤルバゾン亜硝酸ソーダ、ルイス等が
ある。
Examples of the halogen acceptor include colloids such as gelatin and casein; aluminum chelate compounds such as aluminum di (isopropoxide) monomethyl ether acetate; aluminum di (butoxide) monoethyl acetate; aluminum tris (ethyl acetoacetate); There are sodium zonite and Lewis.

又、還元剤の添加が増感剤として有効であり、例えば
ジフェニルアミン、ハイドロキノン、カテコール、ピロ
ガロール、P−ジメチルアミノベンズアルデヒド、1,3
ジフェニルアクリジン、クロルハイドロキノン、アスコ
ルビン酸、P−アミノフェノール、N−メチルパラアミ
ノフェノール、P−フェニレンジアミン、グリシン等の
単剤及び複合剤がある。
Further, the addition of a reducing agent is effective as a sensitizer, for example, diphenylamine, hydroquinone, catechol, pyrogallol, P-dimethylaminobenzaldehyde, 1,3
There are single agents and complex agents such as diphenylacridine, chlorhydroquinone, ascorbic acid, P-aminophenol, N-methylparaaminophenol, P-phenylenediamine, glycine and the like.

次に本発明に係るレジストの具体的な実施例を示す。 Next, specific examples of the resist according to the present invention will be described.

(実施例 1) フッ化黒鉛40部、PVA(ポリビニルアルコール)20
部、水40部、エチルアルコール10部をボールシルで100
時間混合してレジスト乳剤を調整した。
(Example 1) 40 parts of fluorinated graphite, PVA (polyvinyl alcohol) 20
Parts, water 40 parts, ethyl alcohol 10 parts with a ball sill 100
The resist emulsion was adjusted by mixing for hours.

酸化膜を設けたシリコンウエハー上に上記乳剤をスピ
ンナーで約2μ塗工して後50℃1時間乾燥してレジスト
膜を作成した。
The above emulsion was applied on a silicon wafer provided with an oxide film by about 2 μm using a spinner, and then dried at 50 ° C. for 1 hour to form a resist film.

X線露光装置(チャンバー)の外側の石英窓を通して
補助光源(クセノンランプ)で光照射を行った。
Light irradiation was performed with an auxiliary light source (xenon lamp) through a quartz window outside the X-ray exposure apparatus (chamber).

X線源はPd(パラジウム)のL線で特性線は4.4Åで
ある。
The X-ray source is an L line of Pd (palladium) with a characteristic line of 4.4 °.

パターン形成用のマスク材料はチッ化アルミニウム
(AlN)の2μm厚、マスクパターンは、タングステン
(W)の0.6μ厚である。
The mask material for pattern formation is 2 μm thick of aluminum nitride (AlN), and the mask pattern is 0.6 μm thick of tungsten (W).

X線は20KV48mAで120分間、クセノン光は0.5mWをマス
クパターンを介して同時にレジスト面上に照射した。
X-rays were irradiated at 20 KV 48 mA for 120 minutes, and xenon light was simultaneously irradiated on the resist surface with 0.5 mW through a mask pattern.

温水40℃3分の現像により黒色のネガ型レジストパタ
ーンを得た。
A black negative resist pattern was obtained by developing with warm water at 40 ° C. for 3 minutes.

従来はX線のみで照射した時はパターン形成に5時間
を要したが本実施例においては40%の2時間ですみ約2.
5倍の増感が計られた。
Conventionally, when only X-rays were used for irradiation, it took 5 hours to form a pattern.
A five-fold sensitization was measured.

(実施例 2) フッカ黒鉛30、カゼイン10、水50±PA10部で構成され
たバインダ材にジフェニルアミン2、ハイドロキノン2
部を添加混合した。
(Example 2) Diphenylamine 2 and hydroquinone 2 were added to a binder material composed of Hooker graphite 30, casein 10 and water 50 ± PA10 parts.
Parts were added and mixed.

酸化膜を設けたシリコンウエハー上に上記組成物をス
ピンナーで塗工を行い約2μ厚のレジスト膜を形成し
た。
The above composition was applied on a silicon wafer provided with an oxide film using a spinner to form a resist film having a thickness of about 2 μm.

X線露光チェンバー(2×10-3torr)に補助光源(超
高圧水銀灯)をX線源の近傍に設けた。X線源としてRh
(ロジウム)のL線で特性線の波長は4.6Åである。
An auxiliary light source (ultra high pressure mercury lamp) was provided in the X-ray exposure chamber (2 × 10 −3 torr) near the X-ray source. Rh as X-ray source
The wavelength of the characteristic line of the (rhodium) L line is 4.6 °.

マスク材料はポリエチレンテレフタレートの6μ厚、
マスクパターンは金(Au)の0.8μ厚である。X線は20K
V、48mAで60分間、UV光(3650、4047、4358Å)を0.1mW
/秒、同時にマスクパターンを介してレジスト面上に照
射した。
The mask material is 6μ thick polyethylene terephthalate,
The mask pattern is 0.8 μm thick of gold (Au). X-ray is 20K
0.1 mW of UV light (3650, 4047, 4358Å) at V, 48 mA for 60 minutes
/ Sec at the same time on the resist surface through the mask pattern.

NaOH、0.5%水溶液、30℃、3分の現像後、黒色のネ
ガ型レジストパターンを得た。
After developing with NaOH, 0.5% aqueous solution, 30 ° C. for 3 minutes, a black negative resist pattern was obtained.

従来はX線のみを照射していた為、約3時間要してい
たが、本実施例においては1時間ですみ、約3倍、増感
させることができた。
Conventionally, since only X-rays were irradiated, it took about 3 hours, but in the present example, it took only 1 hour and the sensitization could be increased about 3 times.

(実施例 3) レジスト材料としてフェノールノボラック10部、エチ
ルアルコール200部のバインダーにフッカ黒鉛20部で組
成されたレジストをシリコンウエハー上にスピンコート
で約2μ塗工した。
(Example 3) A resist composed of 20 parts of Hooker graphite in a binder of 10 parts of phenol novolak and 200 parts of ethyl alcohol as a resist material was spin-coated on a silicon wafer by about 2 μm.

実施例2と同様な条件でX線及び紫外光の露光を行っ
た。NaOH2%23℃2分の現像でネガ型のパターンが得ら
れた。
Exposure to X-rays and ultraviolet light was performed under the same conditions as in Example 2. A negative pattern was obtained by developing NaOH 2% at 23 ° C. for 2 minutes.

従来は露光に3時間を要していたが今回は1/3の1時
間で良好な結果が得られた。
Conventionally, exposure required 3 hours, but in this case, good results were obtained in 1/3 of 1 hour.

(実施例 4) 実施例3と同様な組成のレジストを用いてX線源にAl
のKα線、10KV、20mA、補助光源にXenon0.3mW、マスク
ウー透過膜にAlNの2μ厚を用いた。
(Example 4) Al was used as an X-ray source by using a resist having the same composition as that of Example 3.
Kα ray, 10 KV, 20 mA, Xenon 0.3 mW as an auxiliary light source, and 2 μm thick AlN as a mask permeable film.

X線によるマスクパターンの露光時間は40分である。 The exposure time of the mask pattern by X-rays is 40 minutes.

実施例1と同様の現像後、黒色のネガ型パターンが得
られた。
After the same development as in Example 1, a black negative pattern was obtained.

(発明の効果) 本発明によればフッ化黒鉛を主成分としたレジストを
用い、X線の照射中に紫外線又は/及び可視光線を照射
することにより、レジストの実効感度を高めた高性能な
パターン転写が可能なリソグラフィに好適なパターン形
成法を達成することができる。
(Effects of the Invention) According to the present invention, a resist containing graphite fluoride as a main component is irradiated with ultraviolet rays and / or visible light during X-ray irradiation, thereby improving the effective sensitivity of the resist. A pattern forming method suitable for lithography capable of pattern transfer can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明のパターン形成法をX線用露光装置に適
用したときの一実施例の概略図、第2図は第1図に示す
実施例において得られたウエハ面上のパターンの説明図
である。 図中1はX線源、2は補助光源、3はマスク枠、4はX
線透過膜、5はマスクパターン、6はレジスト、7はウ
エハである。
FIG. 1 is a schematic view of one embodiment when the pattern forming method of the present invention is applied to an X-ray exposure apparatus, and FIG. 2 is a description of a pattern on a wafer surface obtained in the embodiment shown in FIG. FIG. In the figure, 1 is an X-ray source, 2 is an auxiliary light source, 3 is a mask frame, and 4 is an X-ray source.
5 is a mask pattern, 6 is a resist, and 7 is a wafer.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】レジスト層にX線により照射されたパター
ンを転写する際、該レジストの主たる組成物をフッ化黒
鉛より構成し、該レジストへのX線照射中に紫外線又は
/及び可視光線を照射して該レジスト層にパターンを形
成するようにしたことを特徴とするパターン形成法。
When transferring a pattern irradiated with X-rays to a resist layer, a main composition of the resist is composed of graphite fluoride, and ultraviolet rays and / or visible light are irradiated during X-ray irradiation on the resist. A pattern forming method, wherein a pattern is formed on the resist layer by irradiation.
【請求項2】前記レジストへの紫外線又は/及び可視光
線の照射量を該レジストのしきい値以下としたことを特
徴とする請求項1記載のパターン形成法。
2. A pattern forming method according to claim 1, wherein the amount of irradiation of said resist with ultraviolet light and / or visible light is set to be equal to or less than a threshold value of said resist.
JP63090833A 1988-04-13 1988-04-13 Pattern formation method Expired - Fee Related JP2570803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63090833A JP2570803B2 (en) 1988-04-13 1988-04-13 Pattern formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63090833A JP2570803B2 (en) 1988-04-13 1988-04-13 Pattern formation method

Publications (2)

Publication Number Publication Date
JPH01261636A JPH01261636A (en) 1989-10-18
JP2570803B2 true JP2570803B2 (en) 1997-01-16

Family

ID=14009587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63090833A Expired - Fee Related JP2570803B2 (en) 1988-04-13 1988-04-13 Pattern formation method

Country Status (1)

Country Link
JP (1) JP2570803B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105353587B (en) * 2015-12-15 2019-12-20 南方科技大学 Nano-imprinting photoresist and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61193145A (en) * 1985-02-21 1986-08-27 Japan Synthetic Rubber Co Ltd Ionizing radiation sensitive pattern-forming material
JPS61209434A (en) * 1985-03-14 1986-09-17 Mitsui Toatsu Chem Inc Polymer for resist
JPH01197745A (en) * 1988-02-02 1989-08-09 Canon Inc Resist composition

Also Published As

Publication number Publication date
JPH01261636A (en) 1989-10-18

Similar Documents

Publication Publication Date Title
JP3010678B2 (en) Plasma processing method by metal mask integration
JPS6249614B2 (en)
US5635333A (en) Antireflective coating process
JPH01233443A (en) Pattern forming method
Mimura et al. Deep-UV photolithography
Grant et al. Deep UV photoresists I. Meldrum's diazo sensitizer
TW515929B (en) Improvements in relation to masks and electronic parts
JPH07261393A (en) Negative resist composition
JP2570803B2 (en) Pattern formation method
JP2008129080A (en) Composition for top face antireflection film and method for forming pattern using the same
US5876904A (en) Method of providing a positive resist pattern
Matsuzawa et al. Steep profile resist patterns through 1: 1 deep UV projection printing
JP3160255B2 (en) Method for producing polyhydroxystyrene derivative
JPH0836265A (en) Photoresist composition
JPH01106049A (en) Pattern forming method
JPS5811943A (en) Screenless plane printing plate
JPH01231039A (en) Material for photodecolorizable layer and method for forming pattern by using same
EP0193603A4 (en) Photolithography process using positive photoresist containing unbleachable light absorbing agent.
EP0197519A2 (en) Process for masking and resist formation
JP2581147B2 (en) X-ray lithography method
Omatsu et al. Application of higher absorption materials to the underlayer of EUV lithography
JPH08241840A (en) Forming method of resist pattern
Toriumi et al. Negative Bleaching Photoresist (BLEST) For Mid-UV Exposure
JPH07159992A (en) Pattern forming material and pattern forming method
JPH05127371A (en) Pattern formation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees