JP2570338B2 - Metal surface treatment method - Google Patents

Metal surface treatment method

Info

Publication number
JP2570338B2
JP2570338B2 JP62302440A JP30244087A JP2570338B2 JP 2570338 B2 JP2570338 B2 JP 2570338B2 JP 62302440 A JP62302440 A JP 62302440A JP 30244087 A JP30244087 A JP 30244087A JP 2570338 B2 JP2570338 B2 JP 2570338B2
Authority
JP
Japan
Prior art keywords
metal surface
metal
substrate
irradiation
density energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62302440A
Other languages
Japanese (ja)
Other versions
JPH01142064A (en
Inventor
正彦 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP62302440A priority Critical patent/JP2570338B2/en
Publication of JPH01142064A publication Critical patent/JPH01142064A/en
Application granted granted Critical
Publication of JP2570338B2 publication Critical patent/JP2570338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属表面の処理方法に係り、特に、金属表
面に高密度エネルギー源からのビームを照射して金属表
面の処理を行う方法に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method for treating a metal surface, and more particularly to a method for treating a metal surface by irradiating the metal surface with a beam from a high-density energy source. Things.

(従来の技術) 従来、内燃機関のアルミ合金鋳物製シリンダヘッドの
バルブシート間のように耐熱性を要求される部位や、ピ
ストンリング溝のように耐摩耗性の要求される部位等の
耐熱性、耐摩耗性等を向上させるため、特開昭61−1937
73号公報には、TIGアーク、レーザービーム、電子ビー
ム等の高密度エネルギービームを用い、アルミ合金基材
の表面を局部的に加熱し、アルミ合金基材を再溶融して
急冷凝固させる方法が提案されている。
(Prior art) Conventionally, heat resistance is required for parts requiring heat resistance such as between valve seats of an aluminum alloy cast cylinder head of an internal combustion engine and parts requiring wear resistance such as a piston ring groove. In order to improve the abrasion resistance, etc., see JP-A-61-1937.
No. 73 discloses a method of using a high-density energy beam such as a TIG arc, a laser beam, or an electron beam to locally heat the surface of an aluminum alloy substrate, re-melt the aluminum alloy substrate, and rapidly solidify it. Proposed.

また、特開昭62−38786号公報では、その際、Fe,Co,
V,Zr,Ceの内1種以上の合金化材料を粉末、スラリー等
の形態で配置し、アルミ合金製シリンダヘッドを局部的
に合金化するものが提案されている。
In Japanese Patent Application Laid-Open No. 62-38786, at that time, Fe, Co,
It has been proposed to arrange one or more alloying materials of V, Zr, and Ce in the form of powder, slurry, or the like, and locally alloy an aluminum alloy cylinder head.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

前記の金属表面の処理方法では、第2図に示すよう
に、アルミ合金基材1の表面にTIGアーク、レーザービ
ーム、電子ビーム等の高密度エネルギービーム2を照射
しながら、基材1又はビーム2を移動させる。ビーム2
の当つた基材1の表面に再溶融部、急冷凝固部が順次形
成される。この際に、基材1の照射部は溶融した状態で
高密度エネルギービーム2の運動エネルギーを受けるの
で、溶融した基材1が周囲に押しやられて凹部3が生ず
る。この凹部3は、ビーム2の移動により順次溶融金属
で充填されて処理部4となつて行くが、再溶融、急冷凝
固処理が完了した基材1の表面処理部4には、第3図に
示すように、ビーム2の照射開始部位に凸部5が生じ、
照射終了部位では、凹部3が完全に埋められないまま、
深さdの凹部6が残されたままとなる。
In the above-described method for treating a metal surface, as shown in FIG. 2, while irradiating the surface of an aluminum alloy substrate 1 with a high-density energy beam 2 such as a TIG arc, a laser beam, an electron beam, or the like, Move 2 Beam 2
A re-melted portion and a rapidly solidified portion are sequentially formed on the surface of the substrate 1 that has been hit. At this time, the irradiated portion of the base material 1 receives the kinetic energy of the high-density energy beam 2 in a molten state, so that the melted base material 1 is pushed to the periphery to form the concave portion 3. The concave portion 3 is successively filled with the molten metal by the movement of the beam 2 and becomes a processing portion 4. However, the surface processing portion 4 of the base material 1 on which the re-melting and the rapid solidification treatment has been completed is provided in FIG. As shown, a convex portion 5 is formed at the irradiation start position of the beam 2,
At the irradiation end portion, the concave portion 3 is not completely filled,
The recess 6 having the depth d remains.

この凸部5は後の機械加工で除去することができるの
で格別障害とならないが、凹部6は欠肉として製品に残
り、有害である。
Since the projections 5 can be removed by a later machining process, they do not become a particular obstacle, but the depressions 6 are left in the product as underfill and are harmful.

この欠肉の発生は、高密度エネルギービーム2による
溶融、急冷凝固処理における特有の現象であり、この解
決手段として基材1の処理が必要な領域を通過した後も
ビームの照射を行い、その際、基材1とビーム2の相対
移動速度を早くしたり、ビームの出力を低下させるなど
して基材表面の溶融に伴う凹部3の深さを徐々に浅くし
て行き、処理が完了した状態で残る凹部6の深さdを最
小限とする方法が考えられるが、これらの方法では、浅
くなつた溶融部にピンホールが発生し易く、この点が新
たな欠陥となる。
The occurrence of the underfilling is a phenomenon peculiar to the melting by the high-density energy beam 2 and the rapid solidification treatment. As a solution to this problem, irradiation of the base material 1 is performed even after passing through the region where the treatment is required. At this time, the depth of the concave portion 3 accompanying the melting of the substrate surface was gradually reduced by increasing the relative moving speed of the substrate 1 and the beam 2 or decreasing the output of the beam, and the processing was completed. Methods that minimize the depth d of the concave portion 6 remaining in the state can be considered. However, in these methods, a pinhole is easily generated in a shallow melted portion, and this point becomes a new defect.

本発明は、上記の問題点を解決し、処理が完了した基
材表面の照射終了部位に凹部が発生しない金属の表面処
理方法を提供することを目的とするものである。
An object of the present invention is to solve the above problems and to provide a metal surface treatment method in which a concave portion does not occur at an irradiation end portion of a treated substrate surface.

〔問題点を解決するための手段及び作用〕[Means and actions for solving the problems]

本発明は、金属表面に高密度エネルギー源からのビー
ムを金属表面と相対的に移動させて、全表面の端縁部を
含まない内方部における局所的な金属表面を照射する方
法において、ビームの照射終了部位を金属表面のビーム
の照射開始部位に生じた凸部を照射するように制御し、
該凸部を再溶融した状態でビームの照射を終了する金属
表面の処理方法である。
The present invention provides a method of irradiating a metal surface with a beam from a high-density energy source relative to the metal surface to irradiate a local metal surface in an inner portion that does not include an edge of the entire surface. Control to irradiate the projecting part generated at the irradiation start part of the beam on the metal surface,
This is a method for treating a metal surface in which irradiation of a beam is terminated in a state where the convex portion is re-melted.

金属表面に高密度エネルギー源からのビームを相対的
に移動させて照射すると、ビームの当つた被処理金属の
表面に溶融部、急冷凝固部が順次形成される。この際
に、ビームの照射部では溶融状態で高密度エネルギービ
ームの運動エネルギーを受けるので、溶融した被処理金
属が周囲に押しやられて凹部が生じ、その周りには凸部
を生ずる。この凹部は、ビームの移動により順次溶融金
属で充填され、ビームの照射が終つた被処理金属表面
は、溶融金属がほぼ元の表面近くに戻り、急冷凝固して
行く。
When a beam from a high-density energy source is relatively moved and irradiated on the metal surface, a molten portion and a rapidly solidified portion are sequentially formed on the surface of the metal to be processed hit by the beam. At this time, since the irradiating portion of the beam receives the kinetic energy of the high-density energy beam in a molten state, the molten metal to be processed is pushed to the periphery to form a concave portion and a convex portion around the concave portion. The concave portion is successively filled with the molten metal by the movement of the beam, and the surface of the metal to be processed after the irradiation of the beam returns to the vicinity of the original surface of the molten metal and rapidly solidifies.

ビーム或は被処理金属体又はビーム及び被処理金属体
を移動させ、所定領域の表面を処理した後に、ビームが
被処理金属の処理の開始部に戻るようにビームと被処理
金属体の移動を制御する。すなわち、被処理金属上にお
けるビームの照射開始部位と照射終了部位とをほぼ一致
させるようにする。
After moving the beam or the metal body to be processed or the beam and the metal body to be processed, and after processing the surface of the predetermined area, the beam and the metal body to be processed are moved so that the beam returns to the start portion of the processing of the metal to be processed. Control. In other words, the irradiation start position and the irradiation end position of the beam on the metal to be processed are made to substantially match each other.

被処理金属上におけるビームの照射開始部位には、ビ
ームによつて形成された凸部が残つているので、ビーム
の照射終了時においては、この凸部を照射再溶融し、溶
融金属が多量に存在した状態でビームの照射を停止す
る、被処理金属表面はほぼ元の表面の水準に戻り、その
状態で急冷凝固する。
At the beam irradiation start site on the metal to be processed, there is a protrusion formed by the beam, so at the end of beam irradiation, this protrusion is irradiated and re-melted, and a large amount of molten metal is emitted. The irradiation of the beam is stopped in the state where it is present, and the surface of the metal to be treated returns to almost the level of the original surface and rapidly solidifies in that state.

したがって、処理が完了した金属表面には、ビームの
照射開始部における凸部、ビームの照射終了部における
凹部が形成されることがなく、製品に欠肉部が発生する
ことが防止される。
Therefore, a convex portion at the beam irradiation start portion and a concave portion at the beam irradiation end portion are not formed on the metal surface on which the treatment has been completed, and the occurrence of underfill in the product is prevented.

〔実施例〕〔Example〕

第1図は、本発明のビームと被処理金属体との相対的
移動制御の例を示す説明図である。
FIG. 1 is an explanatory view showing an example of relative movement control between a beam and a metal object to be processed according to the present invention.

アルミ合金製シリンダヘッドのようなアルミ合金鋳物
基材1の端縁部内方の局所的表面に、TIGアーク、レー
ザービーム、電子ビーム等の高密度エネルギービーム2
を照射しながら、基材1又はビーム2を移動させる。ビ
ーム2が当つた基材1の表面は加熱、溶融され、溶融状
態で高密度エネルギービーム2の運動エネルギーを受け
るので、溶融した基材1が周囲に押しやられて第2図に
示すように凹部3を生じ、その周りには凸部を生ずる。
A high-density energy beam 2 such as a TIG arc, a laser beam, an electron beam, etc. is applied to a local surface inside an edge portion of an aluminum alloy casting base material 1 such as an aluminum alloy cylinder head.
The substrate 1 or the beam 2 is moved while irradiating. The surface of the substrate 1 hit by the beam 2 is heated and melted, and receives the kinetic energy of the high-density energy beam 2 in a molten state, so that the melted substrate 1 is pushed to the periphery to form a concave portion as shown in FIG. 3 and a convex portion is formed around it.

第1図(A)において、ビーム2の基体1上における
照射開始部位Sからビーム2を矢印方向に移動させ、処
理領域の終端からは元の方向に戻るように移動させる。
このビーム2の移動に伴い、ビーム2で形成された凹部
3は順次溶融金属で埋められてはほぼ元の表面近くに戻
り、急冷凝固して処理が完了した処理部4となつて行
く。
In FIG. 1 (A), the beam 2 is moved from the irradiation start site S on the substrate 1 in the direction of the arrow, and is moved from the end of the processing area so as to return to the original direction.
Along with the movement of the beam 2, the concave portion 3 formed by the beam 2 is successively filled with a molten metal, returns almost to the vicinity of the original surface, and is rapidly cooled and solidified to become the processing section 4 where the processing is completed.

ビーム2の照射終了部位、すなわち、ビーム2の照射
開始部位Sには、第3図に示す凸部5が形成されている
ので、ビームの照射終了部位においては、この凸部5を
照射再溶融して基材1の表面に生じた凹部3に流れ込ん
でこれを埋める。この状態でビーム2の照射を停止する
と、基材1の表面はほぼ元の表面と同水準まで溶融金属
で満され、その状態で急冷凝固する。
Since the projection 5 shown in FIG. 3 is formed at the irradiation end portion of the beam 2, that is, the irradiation start portion S of the beam 2, the projection 5 is irradiated and re-melted at the irradiation end portion of the beam. Then, it flows into and fills the concave portions 3 formed on the surface of the substrate 1. When the irradiation of the beam 2 is stopped in this state, the surface of the substrate 1 is filled with the molten metal to substantially the same level as the original surface, and rapidly solidifies in that state.

ビーム2を移動させる代りに基材1を移動させても良
い。
Instead of moving the beam 2, the substrate 1 may be moved.

第1図(B)は、処理領域が広い場合のビームと基材
1の相対的移動の制御の例を示すもので、ビームを照射
開始部位SからX方向に移動し、a点でY方向にb点ま
で移動させ、次にX方向に逆に移動させ、このようなビ
ームの移動を繰返して所望領域の処理を行い、最後に照
射開始部位Sに戻るようにする。
FIG. 1 (B) shows an example of the control of the relative movement between the beam and the substrate 1 when the processing area is large. The beam is moved from the irradiation start site S in the X direction, and the beam is moved in the Y direction at the point a. Then, the beam is moved to the point b, and then moved in the reverse direction in the X direction. Such a movement of the beam is repeated to process the desired area, and finally, the beam returns to the irradiation start site S.

第1図(C)に示すものも同様に、照射開始部位Sか
ら処理が完了した状態では、ビームが照射開始部位Sに
戻るものであるが、X方向にはビームを移動させ、Y方
向には基材を移動するように制御しても良い。
Similarly, the beam shown in FIG. 1 (C) returns to the irradiation start site S when the processing is completed from the irradiation start site S, but the beam is moved in the X direction and moved in the Y direction. May be controlled to move the substrate.

この方法は、1種以上の合金化材料を粉末、スラリー
等の形態で基材上に配置し、基材を局部的に合金化処理
する場合にも同様に用いることができる。
This method can be similarly used when one or more alloying materials are disposed on a substrate in the form of powder, slurry, or the like, and the substrate is locally alloyed.

また、アルミ合金鋳物を例に説明したが、これに限ら
ず、金属表面の処理に用いることができる。
In addition, although an aluminum alloy casting has been described as an example, the present invention is not limited to this, and can be used for treating a metal surface.

〔発明の効果〕〔The invention's effect〕

本発明は、高密度エネルギービームによる金属の局所
的表面処理における特有の現象であるビームの照射終了
部位における欠肉の発生を防止し、製品の歩留りが向上
する。
ADVANTAGE OF THE INVENTION This invention prevents the generation | occurrence | production of the underfill in the beam irradiation completion site | part which is a peculiar phenomenon in the local surface treatment of the metal by a high density energy beam, and improves the product yield.

【図面の簡単な説明】[Brief description of the drawings]

第1図(A),(B),(C)はそれぞれ本発明のビー
ムと被処理金属体との相対的移動制御の例を示す説明
図、第2図は表面処理の状態を説明する断面図、第3図
は従来の表面処理完了の状態を説明する断面図である。 1:基材 2:高密度エネルギービーム 3:高密度エネルギービームによる凹部 4:処理部 5:処理表面に残る凸部 6:処理表面に残る凹部
1 (A), 1 (B), and 1 (C) are explanatory views showing examples of relative movement control between a beam and a metal object to be processed according to the present invention, and FIG. 2 is a cross-sectional view illustrating a state of surface treatment. FIG. 3 is a cross-sectional view for explaining a state where the conventional surface treatment is completed. 1: Base material 2: High-density energy beam 3: Concavity by high-density energy beam 4: Treated part 5: Convex part remaining on treated surface 6: Depressed part remaining on treated surface

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】金属表面に高密度エネルギー源からのビー
ムを金属表面と相対的に移動させて、全表面の端縁部を
含まない内方部における局所的な金属表面を照射する方
法において、ビームの照射終了部位を金属表面のビーム
の照射開始部位に生じた凸部を照射するように制御し、
該凸部を再溶融した状態でビームの照射を終了すること
を特徴とする金属表面の処理方法。
1. A method for irradiating a metal surface with a beam from a high-density energy source relative to the metal surface to irradiate a local metal surface in an inner portion not including an edge of the entire surface. Control the beam irradiation end part to irradiate the convex part generated at the beam irradiation start part on the metal surface,
A method for treating a metal surface, comprising ending beam irradiation in a state in which the convex portion has been re-melted.
JP62302440A 1987-11-30 1987-11-30 Metal surface treatment method Expired - Lifetime JP2570338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62302440A JP2570338B2 (en) 1987-11-30 1987-11-30 Metal surface treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62302440A JP2570338B2 (en) 1987-11-30 1987-11-30 Metal surface treatment method

Publications (2)

Publication Number Publication Date
JPH01142064A JPH01142064A (en) 1989-06-02
JP2570338B2 true JP2570338B2 (en) 1997-01-08

Family

ID=17908959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62302440A Expired - Lifetime JP2570338B2 (en) 1987-11-30 1987-11-30 Metal surface treatment method

Country Status (1)

Country Link
JP (1) JP2570338B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60185758U (en) * 1984-05-22 1985-12-09 本田技研工業株式会社 Camshaft intermediate product
JPS61110720A (en) * 1984-11-05 1986-05-29 Honda Motor Co Ltd Remelting and hardening treating method of shaft-shaped member

Also Published As

Publication number Publication date
JPH01142064A (en) 1989-06-02

Similar Documents

Publication Publication Date Title
US4772340A (en) Method of making iron-base articles having a remelted layer
JP2570338B2 (en) Metal surface treatment method
JPS63224890A (en) Laser build-up welding method
JPH01142063A (en) Treatment of metallic surface
JPH0138852B2 (en)
JP3752811B2 (en) Method for remelting the surface of an aluminum workpiece
JP3215993B2 (en) Metal surface remelting method
JP3144131B2 (en) Metal surface remelting method
JPH01218A (en) Metal surface remelting treatment method
JPH062897B2 (en) Method for remelting metal surface
JP3572590B2 (en) Metal surface remelting treatment method
KR960015373B1 (en) Method for reforming surface of titanium or titanium alloy
JP2856431B2 (en) Manufacturing method of re-melt hardened parts
JP3384642B2 (en) Remelting method for cylinder head
JP3149619B2 (en) Metal surface remelting method
JP3120946B2 (en) Remelting treatment method for cylinder head
JPH03264220A (en) Manufacture of camshaft
JPS62202069A (en) Surface treatment of titanium or titanium alloy
KR19980073483A (en) Poppet valve and manufacturing method
JPS63313649A (en) Production of cast-in liner member
JPS6260823A (en) Surface hardening treatment for cam shaft
Maiorov et al. Solid laser hardening of iron parts.
JP2526608B2 (en) Aluminum alloy surface alloying method
JP3491321B2 (en) Remelting treatment method for aluminum products
JPH03226523A (en) Method for hardening sliding member by remelting