JP2568302B2 - Metal detector - Google Patents

Metal detector

Info

Publication number
JP2568302B2
JP2568302B2 JP20656390A JP20656390A JP2568302B2 JP 2568302 B2 JP2568302 B2 JP 2568302B2 JP 20656390 A JP20656390 A JP 20656390A JP 20656390 A JP20656390 A JP 20656390A JP 2568302 B2 JP2568302 B2 JP 2568302B2
Authority
JP
Japan
Prior art keywords
coil
magnetic field
metal detector
primary
underground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20656390A
Other languages
Japanese (ja)
Other versions
JPH0493688A (en
Inventor
慶一 笠原
Original Assignee
日本物理探鑛株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本物理探鑛株式会社 filed Critical 日本物理探鑛株式会社
Priority to JP20656390A priority Critical patent/JP2568302B2/en
Publication of JPH0493688A publication Critical patent/JPH0493688A/en
Application granted granted Critical
Publication of JP2568302B2 publication Critical patent/JP2568302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Geophysics And Detection Of Objects (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、複数のコイルの組合わせにより、一次磁場
の磁力線を、必要な地下空間に集束させて探知感度を高
めると共に、金属体位置の測定精度を向上させた金属探
知器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention focuses the magnetic field lines of the primary magnetic field in a required underground space by combining a plurality of coils to increase the detection sensitivity, and at the same time, detects the position of the metal body. The present invention relates to a metal detector with improved measurement accuracy.

[従来の技術] 地下および海底下の埋没金属体(例えば、財宝、不発
弾等)の探査あるいは地下配管・配線の補修工事、道路
の補修または新設工事、建造物の新設工事、更には考古
学的な調査等においては、地下の埋没金属体、地下配
管、地下配線、地中に埋設された鉄道構造物、更に古代
遺跡物等の地中に埋設または埋没されている物体の存否
や存在位置を確認することは重要なことである。そのた
め、従来、振動波、電磁波、超音波、磁場等を利用した
各種の方法が行なわれてきた。これらの金属探知方式の
うち、磁場に関する位相差検出方式、すなわち一次コイ
ルが与える交流磁場の位相と、それにより地中の金属体
に誘起される磁場が二次コイルに与える信号の位相との
差を測定する方式によるものは高感度かつ安定な性能が
期待できることから広く用いられており、その形式とし
ては、磁場発生(一次)用に単一コイルによる金属探知
器が使われてきた。
[Related Art] Exploration of buried metal bodies (for example, treasures, unexploded ordnance, etc.) underground and under the sea floor, repair work on underground piping and wiring, repair or new construction of roads, new construction of buildings, and even archeology In general surveys, the existence and location of underground buried or buried objects such as underground buried metal bodies, underground pipes, underground wiring, railway structures buried underground, and ancient archeological sites It is important to check. Therefore, various methods using vibration waves, electromagnetic waves, ultrasonic waves, magnetic fields, and the like have been conventionally performed. Among these metal detection methods, the phase difference detection method related to the magnetic field, that is, the difference between the phase of the AC magnetic field given by the primary coil and the phase of the signal given to the secondary coil by the magnetic field induced in the metal body underground by the primary coil. Is widely used because high sensitivity and stable performance can be expected, and a metal detector with a single coil for generating a magnetic field (primary) has been used.

[発明が解決しようとする課題] このような単一コイルによる金属探知器としては、従
来、例えば第6図に示すものが一般に使用されている。
[Problems to be Solved by the Invention] As such a metal detector using a single coil, for example, a metal detector shown in FIG. 6 has conventionally been generally used.

第6図(a)、第6図(b)はそれぞれ平面的・垂直
断面的にみた磁場の模式図で、ある時点における交流磁
場の状況を示している。そこで発生する磁力線10は一次
コイル11を離れるにしたがって四方に発散する。このた
め、探査に有効な磁力線はごく一部に過ぎず、また金属
体が感知されてもその位置を決めることは困難であっ
た。さらに、周辺の地上に別の金属体があるとその影響
を受け易いという欠点があった。
FIGS. 6 (a) and 6 (b) are schematic views of the magnetic field as viewed in plan and vertical sections, respectively, showing the state of the alternating magnetic field at a certain point in time. The magnetic lines of force 10 generated there diverge in four directions as they leave the primary coil 11. For this reason, the magnetic lines of force effective for the exploration are only a small part, and it is difficult to determine the position of a metal body even if it is detected. Further, there is a drawback that if there is another metal body on the surrounding ground, it is susceptible to the influence.

[課題を解決するための手段] そこで、本発明者は、上記の問題に鑑みて種々検討を
行なったところ、電磁誘導型の金属探知器において、一
対、あるいはそれ以上の数の一次コイルを使用すること
により上記問題を解決できることを見出し、本発明に到
達した。
[Means for Solving the Problems] In view of the above problems, the present inventor has conducted various studies. As a result, an electromagnetic induction type metal detector uses one or more primary coils. The present inventors have found that the above-mentioned problem can be solved by doing so, and have reached the present invention.

すなわち、本発明によれば、一次コイルから発生する
交流磁場に感応して地下の金属体が発する誘導磁場を二
次コイルで検知する形式の金属探知器において、一対の
一次コイルを、夫々のコイル軸の延長が地中で交わるよ
うに該軸の向きを地面に対して傾斜させ、かつ逆向きの
磁場を発生するように配置したことを特徴とする金属探
知器、が提供される。
That is, according to the present invention, in a metal detector of a type in which an induced magnetic field generated by an underground metal body is detected by a secondary coil in response to an AC magnetic field generated from a primary coil, a pair of primary coils is provided with each coil. A metal detector is provided, wherein the direction of the axis is inclined with respect to the ground so that the extension of the axis intersects the ground, and the axis is arranged so as to generate a magnetic field in the opposite direction.

[作用] 本発明では、一対の一次コイルを、夫々のコイル軸の
延長が地中で交わるように該軸の向きを地面に対して傾
斜させ、かつ逆向きの磁場を発生するように配置するこ
とにより、夫々のコイルの中間下方での磁束密度が高く
なり、単一コイルの場合に比して地中に存在する金属体
等に対して相対的に強い磁場をかけることができ、その
結果、探知能力の向上を図ることができ、しかも、両コ
イル中間の下方に当る地下空間に一時磁場の磁力線を集
束させ、探知能力を向上させることができる。
[Function] In the present invention, a pair of primary coils are arranged so that the directions of the respective coil axes are inclined with respect to the ground so that the extensions of the coil axes intersect underground, and generate a magnetic field in the opposite direction. As a result, the magnetic flux density in the middle lower part of each coil is increased, and a relatively strong magnetic field can be applied to a metal body etc. existing in the ground as compared with the case of a single coil, as a result In addition, the detection capability can be improved, and the magnetic field lines of the temporary magnetic field can be focused on the underground space between the two coils, thereby improving the detection capability.

[実施例] 以下、本発明を図示の実施例によりさらに詳細に説明
するが、本発明はこれらの図示例に制限されるものでは
ない。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to the illustrated examples, but the present invention is not limited to these illustrated examples.

第1図は本発明の金属探知器の原理を説明するための
斜視図である。
FIG. 1 is a perspective view for explaining the principle of the metal detector of the present invention.

一次コイル1a及び一次コイル1bは同形のコイルで、軸
を垂直にして適当な水平間隔で地表に並べられる。ここ
で第1図は直列接続の例であるが、その際、一次コイル
1a及び一次コイル1bは極性を逆向きにして連結され、一
次コイル1aの磁場3が下向きの時、一次コイル1bは上向
きの磁場4を発生するように形成されている。なお、5
は交流信号源、6は地下の金属体からの信号を検知する
二次コイル、7は二次信号の検出回路である。
The primary coil 1a and the primary coil 1b are coils of the same shape, and are arranged on the surface of the earth at an appropriate horizontal interval with the axis being vertical. Here, FIG. 1 shows an example of a series connection, in which a primary coil is connected.
The primary coil 1a and the primary coil 1b are connected with the polarities reversed, and the primary coil 1b is formed to generate an upward magnetic field 4 when the magnetic field 3 of the primary coil 1a is downward. In addition, 5
Is an AC signal source, 6 is a secondary coil for detecting a signal from an underground metal body, and 7 is a secondary signal detection circuit.

また第6図に示すような従来の探知器で感度が高いの
は、一次コイル11と二次コイル12の中間点の下方辺りで
あるから、同じ励磁条件ならば、第1図及び後述する第
2図の双コイル方式の方が強い磁場を期待できる。さら
に、一次コイル1a及び一次コイル1bに挟まれた空間の磁
束密度が低く、そこに二次コイル6を置けばS/N比(二
次信号に及ぼす一次信号の直接的影響)の点で有利なこ
とが判る。
Further, the sensitivity of the conventional detector as shown in FIG. 6 is high around the intermediate point between the primary coil 11 and the secondary coil 12, so that under the same excitation conditions, FIG. 1 and FIG. A stronger magnetic field can be expected with the twin coil system shown in FIG. Furthermore, the magnetic flux density in the space between the primary coil 1a and the primary coil 1b is low, and placing the secondary coil 6 there is advantageous in terms of the S / N ratio (direct influence of the primary signal on the secondary signal). I understand that.

第2図は金属探知器の一例を示す模式図で、第2図
(a)は平面図、第2図(b)は断面図である。電磁誘
導型の金属探知器において、一次コイル1a及び1bの一対
の一次コイルを使用することにより、金属探知器の下方
に磁力線8を集束させて二次コイル6における検知能力
を向上させているものである。
FIG. 2 is a schematic view showing an example of a metal detector, wherein FIG. 2 (a) is a plan view and FIG. 2 (b) is a sectional view. In an electromagnetic induction type metal detector, a magnetic field line 8 is focused below the metal detector by using a pair of primary coils of the primary coils 1a and 1b to improve the detection capability of the secondary coil 6. It is.

この例では、一次コイル1aから出た磁力線8の相当数
が地下で湾曲しながら一次コイル1bに入り、また、両コ
イル1a,1bに挟まれた中央部では磁束密度が低く、二次
コイル6の設置に好都合である。
In this example, a considerable number of lines of magnetic force 8 coming out of the primary coil 1a enter the primary coil 1b while bending under the ground, and the magnetic flux density is low in the central portion between the two coils 1a, 1b, It is convenient for setting up.

第3図は本発明の金属探知器の一例を示す模式図であ
り、一次コイル1a及び一次コイル1bの双方のコイルを図
示のようにα゜傾け、その軸が地中で交わるようにした
場合の模式図であり、一次コイル1a及び一次コイル1bと
地面とのなす角度αを変えることにより更に多くの磁力
線の集束が期待できる。尚、この角度αは5゜〜10゜が
好ましい。
FIG. 3 is a schematic diagram showing an example of the metal detector of the present invention, in which both the primary coil 1a and the primary coil 1b are inclined by α ゜ as shown, and their axes intersect underground. It is a schematic diagram of the above, and by changing the angle α between the primary coil 1a and the primary coil 1b and the ground, it is possible to expect more convergence of the lines of magnetic force. The angle α is preferably 5 ° to 10 °.

第4図は本発明の金属探知器の他の例を示す模式図で
あり、一次コイル1a及び一次コイル1bの先端に、夫々補
助コイル9a及び補助コイル9bを取り付け、補助コイル9a
及び9bの電流を加減することによって一次コイルを傾け
た場合と同様の効果を達成しようとしたものである。
FIG. 4 is a schematic view showing another example of the metal detector according to the present invention, in which an auxiliary coil 9a and an auxiliary coil 9b are attached to the ends of the primary coil 1a and the primary coil 1b, respectively.
And 9b to achieve the same effect as when the primary coil is tilted.

第5図は金属探知器における多重配置方式の例を示す
概要図である。
FIG. 5 is a schematic diagram showing an example of a multiple arrangement method in a metal detector.

この場合には、多数の一次コイル1a,1b,1c,…を隣ど
うし逆向きの磁場を発生するようにして線状に並べ、そ
れぞれの中間に二次コイル6a,6b,…を配置する。このよ
うに形成されたコイル群全体を配列線と直角の方向に移
動することによって、広い幅の地域を一気に探査するこ
とができる。なお、第5図では3個の一次コイルを配置
しているが、一次コイルの個数は必要に応じて何個でも
配列することができる。
In this case, a large number of primary coils 1a, 1b, 1c,... Are arranged linearly so as to generate magnetic fields in opposite directions, and secondary coils 6a, 6b,. By moving the entire coil group formed in this manner in a direction perpendicular to the arrangement line, a wide area can be searched at once. Although three primary coils are arranged in FIG. 5, any number of primary coils can be arranged as needed.

[発明の効果] 以上説明したように、本発明の金属探知器によれば、
一対の一次コイルを、夫々のコイル軸の延長が地中で交
わるように該軸の向きを地面に対して傾斜させ、かつ逆
向きの磁場を発生するように配置しているため、両コイ
ルの中間下方での磁束密度が高くなり、従来の単一コイ
ルの場合よりも金属体にかかる磁場が相対的に強くな
り、探知性能が向上する。また、周辺に散逸する磁力線
が少なくなるので、金属体の反応が現われる範囲が探知
器の下方に限定され、それだけ地下の金属体の位置決定
精度が高くなるとともに、同様の理由により、金属探知
器の周辺(側方)に別の金属体(例:車両など)があっ
ても、その影響を受け難くなる。更に、両コイルに挟ま
れた空間では磁束密度が低いので、そこに二次コイルを
置くことによりS/N比を高めることができ、しかも、両
コイル中間の下方に当る地下空間に一時磁場の磁力線を
集束させ、探知能力を向上させることができる。その
際、コイル軸を機械的に傾ける代りに、その先端に補助
コイルを傾けて取り付け、その電流を調整することによ
っても同様な効果をもたらすことができる。
[Effects of the Invention] As described above, according to the metal detector of the present invention,
Since a pair of primary coils are arranged so that the directions of the respective axes are inclined with respect to the ground so that the extension of each coil axis intersects the ground and generate a magnetic field in the opposite direction, the pair of primary coils is The magnetic flux density in the lower middle becomes higher, the magnetic field applied to the metal body becomes relatively stronger than in the case of the conventional single coil, and the detection performance is improved. Also, since the lines of magnetic force dissipated to the surrounding area are reduced, the range in which the reaction of the metal body appears is limited below the detector, so that the accuracy of determining the position of the metal body underground becomes higher, and for the same reason, the metal detector Even if there is another metal body (eg, vehicle) around (side) the area. Furthermore, since the magnetic flux density is low in the space between both coils, the S / N ratio can be increased by placing a secondary coil there. The magnetic field lines can be focused to improve the detection ability. At this time, instead of mechanically inclining the coil axis, an auxiliary coil is inclined and attached to the tip thereof, and the same effect can be obtained by adjusting the current.

本発明の金属探知器は、地中にある金属体を地表面か
ら探知する他に、ボーリング坑内からの金属探査を行な
うことができ、さらには、壁や容器の内部など地下以外
の金属探知にも適用でき、又、地下水など電気抵抗の低
いものの探査にも有効なものである。
The metal detector of the present invention, besides detecting metal objects underground from the ground surface, can also perform metal detection from inside a borehole, and further, for metal detection other than underground such as inside a wall or a container. It is also effective for exploring low electric resistance materials such as groundwater.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の金属探知器の原理を説明するための斜
視図、第2図は金属探知器の一例を示す模式図で、第2
図(a)は平面図、第2図(b)は断面図である。第3
図〜第4図は本発明の金属探知器の一例を示す模式図、
第5図は金属探知器における多重配置方式の例を示す概
要図、第6図は従来の単一コイルによる金属探知器の例
を示す模式図で、第6図(a)は平面図、第6図(b)
は断面図である。 1a,1b,1c,……一次コイル、3……下向きの磁場、4…
…上向きの磁場、5……交流信号源、6……二次コイ
ル、7……二次信号の検出回路、8……磁力線、9a,9b
……補助コイル。
FIG. 1 is a perspective view for explaining the principle of the metal detector of the present invention, and FIG. 2 is a schematic view showing an example of the metal detector.
FIG. 2A is a plan view, and FIG. 2B is a sectional view. Third
FIG. 4 to FIG. 4 are schematic diagrams showing an example of the metal detector of the present invention.
FIG. 5 is a schematic diagram showing an example of a multiple arrangement system in a metal detector, and FIG. 6 is a schematic diagram showing an example of a conventional metal detector using a single coil. FIG. 6 (a) is a plan view, FIG. Fig. 6 (b)
Is a sectional view. 1a, 1b, 1c, ... primary coil, 3 ... downward magnetic field, 4 ...
... upward magnetic field, 5 ... AC signal source, 6 ... secondary coil, 7 ... secondary signal detection circuit, 8 ... magnetic field lines, 9a, 9b
…… Auxiliary coil.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一次コイルから発生する交流磁場に感応し
て地下の金属体が発する誘導磁場を二次コイルで検知す
る形式の金属探知器において、一対の一次コイルを、夫
々のコイル軸の延長が地中で交わるように該軸の向きを
地面に対して傾斜させ、かつ逆向きの磁場を発生するよ
うに配置したことを特徴とする金属探知器。
In a metal detector of a type in which an induced magnetic field generated by an underground metal body is detected by a secondary coil in response to an alternating magnetic field generated from a primary coil, a pair of primary coils are extended with respective coil axes. A metal detector, wherein the direction of the axis is inclined with respect to the ground so as to intersect underground, and the magnetic detector is arranged to generate a magnetic field in the opposite direction.
JP20656390A 1990-08-03 1990-08-03 Metal detector Expired - Lifetime JP2568302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20656390A JP2568302B2 (en) 1990-08-03 1990-08-03 Metal detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20656390A JP2568302B2 (en) 1990-08-03 1990-08-03 Metal detector

Publications (2)

Publication Number Publication Date
JPH0493688A JPH0493688A (en) 1992-03-26
JP2568302B2 true JP2568302B2 (en) 1997-01-08

Family

ID=16525467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20656390A Expired - Lifetime JP2568302B2 (en) 1990-08-03 1990-08-03 Metal detector

Country Status (1)

Country Link
JP (1) JP2568302B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1092988B1 (en) * 1999-10-13 2007-04-11 HILTI Aktiengesellschaft Inductive sensor arrangement and method for detecting ferrous objects
JP6234690B2 (en) * 2013-03-29 2017-11-22 大阪瓦斯株式会社 Transmitter of buried pipe detection device and induction coil for transmitter
JP6514078B2 (en) * 2015-09-18 2019-05-15 学校法人早稲田大学 Submarine exploration equipment

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS537262A (en) * 1976-07-08 1978-01-23 Mishima Kosan Co Ltd Apparatus for detecting end of metal material

Also Published As

Publication number Publication date
JPH0493688A (en) 1992-03-26

Similar Documents

Publication Publication Date Title
US5442294A (en) Conductivity method and apparatus for measuring strata resistivity adjacent a borehole
US6952101B2 (en) Method for determining direction to a target formation from a wellbore by analyzing multi-component electromagnetic induction signals
MXPA06014989A (en) Multi-component field sources for subsea exploration .
CN101796432A (en) Determining formation parameters using electromagnetic coupling components
US20090219027A1 (en) Multi-sensor system for the detection and characterization of unexploded ordnance
US6628118B1 (en) Method and apparatus for control of magnetic flux direction and concentration
JP2568302B2 (en) Metal detector
CA2234202A1 (en) Method and apparatus for detecting, locating and resolving buried pipelines, cased wells and other ferrous objects
Guy et al. Demonstration of using crossed dipole GPR antennae for site characterization
CN206038922U (en) Integrative dual -purpose wave detector
US5038106A (en) Detector of metalliferous objects having two pairs of receiving loops symmetrical and orthogonal to a driving loop
Jeng et al. A very low frequency-electromagnetic study of the geo-environmental hazardous areas in Taiwan
Panissod et al. Potential focusing: a new multielectrode array concept, simulation study, and field tests in archaeological prospecting
Turberg et al. Joint application of radio-magnetotelluric and electrical imaging surveys in complex subsurface environments
CA2992944C (en) Device and method for detecting an article
JP2644208B2 (en) Magnetic measurement method and underground object detection method
JP4713312B2 (en) Position detection system
JPH0972192A (en) Detection method of driving pipe front end position
RU2030768C1 (en) Method of mapping of rocks
JPS642227B2 (en)
SU1295210A1 (en) Eddy-current transducer for contactless measuring of angular displacements of flat conductive objects
JP2004271303A (en) Magnetic measurement system and position detection device for underground excavator using it
Trigubovich et al. The new approach to electromagnetic fields interpretation for TEM with areal observation system
JP3352547B2 (en) Position detection method
RU2234111C1 (en) Induction cable route seeker

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081003

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091003

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101003

Year of fee payment: 14

EXPY Cancellation because of completion of term