JP2568001B2 - Support device for vacuum duct - Google Patents

Support device for vacuum duct

Info

Publication number
JP2568001B2
JP2568001B2 JP3119974A JP11997491A JP2568001B2 JP 2568001 B2 JP2568001 B2 JP 2568001B2 JP 3119974 A JP3119974 A JP 3119974A JP 11997491 A JP11997491 A JP 11997491A JP 2568001 B2 JP2568001 B2 JP 2568001B2
Authority
JP
Japan
Prior art keywords
vacuum duct
vacuum
duct
supporting
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3119974A
Other languages
Japanese (ja)
Other versions
JPH04345799A (en
Inventor
渉 小田島
則夫 末武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP3119974A priority Critical patent/JP2568001B2/en
Publication of JPH04345799A publication Critical patent/JPH04345799A/en
Application granted granted Critical
Publication of JP2568001B2 publication Critical patent/JP2568001B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

[発明の目的] [Object of the Invention]

【0001】[0001]

【産業上の利用分野】本発明は、電子やイオン等の粒子
を加速するために用いられるシンクロトロンに係り、特
に偏向電磁石を介して設置される真空ダクトの支持装置
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a synchrotron used for accelerating particles such as electrons and ions, and more particularly to a support device for a vacuum duct installed via a bending magnet.

【0002】[0002]

【従来の技術】入射エネルギーが比較的低くて高エネル
ギーまで電子やイオン等の粒子を加速するシンクロトロ
ンにおいて、偏向電磁石の立上げが速く、かつ繰返しが
速くなると、偏向電磁石部に設置されている真空ダクト
に発生する渦電流が大きくなる。ところが、この渦電流
によって磁場が形成されるので、偏向電磁石本来の目的
の軌道に対して逸脱した軌道を形成することになる。ま
た、渦電流によって熱が発生するので、真空ダクトが加
熱されて放出ガスが多くなって真空度低下を生じること
もある。そこで、この渦電流による影響を可及的に少な
くするため、偏向電磁石に設置される真空ダクトの肉厚
を可能な範囲で薄くする必要があり、従来一般的には機
械的強度の関係上、真空ダクトは薄肉べローズ状の真空
容器としていた。
2. Description of the Related Art In a synchrotron which has relatively low incident energy and accelerates particles such as electrons and ions to high energy, when the deflection electromagnet is quickly started up and repeated, it is installed in the deflection electromagnet section. The eddy current generated in the vacuum duct becomes large. However, since a magnetic field is formed by this eddy current, a trajectory deviating from the originally intended trajectory of the bending electromagnet is formed. Further, since heat is generated by the eddy current, the vacuum duct may be heated and the amount of released gas may increase, resulting in a decrease in vacuum degree. Therefore, in order to reduce the effect of this eddy current as much as possible, it is necessary to make the thickness of the vacuum duct installed in the bending electromagnet as thin as possible. Conventionally, in terms of mechanical strength, The vacuum duct was a thin bellows type vacuum container.

【0003】一方、シンクロトロンにおける真空ダクト
は、一般的にビーム寿命の点から要求される真空度が比
較的高いため、加熱脱ガスのためのベーキングを必要と
する場合が多い。ところで、従来の薄肉べローズ状に形
成される真空ダクトは、軸方向の伸縮量が大きく、かつ
軸直角変位も大きくなるため、偏向電磁石に真空ダクト
を設置する場合には真空ダクトが曲率半径方向に移動し
ないように固定する必要がある。また、真空ダクト内が
大気圧の場合と真空の場合とは真空ダクトに作用する力
が異なるため、これら何れの場合においても曲率半径方
向に移動しないようにする必要がある。
On the other hand, the vacuum duct in the synchrotron generally requires a relatively high degree of vacuum in terms of beam life, so that it is often necessary to bake for heating degassing. By the way, the conventional thin duct bellows-shaped vacuum duct has a large axial expansion and contraction and a large axial displacement. Must be fixed so that it does not move to. Further, since the force acting on the vacuum duct is different between the case where the inside of the vacuum duct is at atmospheric pressure and the case where the inside of the vacuum duct is vacuum, it is necessary to prevent movement in the radius of curvature direction in any of these cases.

【0004】図5は、従来のシンクロトロンの偏向電磁
石に真空ダクトを設置した状態を示す。同図において、
1は偏向電磁石で、真空ダクト2はこの偏向電磁石1の
ビーム軌道上に設置される。ここで、真空ダクト2は、
直線部の真空ダクトとフランジを介して結合するのでフ
ランジ部で位置決めされる構成となるが、薄肉ベローズ
状の真空ダクトの場合には上記したように軸方向の伸縮
量や軸方向直角変位が大きいため、軸方向両側のフラン
ジ位置を固定しても軸方向中間部の設置位置は決まらな
い。そこで、同図に示すように偏向電磁石1のヨークと
真空ダクト2の間に、複数個の支持部材3a,3bを挿
入して曲率半径方向の移動を拘束するようにしていた。
なお、同図の4a,4bはコイルを示す。
FIG. 5 shows a state in which a vacuum duct is installed in a bending electromagnet of a conventional synchrotron. In the figure,
Reference numeral 1 is a deflection electromagnet, and the vacuum duct 2 is installed on the beam orbit of the deflection electromagnet 1. Here, the vacuum duct 2 is
Since it is connected to the vacuum duct in the straight section via the flange, it is positioned by the flange, but in the case of a thin bellows type vacuum duct, the amount of expansion and contraction in the axial direction and the orthogonal displacement in the axial direction are large as described above. Therefore, even if the flange positions on both sides in the axial direction are fixed, the installation position of the intermediate portion in the axial direction is not determined. Therefore, as shown in the figure, a plurality of supporting members 3a and 3b are inserted between the yoke of the deflection electromagnet 1 and the vacuum duct 2 to restrain the movement in the radius of curvature direction.
In addition, 4a and 4b of the same figure show a coil.

【0005】[0005]

【発明が解決しようとする課題】図5に示すように薄肉
ベローズ状の真空ダクト2は、厚肉の真空ダクトに比較
して内表面積が非常に大きくなり、真空ダクトからの放
出ガスも多くなって真空度低下を招く。また、シンクロ
トロンの場合においてもストレージリングと同様にビー
ム寿命の増大を図るため、真空ダクト2内の真空度を上
昇させることが要求され、超真空にするには真空ダクト
を加熱脱ガスする必要がある。したがって、真空ダクト
2の支持装置としては、加熱脱ガスのためのベーキング
時の熱伸びにも対応できなければならない。しかしなが
ら、従来の支持装置では真空ダクト2はビーム軸方向の
変位がないという条件で設計されているため、支持部分
に局部的に高負荷が作用することになり、薄肉ベローズ
状の真空ダクト2は破損を生じる可能性が大きくなる。
As shown in FIG. 5, the thin bellows-shaped vacuum duct 2 has a very large inner surface area as compared with a thick vacuum duct, and a large amount of gas is discharged from the vacuum duct. Cause a decrease in the degree of vacuum. Also, in the case of a synchrotron, it is required to raise the degree of vacuum in the vacuum duct 2 in order to increase the beam life as in the case of the storage ring, and it is necessary to degas the vacuum duct by heating it in order to obtain an ultra-vacuum. There is. Therefore, the supporting device of the vacuum duct 2 must be able to handle the thermal expansion during baking for heating degassing. However, in the conventional supporting device, since the vacuum duct 2 is designed under the condition that there is no displacement in the beam axis direction, a high load is locally applied to the supporting portion, and the thin-walled bellows-shaped vacuum duct 2 is The chances of breakage increase.

【0006】また、薄肉ベローズ状の真空ダクト2は、
伸縮量,軸方向直角変位が大きいために保守点検時に真
空ダクト内を大気圧にすると外側に膨らみ反対に真空に
すると内側に縮むことになるが、従来の支持装置では真
空ダクトの設置位置の再現性を確保できず、その都度真
空ダクトの設置位置調整を行わなければならなかった。
The thin bellows type vacuum duct 2 is
Since the amount of expansion and contraction and the displacement in the axial direction are large, when the vacuum duct is brought to atmospheric pressure during maintenance and inspection, it expands outward, and when vacuum is applied, it contracts inward, but with the conventional support device, the installation position of the vacuum duct is reproduced. Since it was not possible to secure the property, the installation position of the vacuum duct had to be adjusted each time.

【0007】本発明は、上記した事情に鑑みてなされた
もので、その目的とするところは真空ダクトを所望の曲
率を有するように設置するのが容易で、また真空ダクト
が大気圧または真空の何れの場合にも曲率半径方向の設
置位置が変化せず、さらに加熱脱ガスのためにベーキン
グをするときには真空ダクトの熱伸縮を許容する真空ダ
クトの支持装置を提供することにある。 [発明の構成]
The present invention has been made in view of the above circumstances, and it is an object of the present invention to easily install a vacuum duct so as to have a desired curvature and to keep the vacuum duct at atmospheric pressure or vacuum. It is an object of the present invention to provide a vacuum duct supporting device which does not change the installation position in the radius of curvature direction in any case and allows thermal expansion and contraction of the vacuum duct when baking for heating degassing. [Constitution of Invention]

【0008】[0008]

【課題を解決するための手段】本発明は、偏向電磁石の
ヨーク部に薄肉べローズ状の真空容器からなる真空ダク
トを曲率を有するように支持する真空ダクトの支持装置
において、真空ダクトの外周にフィンを設けると共に、
長さを調整可能とした支持部材およびこの支持部材と真
空ダクトの間に挿入する低摩擦係数の絶縁部材とからな
る支持ユニットを、ヨーク部に真空ダクトの軸方向と直
交する方向でかつ真空ダクトの両側に複数個配置して真
空ダクトを支持するようにしたものである。
SUMMARY OF THE INVENTION The present invention is a vacuum duct support device for supporting a vacuum duct having a curvature on a yoke portion of a deflection electromagnet, the vacuum duct having a thin bellows-like vacuum container, and a vacuum duct supporting device on the outer periphery of the vacuum duct. With fins,
A supporting unit including a supporting member whose length is adjustable and an insulating member having a low friction coefficient inserted between the supporting member and the vacuum duct is provided in a yoke portion in a direction orthogonal to the axial direction of the vacuum duct and in the vacuum duct. A plurality of them are arranged on both sides of the to support the vacuum duct.

【0009】[0009]

【作用】所望の曲率を有するように設置するのが容易と
なり、かつ真空ダクト内の圧力状態が大気圧または真空
の何れの場合においても曲率半径方向の拘束が精度よく
なされて設置位置が変化しない。また、加熱脱ガスベー
キング時において真空ダクトが熱伸縮しても、スライド
可能な支持としているので過大な応力を発生させること
がない。
It is easy to install the device so as to have a desired curvature, and the installation position does not change because the radius of curvature is accurately constrained regardless of whether the pressure inside the vacuum duct is atmospheric pressure or vacuum. . Further, even if the vacuum duct thermally expands and contracts during heating and degassing baking, the support is slidable, so that excessive stress is not generated.

【0010】[0010]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1は、本発明の一実施例を示す横断面図、図
2は、図1のA−A−A−A線に沿った平面図である。
図1および図2において、10A,10Bは支持ユニットを
示し、真空ダクト11は偏向電磁石1のヨーク部に複数個
の支持ユニット10A,10Bを介して所望の曲率を有する
ように支持される。支持ユニット10Aと10Bは、構成は
同じであるが取付状態が勝手反対となる。また、真空ダ
クト11は、薄肉のステンレス材でベローズ状の真空容器
に形成され、外周に適宜ピッチで矩形状としたフィン11
aを固着している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a cross-sectional view showing an embodiment of the present invention, and FIG. 2 is a plan view taken along the line AAAA of FIG.
In FIGS. 1 and 2, 10A and 10B represent support units, and the vacuum duct 11 is supported by the yoke portion of the deflection electromagnet 1 through a plurality of support units 10A and 10B so as to have a desired curvature. The support units 10A and 10B have the same structure but the mounting states are opposite. The vacuum duct 11 is formed of a thin stainless steel material in a bellows-shaped vacuum container, and the fins 11 are formed in a rectangular shape with an appropriate pitch on the outer circumference.
a is fixed.

【0011】図3は、支持ユニット10Aの構成の詳細を
示す。同図に示すように支持ユニット10Aは、一方の端
面がコイル4bの内側面に接触し下面が偏向電磁石1の
ヨーク部に接触する固定金具12aと、この固定金具12a
に一方の端部がねじ込まれるボルト13aと、このボルト
13aの他方の端部がねじ込まれる取付金具14aと、この
取付金具14aと真空ダクト11のフィン11aの複数個の接
触する幅を有しGFRPまたはCFRPのように低摩擦
係数の材料から形成された絶縁板15aで構成される。こ
こで、ボルト13aには中間に工具(スパナ)の係合部13
c、一方の端部に右ねじ13d、他方の端部に左ねじ13e
を設け、固定金具12aには右ねじ13dがねじ込まれるね
じ孔12c、取付金具14aには左ねじ13eがねじ込まれる
ねじ孔14cを設ける。なお、16aは右ねじ13dにねじ込
まれるロックナット、16bは左ねじ13eにねじ込まれる
ロックナットを示す。
FIG. 3 shows details of the structure of the support unit 10A. As shown in the figure, the support unit 10A includes a fixing metal fitting 12a, one end surface of which is in contact with the inner side surface of the coil 4b and a lower surface of which is in contact with the yoke portion of the deflection electromagnet 1, and the fixing metal fitting 12a.
Bolt 13a with one end screwed into
A mounting metal fitting 14a into which the other end of 13a is screwed, and a plurality of contact widths of the mounting metal fitting 14a and the fins 11a of the vacuum duct 11 are formed and are made of a material having a low friction coefficient such as GFRP or CFRP. It is composed of an insulating plate 15a. Here, the bolt 13a has an engaging portion 13 for a tool (spanner) in the middle.
c, right-hand thread 13d at one end, left-hand thread 13e at the other end
The fixing metal fitting 12a is provided with a screw hole 12c into which a right screw 13d is screwed, and the mounting metal fitting 14a is provided with a screw hole 14c into which a left screw 13e is screwed. 16a is a lock nut screwed into the right screw 13d, and 16b is a lock nut screwed into the left screw 13e.

【0012】また、真空ダクト11のフィン11aの上下面
と偏向電磁石1の磁極の間には上記した絶縁板15aと同
様な低摩擦係数の材料から形成された絶縁シート17a,
17bが挿入される。
Between the upper and lower surfaces of the fins 11a of the vacuum duct 11 and the magnetic poles of the deflection electromagnet 1, an insulating sheet 17a made of a material having a low friction coefficient similar to that of the insulating plate 15a described above,
17b is inserted.

【0013】一方、真空ダクト11は、軸方向端部にフラ
ンジ11bを設け、隣接する直線部の真空ダクト18のフラ
ンジ18aと接続するが、このフランジ11bは偏向電磁石
1に固定する支持装置またはフロアレベルに設置するサ
ポートで位置決めと支持がされる。図4は、偏向電磁石
1に固定する支持装置20を示す。すなわち、支持装置20
は、偏向電磁石1の端板21a,21bにそれぞれボルト22
a,22bを介して取付けられる支持枠23a,23bと、真
空ダクト11の中心に向うように支持枠23a,23bにそれ
ぞれ放射状に取付けられ、先端がフランジ11bのねじ孔
(図示しない)にねじ込まれるかまたはフランジ11bの
外周に当接するボルト24a,24bと、このボルト24a,
24bにそれぞれねじ込まれるロックナット25a,25bで
構成される。ここで、支持枠23aは、端板21aに当接す
る固定部23cと、この固定部23cより外側に位置して斜
面状としボルト22aの貫通孔(図示しない)を有する支
持部23eを設けている。なお、支持枠23bは、支持枠23
aと同じ構成であり取付状態が勝手反対となる。
On the other hand, the vacuum duct 11 is provided with a flange 11b at the end in the axial direction and is connected to the flange 18a of the vacuum duct 18 at the adjacent straight portion. This flange 11b is fixed to the deflection electromagnet 1 or a supporting device or floor. It is positioned and supported by a support installed on the level. FIG. 4 shows a supporting device 20 fixed to the bending electromagnet 1. That is, the supporting device 20
Are bolts 22 on the end plates 21a and 21b of the bending electromagnet 1, respectively.
Support frames 23a and 23b attached via a and 22b, and support frames 23a and 23b which are radially attached so as to face the center of the vacuum duct 11, and the tips are screwed into screw holes (not shown) of the flange 11b. Or bolts 24a, 24b that come into contact with the outer circumference of the flange 11b, and the bolts 24a,
It is composed of lock nuts 25a and 25b which are respectively screwed into 24b. Here, the support frame 23a is provided with a fixed portion 23c that comes into contact with the end plate 21a, and a support portion 23e that is located outside the fixed portion 23c and has an inclined surface and has a through hole (not shown) for the bolt 22a. . The support frame 23b is the support frame 23
It has the same structure as a and the mounting state is opposite.

【0014】次に、真空ダクト11を偏向電磁石1に支持
(位置決めおよび曲率半径方向の曲げ成形を含む)方法
を説明する。まず、偏向電磁石1の一方の端部に固定し
た支持装置20のボルト22a,22bの軸方向位置を調整
(真空ダクト11の中心の位置決めのため)し、先端をフ
ランジ11bの外周に設けたねじ孔にねじ込み、ロックナ
ット25a,25bを締付ける。これにより、偏向電磁石1
に対する真空ダクト11の軸方向の一方の端部の位置決め
と支持ができる。次に、この支持した側から軸方向の他
側へ向って順次支持ユニット10A,10Bのボルト13a,
13bを回転して取付金具14a,14bの位置を調整し、そ
れぞれのロックナット16a,16bを締付ける。これによ
り、偏向電磁石1に対する真空ダクト11の曲率半径方向
の曲げ成形と支持ができる。次に、偏向電磁石1の他方
の端部に固定した支持装置20のボルト22a,22bの軸方
向位置を調整(真空ダクト11の中心の位置決めのため)
し、先端をフランジ11bの外周に押し当て(ねじ込みは
しない)、ロックナット25a,25bを締付ける。これに
より、偏向電磁石1に対する真空ダクト11の軸方向の他
方の端部の位置決めと支持ができる。なお、偏向電磁石
1の磁極中心位置と真空ダクト11の中心位置の相互関係
のチェックは、真空ダクト11にフィン11aと偏向電磁石
1のヨークの位置関係を計測することにより可能であ
る。また、真空ダクト11の上下方向(図1で示す方向)
は、真空ダクト11のフィン11aおよび真空ダクト11のフ
ィン11aを除く部分に設けた保温材(図示しない)によ
り真空ダクト11の高さが決まり、必然的に高さ方向が拘
束される。
Next, a method of supporting the vacuum duct 11 on the deflection electromagnet 1 (including positioning and bending in the radius of curvature direction) will be described. First, the axial positions of the bolts 22a and 22b of the supporting device 20 fixed to one end of the deflection electromagnet 1 are adjusted (for positioning the center of the vacuum duct 11), and the tip of the screw is provided on the outer periphery of the flange 11b. Screw in the hole and tighten the lock nuts 25a, 25b. Thereby, the deflection electromagnet 1
It is possible to position and support one end of the vacuum duct 11 in the axial direction with respect to. Next, the bolts 13a of the support units 10A and 10B are sequentially turned from the supported side to the other side in the axial direction.
13b is rotated to adjust the positions of the fittings 14a and 14b, and the lock nuts 16a and 16b are tightened. Thus, the bending electromagnet 1 can be bent and supported in the radius of curvature direction of the vacuum duct 11. Next, the axial positions of the bolts 22a and 22b of the supporting device 20 fixed to the other end of the bending electromagnet 1 are adjusted (for positioning the center of the vacuum duct 11).
Then, press the tip against the outer circumference of the flange 11b (do not screw it in) and tighten the lock nuts 25a and 25b. Thereby, the other end portion of the vacuum duct 11 in the axial direction with respect to the deflection electromagnet 1 can be positioned and supported. The mutual relationship between the magnetic pole center position of the deflection electromagnet 1 and the center position of the vacuum duct 11 can be checked by measuring the positional relationship between the fin 11a and the yoke of the deflection electromagnet 1 in the vacuum duct 11. The vertical direction of the vacuum duct 11 (direction shown in FIG. 1)
The height of the vacuum duct 11 is determined by the fins 11a of the vacuum duct 11 and a heat insulating material (not shown) provided on the portion of the vacuum duct 11 excluding the fins 11a, and the height direction is necessarily constrained.

【0015】次に、以上のように構成された実施例の作
用を説明する。真空ダクト11は、一方の端部を支持装置
20により固定されるが、他方の端部が固定されていない
ので軸方向に伸縮することが可能で、真空ダクト11のフ
ィン11aの側面と支持ユニット10A,10Bの間に低摩擦
係数の絶縁板15a,15bが挿入されており、フィン11a
の上下面と磁極の間に低摩擦係数の絶縁シート17a,17
bが挿入されているので、真空加熱脱ガスをするための
ベーキング(真空ダクト11に通電することにより行う)
をするとき真空ダクト11が熱伸びしても容易にスライド
し、無理な力を両者の間に発生させない。
Next, the operation of the embodiment configured as described above will be described. The vacuum duct 11 has a support device at one end.
It is fixed by 20, but since the other end is not fixed, it can be expanded and contracted in the axial direction, and an insulating plate having a low friction coefficient between the side surface of the fin 11a of the vacuum duct 11 and the support units 10A, 10B. 15a and 15b are inserted, and fin 11a
Insulation sheets 17a, 17 having a low friction coefficient between the upper and lower surfaces and the magnetic poles
Since b is inserted, baking for vacuum heating degassing (by energizing the vacuum duct 11)
When the vacuum duct 11 is stretched, the vacuum duct 11 easily slides even if it thermally expands, and an unreasonable force is not generated between them.

【0016】なお、本発明は、上記した実施例に限定さ
れるものではなく、種々変形実施できる。図5は、本発
明の他の実施例を示し、真空ダクト11は複数個の支持ユ
ニット10A,10Bで偏向電磁石1のヨーク部に支持され
るが、さらに曲率半径方向の曲げ成形を容易にするため
の曲げ調整ユニット30を複数個設けている。曲げ調整ユ
ニット30は、フィン11aの部分で曲率半径の小さい側に
固着した固定金具31と、隣接する固定金具31,31相互間
に取付けたターンバックル構造の調整ボルト32で構成さ
れている。この実施例における真空ダクト11の支持(位
置決めと曲率半径方向の曲げ成形を含む)方法は、上記
した実施例と同様に真空ダクト11の軸方向の一方の端部
を支持装置20で位置決めと支持を行い、この後複数個の
支持ユニット10A,10Bで軸方向の中央部と端部側を位
置決めと支持を行い、曲げ調整ユニット30の調整ボルト
32の長さを調整し真空ダクト11の内側面(曲率半径の小
さい側の面)を伸縮させて曲率半径方向の曲げ成形を行
う。この曲げ調整ユニット30を調整する際にも一端側よ
り順次行う。なお、調整ボルト32の長さを予めセットし
ておき、これを一方向から順次配置し取付けるようにす
れば容易に曲率半径方向の曲げ成形ができる。次に、上
記した実施例と同様に真空ダクト11の軸方向の他方の端
部を支持装置20で位置決めと支持を行う。この実施例も
上記した実施例と同様の効果が得られる。
The present invention is not limited to the above-mentioned embodiments, but can be variously modified. FIG. 5 shows another embodiment of the present invention, in which the vacuum duct 11 is supported on the yoke portion of the deflection electromagnet 1 by a plurality of support units 10A and 10B, which further facilitates bending in the radius of curvature direction. A plurality of bending adjustment units 30 for this purpose are provided. The bending adjustment unit 30 is composed of a fixing member 31 fixed to the side of the fin 11a having a small radius of curvature, and an adjusting bolt 32 having a turnbuckle structure attached between the adjacent fixing members 31 and 31. The method for supporting the vacuum duct 11 (including positioning and bending in the radius of curvature direction) in this embodiment is similar to the above-described embodiment in that one end of the vacuum duct 11 in the axial direction is positioned and supported by the supporting device 20. After that, a plurality of supporting units 10A and 10B are used to position and support the central portion and the end portion side in the axial direction, and the adjusting bolt of the bending adjusting unit 30 is performed.
By adjusting the length of 32, the inner surface of the vacuum duct 11 (the surface on the side with a small radius of curvature) is expanded and contracted to perform bending in the radius of curvature direction. The bending adjustment unit 30 is also adjusted sequentially from one end side. If the length of the adjusting bolt 32 is set in advance and the adjusting bolts are sequentially arranged and attached from one direction, bending can be easily performed in the radius of curvature direction. Next, the other end portion of the vacuum duct 11 in the axial direction is positioned and supported by the supporting device 20 as in the above-described embodiment. In this embodiment, the same effect as that of the above embodiment can be obtained.

【0017】[0017]

【発明の効果】以上説明したように本発明によれば、薄
肉ベローズ状の真空容器からなる真空ダクトの外周にフ
ィンを固着して剛性を増大し、真空ダクトには低摩擦係
数を有する絶縁板を当接させ、この絶縁板を長さが調整
可能の支持部材で押圧して偏向電磁石のヨーク部に支持
するようにしているので、真空ダクトに所望の曲率を形
成させることが容易で、かつ真空加熱脱ガスをする際の
熱伸縮に対しても過大な応力を発生させることのない真
空ダクトの支持装置を提供することができる。
As described above, according to the present invention, an insulating plate having a low friction coefficient is attached to the outer periphery of a vacuum duct formed of a thin bellows type vacuum container by increasing fins to increase rigidity. Are contacted with each other, and the insulating plate is pressed by a supporting member having an adjustable length to be supported on the yoke portion of the deflection electromagnet, so that it is easy to form a desired curvature in the vacuum duct, and It is possible to provide a support device for a vacuum duct that does not generate excessive stress even with thermal expansion and contraction during vacuum heating degassing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す横断面図。FIG. 1 is a cross-sectional view showing an embodiment of the present invention.

【図2】図1のA−A−A−A線に沿った平面図。FIG. 2 is a plan view taken along the line AAAA of FIG.

【図3】本発明の一実施例の要部を示す断面図。FIG. 3 is a sectional view showing a main part of an embodiment of the present invention.

【図4】本発明の一実施例の端部における支持装置を示
す正面図。
FIG. 4 is a front view showing a supporting device at an end portion according to an embodiment of the present invention.

【図5】本発明の他の実施例を示す平面図。FIG. 5 is a plan view showing another embodiment of the present invention.

【図6】従来の真空ダクトの支持装置を示す横断面図。FIG. 6 is a cross-sectional view showing a conventional vacuum duct supporting device.

【符号の説明】 1…偏向電磁石、4a,4b…コイル、10A,10B…支
持ユニット、11…真空ダクト、11a…フィン、12a,12
b…固定金具、13a,13b…ボルト、14a,14b…取付
金具、15a,15b…絶縁板、17a,17b…絶縁シート、
20…支持装置。
[Explanation of Codes] 1 ... Bending electromagnet, 4a, 4b ... Coil, 10A, 10B ... Support unit, 11 ... Vacuum duct, 11a ... Fin, 12a, 12
b ... fixing metal fittings, 13a, 13b ... bolts, 14a, 14b ... mounting metal fittings, 15a, 15b ... insulating plate, 17a, 17b ... insulating sheet,
20 ... Supporting device.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 偏向電磁石のヨーク部に薄肉べローズ状
の真空容器からなる真空ダクトを曲率を有するように支
持する真空ダクトの支持装置において、前記真空ダクト
の外周にフィンを設けると共に、長さを調整可能とした
支持部材およびこの支持部材と前記真空ダクトの間に挿
入する低摩擦係数の絶縁部材とからなる支持ユニット
を、前記ヨーク部に前記真空ダクトの軸方向と直交する
方向でかつ前記真空ダクトの両側に複数個配置して前記
真空ダクトを支持するようにしたことを特徴とする真空
ダクトの支持装置。
1. A vacuum duct supporting device for supporting a vacuum duct, which comprises a thin bellows-shaped vacuum container, with a curvature on a yoke portion of a deflecting electromagnet, wherein fins are provided on an outer periphery of the vacuum duct, and a length of the fin is provided. A supporting unit that is adjustable, and a supporting unit that includes an insulating member having a low friction coefficient inserted between the supporting member and the vacuum duct, and a supporting unit in the yoke portion in a direction orthogonal to the axial direction of the vacuum duct. A support device for a vacuum duct, wherein a plurality of vacuum ducts are arranged on both sides of the vacuum duct to support the vacuum duct.
JP3119974A 1991-05-24 1991-05-24 Support device for vacuum duct Expired - Fee Related JP2568001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3119974A JP2568001B2 (en) 1991-05-24 1991-05-24 Support device for vacuum duct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3119974A JP2568001B2 (en) 1991-05-24 1991-05-24 Support device for vacuum duct

Publications (2)

Publication Number Publication Date
JPH04345799A JPH04345799A (en) 1992-12-01
JP2568001B2 true JP2568001B2 (en) 1996-12-25

Family

ID=14774804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3119974A Expired - Fee Related JP2568001B2 (en) 1991-05-24 1991-05-24 Support device for vacuum duct

Country Status (1)

Country Link
JP (1) JP2568001B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5030893B2 (en) * 2008-08-22 2012-09-19 三菱電機株式会社 Charged particle beam accelerator and particle beam irradiation medical system using the accelerator
JP6178063B2 (en) * 2012-10-05 2017-08-09 株式会社東芝 Charged particle deflection apparatus, charged particle irradiation apparatus, charged particle accelerator, and method of manufacturing charged particle deflection apparatus
JP5985011B1 (en) 2015-06-30 2016-09-06 三菱重工メカトロシステムズ株式会社 Superconducting accelerator

Also Published As

Publication number Publication date
JPH04345799A (en) 1992-12-01

Similar Documents

Publication Publication Date Title
KR101103863B1 (en) Substrate support lift mechanism
JP2568001B2 (en) Support device for vacuum duct
JPH1194241A (en) Ceramic lining
KR100601988B1 (en) Apparatus of heating wafer
EP0769890B1 (en) Method and apparatus for cooling window foils of electron beam accelerator
KR20040048871A (en) Jig for heat treatment of work
US20030197134A1 (en) Electron beam drawing apparatus
JP5766447B2 (en) Turbine exterior compartment
JP4792592B2 (en) Bellows telescopic device
EP0428986B1 (en) Flat picture display device
JPH03192699A (en) Supporting apparatus of vacuum duct
JP2022190768A (en) Base plate for seismic isolation device
JP7140839B2 (en) Charged particle transport system and its installation method
US5619095A (en) Projection cathode ray tube having tapered shaft screw target assembly
JP3486285B2 (en) Fixing device
KR100573096B1 (en) Electrode and electron gun utilizing the same
JPS6237107Y2 (en)
KR920003293Y1 (en) Extending apparatus of shadowmask
JPH02267900A (en) Bellows for vacuum duct of electron storing ring
CN114570793A (en) Method for correcting welding residual deformation of steel plate in steel plate concrete shear wall
JP3383987B2 (en) Fuel cell
JP2951716B2 (en) Gasket mounting jig for flange members
JPS63758Y2 (en)
JPH0426428Y2 (en)
JPH06163193A (en) Supporting structure for bending chain bar in particle accelerator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees