JP2566814B2 - Solid acid catalyst for hydrocarbon conversion and method for producing the same - Google Patents

Solid acid catalyst for hydrocarbon conversion and method for producing the same

Info

Publication number
JP2566814B2
JP2566814B2 JP63114790A JP11479088A JP2566814B2 JP 2566814 B2 JP2566814 B2 JP 2566814B2 JP 63114790 A JP63114790 A JP 63114790A JP 11479088 A JP11479088 A JP 11479088A JP 2566814 B2 JP2566814 B2 JP 2566814B2
Authority
JP
Japan
Prior art keywords
catalyst
acid
molybdenum
temperature
tungsten
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63114790A
Other languages
Japanese (ja)
Other versions
JPH01288339A (en
Inventor
一志 荒田
誠 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP63114790A priority Critical patent/JP2566814B2/en
Publication of JPH01288339A publication Critical patent/JPH01288339A/en
Application granted granted Critical
Publication of JP2566814B2 publication Critical patent/JP2566814B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、−11.99より強い酸強度(H0)を有する固
体酸触媒及びその整合方法に関する。
TECHNICAL FIELD The present invention relates to a solid acid catalyst having an acid strength (H 0 ) higher than −11.99 and a method for matching the same.

[従来の技術及び発明が解決しようとする問題点] 石油精製、石油化学工業等においては、分解、異性
化、アルキル化、重合、脱水素或いはアシル化等の炭化
水素転化に、酸触媒を利用した反応が行われている。こ
の酸触媒としては、硫酸、塩化アルミニウム、フッ化水
素、リン酸等が広く用いられている。しかし、これらの
酸触媒は、生成物との分離のほか、反応容器等の装置の
腐食対策や廃酸の処理等にコストがかかる等の問題があ
った。このため、固体酸触媒が採用されており、この固
体酸触媒として、シリカ−アルミナ、チタニア−ジルコ
ニア、チタニア−シリカ及びモリブデンやタングステン
のヘテロポリ酸等が用いられているが、酸強度(H0)が
−10.6より弱いものしか得られず、過酷の反応条件を必
要としたり、反応が達成できない等の問題があった。
[Problems to be Solved by Conventional Techniques and Inventions] In the petroleum refining and petrochemical industries, an acid catalyst is used for hydrocarbon conversion such as cracking, isomerization, alkylation, polymerization, dehydrogenation or acylation. The reaction has taken place. As the acid catalyst, sulfuric acid, aluminum chloride, hydrogen fluoride, phosphoric acid and the like are widely used. However, these acid catalysts have problems in that, in addition to separation from products, it is costly to take measures against corrosion of equipment such as a reaction vessel and treatment of waste acid. Therefore, a solid acid catalyst is adopted, and as the solid acid catalyst, silica-alumina, titania-zirconia, titania-silica, and a heteropoly acid of molybdenum or tungsten are used, but the acid strength (H 0 ) Was less than -10.6, and there were problems that harsh reaction conditions were required and that the reaction could not be achieved.

また、酸強度の非常に強い固体酸触媒として、フッ化
ホウ素、フッ化アンチモンを無機酸に担持した触媒、さ
らには、本発明者が提案した周期率表第IV属又は鉄の水
酸化物もしくは酸化物を硫酸根含有液で処理した後、焼
成することにより得られる酸強度(H0)が−10.6より強
い固体酸触媒(特公昭59−6181号、同59−40056号公
報)等が知られている。
Further, as a solid acid catalyst having very strong acid strength, boron fluoride, a catalyst in which antimony fluoride is supported on an inorganic acid, further, periodic table IV or iron hydroxide or A solid acid catalyst (Japanese Patent Publication Nos. 59-6181 and 59-40056) having an acid strength (H 0 ) of more than -10.6, which is obtained by treating an oxide with a solution containing a sulfate group and then calcining, is known. Has been.

これらの酸強度の非常に強い触媒は、担持した酸性物
質が使用中に消失し、触媒の活性劣化が起こり易いとい
う問題があった。本発明は、このような問題を解決しよ
うとするもので、本発明の目的は、触媒の失活が起こり
難い、固体酸触媒を提供することにある。
These catalysts having a very strong acid strength have a problem that the supported acidic substance disappears during use and the activity of the catalyst is likely to deteriorate. The present invention is intended to solve such a problem, and an object of the present invention is to provide a solid acid catalyst in which deactivation of the catalyst hardly occurs.

[問題点を解決するための手段] 本発明は、酸化ジルコニウムにタングステン又はモリ
ブデン化合物の1種以上を当該金属量として1〜40重量
%添加又は担持し、実質的に硫酸分を含有せず、かつ−
11.99より強い酸強度(Ho)としたことからなる固体酸
触媒であり、さらに水酸化ジルコニウム又は非晶質の酸
化ジルコニウムに、タングステン化合物又はタングステ
ン化合物とモリブデン化合物の混合物を当該金属量とし
て1〜40重量%添加又は担持した場合は500〜1000℃の
温度で焼成し、モリブデン化合物のみをモリブデン金属
量として1〜2重量%添加又は担持した場合は500〜900
℃の温度で焼成し、モリブデン化合物のみをモリブデン
金属量として2重量%を超えて40重量%まで添加又は担
持した場合は500〜850℃の温度で焼成し、かつ実質的に
硫酸分を含有しない固体酸触媒の製造方法である。ここ
で、実質的に硫酸分を含有しないとは、触媒調整時に硫
酸分を遊離する成分を含まない、言い換えれば−11.99
より強い酸強度(H0)の発現に関与する硫酸分を含まな
いということである。
[Means for Solving Problems] In the present invention, 1 to 40 wt% of zirconium oxide is added or supported as a metal amount, and substantially no sulfuric acid content is contained. And-
A solid acid catalyst having a stronger acid strength (Ho) than 11.99, further containing zirconium hydroxide or amorphous zirconium oxide, a tungsten compound or a mixture of a tungsten compound and a molybdenum compound as the metal amount of 1 to 40. When added or supported by weight%, it is fired at a temperature of 500 to 1000 ° C, and when only 1 to 2% by weight of molybdenum metal is added or supported, it is 500 to 900.
Calcination at a temperature of ℃, when only molybdenum compound is added or supported up to 40 wt% as a molybdenum metal content, it is calcined at a temperature of 500 to 850 ℃ and contains substantially no sulfuric acid. It is a method for producing a solid acid catalyst. Here, substantially free of sulfuric acid content does not include a component that liberates sulfuric acid content during catalyst preparation, in other words, -11.99.
That is, it does not contain the sulfuric acid content that is involved in the expression of stronger acid strength (H 0 ).

本発明の原料として用いられる実質的に硫酸分を含有
しない水酸化ジルコニウム又は非晶質の酸化ジルコニウ
ムは、市販品をそのまま用いてもよいが、塩化ジルコニ
ル〔ZnOCl2・8H2O〕、硝酸ジルコニル〔ZnO(NO3
2H2O〕、酢酸ジルコニル〔ZrO(CH3COO)〕硫酸ジル
コニル〔Zr(SO4)〕等をアンモニア水等で加水分解
し、得られる水酸化ジルコニウムを乾燥して用いてもよ
い。この場合、水酸化ジルコニウムは、350℃以下の温
度で乾燥させることが好ましい。乾燥温度が350℃を超
えると酸化ジルコニウムが結晶化し始め、このような原
料を用いると酸強度を十分に強くすることができず好ま
しくない。
Zirconium hydroxide or amorphous zirconium oxide containing substantially no sulfuric acid used as a raw material of the present invention may be a commercially available product as it is, zirconyl chloride [ZnOCl 2 · 8H 2 O], zirconyl nitrate. [ZnO (NO 3 ) 2
2H 2 O], zirconyl acetate [ZrO (CH 3 COO) 2 ] zirconyl sulfate [Zr (SO 4 )] and the like may be hydrolyzed with aqueous ammonia and the resulting zirconium hydroxide may be used by drying. In this case, zirconium hydroxide is preferably dried at a temperature of 350 ° C. or lower. When the drying temperature exceeds 350 ° C., zirconium oxide begins to crystallize, and the use of such a raw material is not preferable because the acid strength cannot be sufficiently increased.

本発明では、上記水酸化ジルコニウム又は非晶質の酸
化ジルコニウムに実質的に硫酸分を含有しないタングス
テン又はモリブデンの化合物を添加、又は担持するが、
これは、前記水酸化又は非晶質の酸化ジルコニウムにタ
ングステン又はモリブデン化合物をそのままあるいは溶
液の形態で添加するか、前記水酸化又は非晶質の酸化ジ
ルコニウムを所定の形態に成型し、タングステン又はモ
リブデン化合物の溶液に浸漬して担持する方法が簡便で
好ましい。尚、このときのタングステン又はモリブデン
化合物の添加又は担持量は、当該化合物の金属量、すな
わちタングステン又はモリブデンの元素として、1〜40
重量%とする必要がある。タングステン又はモリブデン
の量が、1重量%未満であれば、酸強度が十分に強くな
らず、また40重量%を超えても酸強度が弱くなる。上記
タングステン化合物としては、タングステン酸やメタタ
ングステン酸アンモニウム、酸化タングステン等を用い
ることができ、またモリブデン化合物としては、モリブ
デン酸、メタモリブデン酸アンモニウム、酸化モリブデ
ン、塩化モリブデン等を用いることができる。
In the present invention, a compound of tungsten or molybdenum containing substantially no sulfuric acid is added to or supported on the zirconium hydroxide or the amorphous zirconium oxide,
This is because the tungsten or molybdenum compound is added to the hydroxide or amorphous zirconium oxide as it is or in the form of a solution, or the hydroxide or amorphous zirconium oxide is molded into a predetermined form, and then tungsten or molybdenum is formed. A method of supporting by immersing in a solution of a compound is simple and preferable. The amount of the tungsten or molybdenum compound added or supported at this time is 1 to 40 as the metal amount of the compound, that is, as the element of tungsten or molybdenum.
It is necessary to set it to the weight percent. If the amount of tungsten or molybdenum is less than 1% by weight, the acid strength will not be sufficiently strong, and if it exceeds 40% by weight, the acid strength will be weak. As the tungsten compound, tungstic acid, ammonium metatungstate, tungsten oxide, or the like can be used, and as the molybdenum compound, molybdic acid, ammonium metamolybdate, molybdenum oxide, molybdenum chloride, or the like can be used.

タングステン化合物又はタングステン化合物とモリブ
デン化合物の混合物を添加又は担持した後、500〜1000
℃の温度で焼成するが、この焼成温度が、500℃以下あ
るいは1000℃以上であると酸強度(H0)が弱く、超強酸
触媒が得られない。また、モリブデン化合物のみをモリ
ブデン金属量として1〜2重量%添加又は担持した場合
は500〜900℃、モリブデン化合物のみをモリブデン金属
量として2重量%を超えて40重量%まで添加又は担持し
た場合は500〜850℃の温度で焼成する。焼成温度がこの
範囲を外れると、酸強度(H0)が弱くなる。
500-1000 after adding or supporting a tungsten compound or a mixture of a tungsten compound and a molybdenum compound
The calcination is performed at a temperature of ℃, but if the calcination temperature is 500 ° C or lower or 1000 ° C or higher, the acid strength (H 0 ) is weak and a super strong acid catalyst cannot be obtained. In addition, when the molybdenum compound alone is added or supported in an amount of 1 to 2 wt% as a molybdenum compound, the temperature is 500 to 900 ° C, and when the molybdenum compound alone is added or supported in an amount of more than 2 wt% and 40 wt% as an amount of molybdenum compound. Bake at a temperature of 500-850 ° C. If the firing temperature is out of this range, the acid strength (H 0 ) becomes weak.

以上の方法で製造することにより、酸強度(H0)が−
11.99より強い酸強度の触媒を得ることができる。尚、
ここにいう酸強度(H0)とは、触媒表面の酸点が塩基に
プロトンを与える能力あるいは塩基から電子対を受け取
る能力で定義され、pKa値で表わされるものであり、既
知の指示薬法あるいは気体塩基吸着法等の方法で測定す
ることができる。
By producing by the above method, the acid strength (H 0 ) is −
A catalyst with an acid strength higher than 11.99 can be obtained. still,
The acid strength (H 0 ) here is defined by the ability of the acid points on the catalyst surface to give a proton to the base or the ability to receive an electron pair from the base, and is represented by a pKa value. It can be measured by a method such as a gas base adsorption method.

本発明で得られる固体酸触媒は、炭化水素等の分解、
異性化、アルキル化、重合、アシル化、脱水、脱水素等
の炭化水素転化反応において、より穏やかな反応条件で
用いることができる。
The solid acid catalyst obtained in the present invention is a decomposition of hydrocarbons,
It can be used under milder reaction conditions in hydrocarbon conversion reactions such as isomerization, alkylation, polymerization, acylation, dehydration and dehydrogenation.

[実施例] 触媒の調整 (1)塩化ジルコニル(ZrOCl2・8H2O)水溶液にアンモ
ニア水を加えて、水酸化ジルコニウムの沈殿物を得た。
この沈殿物を第1表に示す温度でそれぞれ3〜20時間乾
燥し、32〜60メッシュの大きさのものに粉砕、篩別し
た。
[Examples] Preparation of catalyst (1) Ammonia water was added to a zirconyl chloride (ZrOCl 2 · 8H 2 O) aqueous solution to obtain a zirconium hydroxide precipitate.
The precipitate was dried at the temperature shown in Table 1 for 3 to 20 hours, crushed to a size of 32 to 60 mesh, and sieved.

次いで、これを5〜20重量%濃度のタングステン酸ア
ンモニウム水溶液中に入れ、加熱して水分を蒸発乾固さ
せてタングステンを担持した。これを第1表の温度で3
〜10時間焼成し、タングステン担持触媒WT−1〜14を調
整した。
Then, this was placed in an ammonium tungstate aqueous solution having a concentration of 5 to 20% by weight, and heated to evaporate the water content to dryness to support tungsten. This is 3 at the temperature in Table 1.
The tungsten-supported catalysts WT-1 to 14 were prepared by firing for ~ 10 hours.

(2)塩化ジルコニル(ZrOCl2・8H2O)水溶液にアンモ
ニア水を加えて得られた水酸化ジルコニウムの沈殿物
に、湿潤したタングステン酸を水酸化ジルコニウムに対
してタングステン量として15重量%となるように添加
し、2〜5時間混練した。これを100℃の温度で、3時
間乾燥し、次いで800℃で、3時間焼成し、タングステ
ン添加触媒WA−1を調整した。
(2) The zirconyl chloride (ZrOCl 2 · 8H 2 O) aqueous solution was added with ammonia water to obtain a zirconium hydroxide precipitate, and the moistened tungstic acid was 15% by weight as the amount of tungsten with respect to zirconium hydroxide. And added for 2 to 5 hours. This was dried at a temperature of 100 ° C. for 3 hours and then calcined at 800 ° C. for 3 hours to prepare a tungsten-added catalyst WA-1.

(3)塩化ジルコニル(ZrOCl2・8H2O)水溶液にアンモ
ニア水を加えて得られた水酸化ジルコニウムの沈殿物
を、100℃で20時間乾燥し、32〜60メッシュの大きさの
ものに粉砕、篩別した。これを、10%濃度のアンモニウ
ム水溶液に5〜20重量%のモリブデン酸を溶解した溶液
にいれ、加熱して水分を蒸発乾固させてモリブデンを担
持した。これを第2表の温度で3時間焼成し、モリブデ
ン担持触媒M−1〜4、M7〜11、M−13〜18及びM−20
〜22を調整した。
(3) A precipitate of zirconium hydroxide obtained by adding aqueous ammonia to a zirconyl chloride (ZrOCl 2 · 8H 2 O) aqueous solution is dried at 100 ° C for 20 hours and crushed to a size of 32 to 60 mesh. , Sieved. This was put into a solution in which 5 to 20% by weight of molybdic acid was dissolved in a 10% aqueous solution of ammonium, and heated to evaporate water to dryness to support molybdenum. This was calcined at the temperature shown in Table 2 for 3 hours, and molybdenum-supported catalysts M-1 to M4, M7 to 11, M-13 to 18 and M-20.
Adjusted ~ 22.

酸強度の測定 上記方法で得られた触媒について、指示薬法により酸
強度を測定した。この結果を第1表及び第2表にて併せ
て記載した。尚、酸強度の測定に用いた指示薬を第3表
に示した。
Measurement of Acid Strength With respect to the catalyst obtained by the above method, the acid strength was measured by an indicator method. The results are also shown in Tables 1 and 2. The indicators used for measuring the acid strength are shown in Table 3.

反 応 (アシル化) トルエン15mlと無水安息香酸0.185gとを入れた反応容
器に上記で調整した触媒を0.5g入れ、80℃で3時間、還
流条件下に反応させた。得られたメチルベンゾフェノン
をガスクロマトグラフィーでイソプロピルベンゼンを用
いた内部標準法により測定し、転化率を求めた。この結
果を第4表に示す。
Reaction (acylation) 0.5 g of the above-prepared catalyst was placed in a reaction vessel containing 15 ml of toluene and 0.185 g of benzoic anhydride, and reacted at 80 ° C. for 3 hours under reflux conditions. The obtained methylbenzophenone was measured by gas chromatography by an internal standard method using isopropylbenzene to determine the conversion rate. The results are shown in Table 4.

(異性化) (1)マイクロ触媒パルス反応器を用い、前述の触媒を
0.5g充填してペンタンの異性化反応を行った。反応温度
は280℃とし、キャリヤーガスとしてヘリウムを10ml/mi
nの流量で流し、サンプル量1μを注入し、直接ガス
クロマトグラフィーに導入して分析した。また、同様に
原料として、ヘキサンを用い、反応温度240℃で行っ
た。これらの結果を、第5表に示した。
(Isomerization) (1) Using a microcatalyst pulse reactor,
0.5 g was charged to carry out an isomerization reaction of pentane. The reaction temperature was 280 ° C, and helium was used as a carrier gas at 10 ml / mi.
Flowing at a flow rate of n, a sample amount of 1 μm was injected and directly introduced into gas chromatography for analysis. Similarly, hexane was used as a raw material, and the reaction temperature was 240 ° C. The results are shown in Table 5.

(2)閉鎖循環系反応装置を用いてブタン及びペンタン
を原料に異性化反応を行った。触媒量は1gとし、反応生
成物は、ガスクロマトグラフィーで分析し、これらの結
果と反応条件を第6表に示した。
(2) An isomerization reaction was performed using butane and pentane as raw materials using a closed circulation system reactor. The catalyst amount was 1 g, and the reaction product was analyzed by gas chromatography. The results and reaction conditions are shown in Table 6.

(脱水素化) マイクロ触媒パルス反応器を用い、前述の触媒を0.1g
充填してメタノールのホルムアルデヒドへの脱水素反応
を行った。反応温度は170℃とし、キャリヤーガスとし
てヘリウムを20ml/minの流量で流し、サンプル量1μ
を注入し、直接ガスクロマトグラフィーに導入して分析
した。反応では、メタノールと空気(2cc)を交互に注
入した。結果を、第7表に示した。また、前述のM−15
の触媒を用い、反応温度をそれぞれ変えて同様の操作を
行った。この結果を、第8表に記載した。
(Dehydrogenation) Using a microcatalyst pulse reactor, 0.1 g of the above catalyst was used.
After filling, a dehydrogenation reaction of methanol to formaldehyde was performed. The reaction temperature was 170 ° C, helium was used as a carrier gas at a flow rate of 20 ml / min, and the sample amount was 1 μm.
Was injected and directly introduced into gas chromatography for analysis. In the reaction, methanol and air (2 cc) were alternately injected. The results are shown in Table 7. In addition, the above-mentioned M-15
The same operation was performed by using the catalyst of No. 1 and changing the reaction temperature. The results are shown in Table 8.

(分 解) マイクロ触媒パルス反応器を用い、前述のWT−3の触
媒を0.1g充填してキュメンのベンゼンとプロピレンへの
分解反応を行った。反応温度は160℃とし、キャリヤー
ガスとしてヘリウムを10ml/minの流量で流し、サンプル
量1μを注入し、直接ガスクロマトグラフィーに導入
して分析した。この結果、転化率は、11.8%であった。
(Degradation) Using a microcatalyst pulse reactor, 0.1 g of the above-mentioned WT-3 catalyst was charged and the decomposition reaction of cumene into benzene and propylene was performed. The reaction temperature was 160 ° C., helium was passed as a carrier gas at a flow rate of 10 ml / min, a sample amount of 1 μm was injected, and the sample was directly introduced into gas chromatography for analysis. As a result, the conversion rate was 11.8%.

一方、市販のシリカ−アルミナを空気中、500℃で、
3時間焼成し、酸強度が−12.70<H0≦−11.35の触媒を
得た。これを用いて、反応温度を260℃とした以外は上
記と同じ方法で、キュメンの分解を行った。この結果、
転化率は、10.8%であった。このようにシリカ−アルミ
ナを用いた場合は、本発明の触媒に比べて、反応温度を
100℃も高くしなければ、同じ転化率は得られず、本発
明の触媒は、分解活性が極めて高いことが分かる。
On the other hand, commercially available silica-alumina in air at 500 ° C.
It was calcined for 3 hours to obtain a catalyst having an acid strength of -12.70 <H 0 ≤-11.35. Using this, cumene was decomposed by the same method as above except that the reaction temperature was 260 ° C. As a result,
The conversion rate was 10.8%. When silica-alumina is used as described above, the reaction temperature is higher than that of the catalyst of the present invention.
The same conversion cannot be obtained unless the temperature is raised to 100 ° C., indicating that the catalyst of the present invention has extremely high decomposition activity.

(アルキル化) 50ccのオートクレーブに、イソブタン10.4g、イソブ
テン0.2g及び前述のWT−1の触媒を4.4gを入れ、100
℃、18kg/cm2で、30分間反応させた。この結果、イソブ
テンのイソオクタンへの転化率は、88.2%であった。
(Alkylation) Into a 50 cc autoclave, 10.4 g of isobutane, 0.2 g of isobutene and 4.4 g of the above-mentioned WT-1 catalyst were placed, and 100
The reaction was carried out at 18 ° C. and 18 kg / cm 2 for 30 minutes. As a result, the conversion rate of isobutene to isooctane was 88.2%.

[比較例] 実施例の触媒調整法と同様にし、焼成温度を高めて酸
強度(H0)を−11.99よりも弱めたモリブデン担持触媒
M−5、M−6、M−12及びM−19を調製した。これら
の触媒は、第4表及び第7表から明らかなように触媒活
性が低かった。
[Comparative Example] The molybdenum-supported catalysts M-5, M-6, M-12 and M-19 obtained by increasing the calcination temperature and making the acid strength (H 0 ) weaker than -11.99 in the same manner as in the catalyst preparation method of Example Was prepared. These catalysts had low catalytic activity, as is apparent from Tables 4 and 7.

また、シリカ、アルミナ、二三酸化鉄、マグネシア、
チタニア等を用い、実施例の触媒調製法に記載したのと
同様の方法で、これらに対し金属量として5〜15重量%
の酸化モリブデン、又は酸化タングステンを担持した。
これらについて、実施例と同様にアシル化、異性化、脱
水素化反応を行なったが、反応はほとんど進まなかっ
た。
Also, silica, alumina, ferric oxide, magnesia,
Using titania or the like, in the same manner as described in the catalyst preparation method of the example, 5 to 15% by weight as a metal amount relative to these
Supported molybdenum oxide or tungsten oxide.
These were subjected to acylation, isomerization and dehydrogenation reactions in the same manner as in Example, but the reaction hardly proceeded.

[発明の効果] 以上のように本発明は、酸化ジルコニウムにタングス
テン又はモリブデン化合物を添加又は担持して酸強度
(H0)を−11.99より強くし、かつ実質的に硫酸分を含
有しない超強酸触媒であるため、触媒の失活が少なく、
よりマイルドな反応条件により各種の炭化水素転化反応
を行うことができるという効果を有する。
[Effects of the Invention] As described above, the present invention is to add or support a tungsten or molybdenum compound to zirconium oxide to increase the acid strength (H 0 ) to more than -11.99, and to use a super strong acid containing substantially no sulfuric acid. Since it is a catalyst, the catalyst is less deactivated,
It has the effect that various hydrocarbon conversion reactions can be carried out under milder reaction conditions.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C07C 9/00 9546−4H C07C 9/00 9/16 9546−4H 9/16 11/06 9546−4H 11/06 15/04 9546−4H 15/04 45/46 9049−4H 45/46 47/052 9049−4H 47/052 49/784 9049−4H 49/784 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C07C 9/00 9546-4H C07C 9/00 9/16 9546-4H 9/16 11/06 9546- 4H 11/06 15/04 9546-4H 15/04 45/46 9049-4H 45/46 47/052 9049-4H 47/052 49/784 9049-4H 49/784

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化ジルコニウムにタングステン又はモリ
ブデン化合物の1種以上を当該金属量として1〜40重量
%添加又は担持し、実質的に硫酸分を含有せず、かつ−
11.99より強い酸強度(Ho)を有する炭化水素転化用固
体酸触媒。
1. A zirconium oxide containing or supporting at least one tungsten or molybdenum compound in an amount of 1 to 40% by weight as the amount of the metal, containing substantially no sulfuric acid, and-
Solid acid catalyst for hydrocarbon conversion with acid strength (Ho) higher than 11.99.
【請求項2】水酸化ジルコニウム又は非晶質の酸化ジル
コニウムに、タングステン化合物又はタングステン化合
物とモリブデン化合物の混合物を当該金属量として1〜
40重量%添加又は担持した場合は500〜1000℃の温度で
焼成し、モリブデン化合物のみをモリブデン金属量とし
て1〜2重量%添加又は担持した場合は500〜900℃の温
度で焼成し、モリブデン化合物のみをモリブデン金属量
として2重量%を超えて40重量%まで添加又は担持した
場合は500〜850℃の温度で焼成したものであり、かつ実
質的に硫酸分を含有しないことを特徴とする炭化水素転
化用固体触媒の製造方法。
2. A zirconium hydroxide or an amorphous zirconium oxide containing a tungsten compound or a mixture of a tungsten compound and a molybdenum compound as the amount of the metal.
When 40% by weight is added or supported, it is calcined at a temperature of 500 to 1000 ° C, and when only 1 to 2% by weight of molybdenum metal is added or supported, it is baked at a temperature of 500 to 900 ° C. When only 2% by weight or 40% by weight of molybdenum metal is added or supported, it is calcined at a temperature of 500 to 850 ° C. and is substantially free of sulfuric acid content. A method for producing a solid catalyst for hydrogen conversion.
JP63114790A 1988-05-13 1988-05-13 Solid acid catalyst for hydrocarbon conversion and method for producing the same Expired - Fee Related JP2566814B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63114790A JP2566814B2 (en) 1988-05-13 1988-05-13 Solid acid catalyst for hydrocarbon conversion and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63114790A JP2566814B2 (en) 1988-05-13 1988-05-13 Solid acid catalyst for hydrocarbon conversion and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01288339A JPH01288339A (en) 1989-11-20
JP2566814B2 true JP2566814B2 (en) 1996-12-25

Family

ID=14646747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63114790A Expired - Fee Related JP2566814B2 (en) 1988-05-13 1988-05-13 Solid acid catalyst for hydrocarbon conversion and method for producing the same

Country Status (1)

Country Link
JP (1) JP2566814B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190004279A (en) * 2016-05-06 2019-01-11 주식회사 쿠라레 Method for producing conjugated diene

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5214017A (en) * 1991-11-27 1993-05-25 Sun Company, Inc. (R&M) Solid-acid alkylation catalyst compositions for alkylation processes
US5212136A (en) * 1991-11-27 1993-05-18 Sun Company, Inc (R&M) Solid-acid alkylation catalyst compositions for alkylation processes
US5396011A (en) * 1992-12-28 1995-03-07 Mallinckrodt Chemical, Inc. Catalytic alkylation of aromatic compounds with alkenes
AU688351B2 (en) * 1993-07-22 1998-03-12 Mobil Oil Corporation Modified solid oxide catalyst and process for producing same
US6224748B1 (en) 1993-07-22 2001-05-01 Mobil Oil Corporation Process for hydrocracking cycle oil
US5543036A (en) * 1993-07-22 1996-08-06 Mobil Oil Corporation Process for hydrotreating
US5719097A (en) * 1993-07-22 1998-02-17 Chang; Clarence D. Catalyst comprising a modified solid oxide
US5345026A (en) * 1993-07-22 1994-09-06 Mobil Oil Corp. Ring opening process
US6080904A (en) * 1993-07-22 2000-06-27 Mobil Oil Corporation Isomerization process
US6217747B1 (en) 1993-07-22 2001-04-17 Mobil Oil Corporation Process for selective wax hydrocracking
US5382731A (en) * 1993-07-22 1995-01-17 Mobil Oil Corp. Combined paraffin isomerization/ring opening process
US5854170A (en) * 1993-07-22 1998-12-29 Mobil Oil Corporation Method for preparing a modified solid oxide
US5401478A (en) * 1993-08-03 1995-03-28 Mobil Oil Corp. Selective catalytic reduction of nitrogen oxides
US5552128A (en) * 1993-08-03 1996-09-03 Mobil Oil Corporation Selective catalytic reduction of nitrogen oxides
WO1995007874A1 (en) * 1993-09-14 1995-03-23 Mobil Oil Corporation Process for preparing alkyl aromatic compounds
US5563311A (en) * 1993-09-14 1996-10-08 Mobil Oil Corporation Process for preparing short chain alkyl aromatic compounds
US5563310A (en) * 1993-09-14 1996-10-08 Mobil Oil Corporation Toluene alkylation with methanol
US5516954A (en) * 1993-09-16 1996-05-14 Mobil Oil Corporation Process for preparing long chain alkylaromatic compounds
US5449847A (en) * 1994-04-18 1995-09-12 Mobil Oil Corporation Selective conversion of benzene to tercyclohexane
US5510309A (en) * 1994-05-02 1996-04-23 Mobil Oil Corporation Method for preparing a modified solid oxide
US5780703A (en) * 1994-05-02 1998-07-14 Mobil Oil Corporation Process for producing low aromatic diesel fuel with high cetane index
KR100247524B1 (en) 1994-05-31 2000-03-15 겐지 아이다 Catalyst for producing acrylic acid and method for production of acrylic acid by the use of the catalyst
TW349033B (en) * 1994-05-31 1999-01-01 Nippon Catalytic Chem Ind Catalyst for production of methacrylic acid and method for production of methacrylic acid by the use of the catalysta catalyst for the production of methacrylic acid by the vapor-phase catalytic oxidation and/or oxidative dehydrogenation of at least one compound
KR100247525B1 (en) * 1994-05-31 2000-03-15 겐지 아이다 Catalyst for production of unsaturated aldehyde and unsaturated carboxylic acid and method for production of unsaturated aldehyde and unsaturated carboxylic acid by the use of the catalyst
DE4433606A1 (en) * 1994-09-21 1996-03-28 Basf Ag Process for the preparation of polyetrahydrofuran
US5608133A (en) * 1995-10-23 1997-03-04 Mobil Oil Corporation Catalytic oligomerization
US5804690A (en) * 1995-12-14 1998-09-08 Mobil Oil Corporation Selective monomethylation of aromatics with dimethylcarbonate
US6162757A (en) * 1999-07-20 2000-12-19 Mobil Oil Corporation Acid catalyst composition
DE10047642A1 (en) * 2000-09-26 2002-04-11 Basf Ag Process for the dehydrogenation of hydrocarbons
KR101111129B1 (en) * 2007-03-27 2012-03-13 디아이씨 가부시끼가이샤 Solid acid catalyst for production of polyester, process for production of the catalyst, and process for production of polyester with the same
US20110301021A1 (en) * 2009-03-02 2011-12-08 Sud-Chemie Inc. Promoted zirconium oxide catalyst support
JP5918272B2 (en) * 2011-01-25 2016-05-18 フイリツプス66カンパニー Condensation of alcohols for biofuel production

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373409A (en) * 1986-09-17 1988-04-04 Toshiba Corp Trouble detector for reactive power compensating device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190004279A (en) * 2016-05-06 2019-01-11 주식회사 쿠라레 Method for producing conjugated diene
KR102338451B1 (en) 2016-05-06 2021-12-10 주식회사 쿠라레 Method for preparing conjugated dienes

Also Published As

Publication number Publication date
JPH01288339A (en) 1989-11-20

Similar Documents

Publication Publication Date Title
JP2566814B2 (en) Solid acid catalyst for hydrocarbon conversion and method for producing the same
Arata et al. Friedel–Crafts acylation of toluene catalyzed by solid superacids
Hsu et al. A highly active solid superacid catalyst for n-butane isomerization: a sulfated oxide containing iron, manganese and zirconium
CA1037060A (en) CATALYTIC OXIDATION OF .alpha.-OLEFINS
US6040262A (en) Catalyst and use thereof
Magnotta et al. Superacid polymers: Paraffin isomerization and cracking in the presence of AlCl3-sulfonic acid resin complexes
Tung et al. High-purity alumina I. The nature of its surface acid sites and its activity in some hydrocarbon conversion reactions
EP0152112A2 (en) Olefin conversion
JP2694177B2 (en) One-step synthetic method for methyl-t-butyl ether
US3096365A (en) Preparation of esters from olefins
US2748090A (en) Manufacture of solid polymerization catalysts
Reitsma et al. The catalytic activity of α-AlF3Al2O3 and β-AlF3Al2O3
US3595920A (en) Process for converting an olefin to a product containing higher and lower olefins
EP0713723A1 (en) Olefin hydration process
Shibata et al. Effect of potassium promoter on iron oxide catalysts for dehydrogenation of ethylbenzene to styrene
JPS60222145A (en) Method for using heat resistant catalyst
Hino et al. Conversion of pentane to isopentane and isopentane to isobutane catalyzed by a solid superacid in the vapor phase/1
JP3251313B2 (en) Method for producing alumina-based solid acid catalyst
JP2610490B2 (en) Solid acid catalyst for alkylation reaction
JP2601866B2 (en) Solid acid catalyst for alkylation reaction
Fang et al. Catalytic pyrolysis of methane
JPH05293375A (en) Solid super strong acid catalyst and its production
Prudius et al. Superacid ZrO2–SiO2–SnO2 Mixed Oxide: Synthesis and Study
US3201487A (en) Aromatic alkylation with a silicaalumina-chromia catalyst
EP3315194B1 (en) Catalyst for glycerin dehydration reaction, preparation method therefor, and method for preparing acrolein by using catalyst

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees