JP2565909C - - Google Patents
Info
- Publication number
- JP2565909C JP2565909C JP2565909C JP 2565909 C JP2565909 C JP 2565909C JP 2565909 C JP2565909 C JP 2565909C
- Authority
- JP
- Japan
- Prior art keywords
- laser
- layer
- output
- quantum well
- resonator length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010410 layer Substances 0.000 claims description 36
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 9
- 239000004065 semiconductor Substances 0.000 claims description 9
- 239000000758 substrate Substances 0.000 claims description 5
- 239000002356 single layer Substances 0.000 claims 1
- 230000003287 optical Effects 0.000 description 12
- 230000000694 effects Effects 0.000 description 7
- 230000020169 heat generation Effects 0.000 description 7
- 238000002310 reflectometry Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000000969 carrier Substances 0.000 description 3
- 238000003486 chemical etching Methods 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 210000000088 Lip Anatomy 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 125000005842 heteroatoms Chemical group 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000001451 molecular beam epitaxy Methods 0.000 description 1
- 239000002365 multiple layer Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、高出力特性にすぐれた高性能半導体レーザ素子に関するものである
。
〈従来の技術〉
近年、YAGレーザの励起用光源等として小型軽量の半導体レーザによる1W
以上の高出力動作が求められている。一般に、非常に小さな体積で動作する半導
体レーザの高出力限界は主に大きな駆動電流時の発熱による光出力の飽和や高い
光密度による破壊限界によってきまっている。したがって高出力動作においては
数十ミクロン(μm)のストライプ幅を持った広ストライプレーザを用いること
により単位体積あたりの光密度を低下している。このような広ストライプレーザ
においては成長層の均一性が問題となるが近年分子線エピタキシイ法(MBE法
)や有機金属気相成長法(MO−CVD法)等によって大面積でかつ均一な結晶
成長が可能となっており、上述のようなストライプ幅の広いレーザによって高い
出力の発振が得られるようになっている。
従来、活性層厚が500Å以上のいわゆるダブルヘテロ(DH)型レーザを高
出力用レーザとして用いるとき、共振器両端面の反射率を後面75%以上、前面
約5%の非対称になるようにコーティングを施し、後面への光出力の損失を少な
くしている。一般に半導体レーザにおいて発振閾値電流密度は共振器長を長くす
ると低下するが、DHレーザの場合共振器長を長くすると量子効率の低下が大き
いため高出力動作時の駆動電流を上昇し発熱の効果による光出力の飽和がおこる
ため共振器長は250μm程度が最適と考えられる。
〈発明の目的〉
本発明は高出力動作に有利な量子井戸レーザを用いて発熱による光出力飽和の
影響を少なくし、高い出力での動作を可能にするものである。活性層に量子井戸
構造を用いた場合、注入されたキャリァは、量子井戸方向に量子化され、キャリ
ァのエネルギ状態密度が階段状となるためレーザの利得係数が注入キャリァ密度
に対して急激に立ち上がり、低い閾値電流密度で発振する。
〈発明の構成及び効果の説明〉
本発明は、駆動電流が低く高出力動作に有利な量子井戸活性層を有し前後端面
の反射率をそれぞれ低反射率、高反射率とした高出力半導体レーザにおいて、共
振器長を300μm以上1000μm以下とすることにより連続発振時に発熱に
よる光出力の飽和の影響のない高出力動作を得るものである。
即ち、本発明に係る半導体レーザ素子は、GaAs基板上に、層厚が電子のド
ブロイ波長より薄い活性層を単層または多層に形成した半導体レーザ素子におい
て、前記活性層の共振端面をそれぞれ75%以上及び10%以下の反射率に設定
しかつ共振器長を300μm以上1000μm以下としたことによって上記効果
を得る。
〈実施例〉
第1図に本発明の1実施例の断面図を示す。n−GaAs基板1上にn−Al
0.7Ga0.3Asクラッド層2、Al混晶比を0.7から0.3まで放物線状に徐
々に変化させたAlxGa1-xAsグレーディドインデックスガイド層3、層厚6
0ÅのAl0.1Ga0.9As量子井戸活性層4、Al混晶比を0.3から0.7ま
で放物線状に徐々に変化させたAlxGa1-xAsグレーディドインデックスガイ
ド層5、p−Al0.7Ga0.3Asクラッド層6、p−GaAsコンタクト層7、
n−Al0.5Ga0.5As電流狭窄層8、n−GaAs保護層を、順次MBE法に
よって成長した。これに一般に用いられるフォトレジストを用いた化学エッチン
グにより100μm幅のストライプ状にn−GaAs保護層9及びn−Al0.5
Ga0.5As電流狭窄層8を除去し、その後n側,p側にそれぞれオーミック電
極を形成しレーザ端面前面に反射率5%の低反射コーティング、後面に反射率9
5%の高反射コーティングを施し高出力用のグレーディドインデックスガイド層
付量子井戸レーザの100μm電極ストライプ型素子を作製した。
第3図にこの素子の共振器長を250μmから1300μmの間で変えた多数
の素子の室温連続発振における最大光出力の実測値を示す。
第3図に代表的な素子として共振器長250μmと375μmの場合の光出力
−電流特性を示す。
第3図から判るように共振器長が300μm末満の場合、素子の最大出力は急
激に低下する。この場合光出力−電流特性は、第4図のL=250μmの素子に
ついて示したように発熱によって飽和している。
一方、共振器長Lが300μm≦L≦1000μmの範囲では第3図のL=3
75μmの素子に対して示したように、光出力は破壊限界までのびており発熱に
よる出力飽和の影響はほとんどない。
しかしL>1000μm以上では、再び、最大出力は熱による飽和によって決
っている。このような熱による光出力飽和の共振器存性を第5、6、7図を用い
て説明する。
第5図に共振器長250μm及び375μmの素子についての熱抵抗の実測値
を示す。これよりL=300μm以上の素子と以下の素子では、熱抵抗には有為
差はないと考えられる。
第6図に量子井戸レーザにおける光出力1Wにおける駆動電流密度の共振器長
依存性の理論値を示す。これは発熱による温度の上昇の効果は含まれていない。
これよりL=300μm以下の領域で電流密度の急上昇が見られる。これより
第3図における300μm以下での出力飽和は、この電流密度の上昇によるもの
と考えられる。次に第7図に光出力1Wを得るのに必要な駆動電流の共振器長依
存性の理論値を一般のDHレーザと量子井戸レーザに対して示す。発熱による駆
動電流上昇はないものと仮定している。高出力動作時の駆動電流は、素子の微分
量子効率に大きく依存する。一般に微分量子効率は
に比例する。ここで、R,Rはレーザ両端面の反射率、Lは共振器長、αiは素
子の内部損失をあらわす。したがって共振器長を長くした場合、微分量子効率は
低下し、高出力動作時の駆動電流は増大する。しかし量子井戸レーザの場合内部
損失αiが約5cm-1程度まで低くできDHレーザが約5cm-1に比べて極めて
小さい値となり、第1式のL依存性が小さく共振器を長くしても駆動電流の上昇
は小さい。ただしこのような効果は式(1)からも判るように内部損失αiとミ
ラー損失1/2Lln(1/R1R2)の相対関係できまっているため、ミラー損
失が小さい場合には、この効果は現れない。実験によると後面反射率が90%以
上の場合、前面反射率は10%以下でないと高出力時の熱による光出力飽和を抑
制する効果はあらわれない。これは以下のような理論解析より説明できる。
第8図に端面反射率を変えた場合の式(1)の値のL依存性の理論値を示す。
ここでは、前面より効率よく光をとり出すため後面の反射率を95%と一定にし
てある。前面反射率を5%とした場合、量子井戸レーザの内部損失5cm-1に対
しミラー損失が大きいため、量子効率の共振器長依存性が小さい。しかし前面の
反射率を15%と大きくした場合、ミラー損失が内部損失に対して小さくなり、
共振器長を大きくした場合の量子効率の低下は大きくなり高出力時の駆動電流が
上昇する。比較のために内部損失15cm-1のDHレーザに関する式(1)の値
を図中に示す。これより前面反射率を大きくした場合内部損失が小さな量子井戸
レーザにおいてもDHレーザに近い量子効率の低下が起る。
第3図において300μmから1000μmまでの広い範囲で熱による光出力
の飽和の影響が光出力1W以上でもほとんどあらわれないことは第7図の駆動電
流の上昇が非常に小さいことに起因していると考えられる。
しかし共振器長が1000μm以上となった場合駆動電流の上昇と共に徐々に
光出力の飽和があらわれる。
以上の議論よりレーザ端面の前後面にそれぞれ5%、95%のコーティングを
施した量子井戸レーザにおいて、共振器長を300μm以上1000μm以下と
した場合、発熱による光出力飽和の影響のない高出力レーザが得られる。
次に本発明の第2の実施例を第2図によって説明する。
MBE法によって第1の実施例と全く同じ層構造をMBE法により成長した後
、フォトレジストを用いた化学エッチングにより第8,9層を約100μm幅の
ストライプ状にエッチングする。次に8,9層を取除いたストライプ内に同じく
フォトレジストを用いた化学エッチングにより間隔1μm幅2μmのメサ部が残
るように第7層及び第6層をエッチングする。この場合、エッチング部分の第6
層は約0.2μm残した。このようにして100μm幅リッヂ導波路アレイを製
作した。
なおリッヂ部側面には絶縁膜を蒸着により形成しその後p・n両電極を形成し
た。このウェハを用いて、共振器長の異なる多くの素子を作製したところ最大光
出力の共振器長依存性はほぼ第3図と同様の傾向をあらわし、共振器長300μ
m以上1000μm以下の領域で、光出力1Wまで光出力の飽和はみられなかっ
た。ただしこれらの素子の端面反射率は後面95%、前面5%とした。
上記実施例においては活性領域としてAlの混晶比をx=0.1としたが、0
≦x≦0.2の範囲では、量子井戸レーザによる内部損失はDHレーザに比べて
非常に低い値であり、かつ混晶比依存性はないため、本実施例と同様に300μ
m≦L≦1000μmとした場合熱による出力飽和のない高出力レーザが得られ
る。
また実施例では活性領域をGRIN−SCH構造としたが、量子井戸活性層を
多層に積層した多重量子井戸構造としても全く同様の効果が得られる。
上記実施例においては、端面反射率を後面95%、前面3%又は5%とする例
を示したが、本発明はこれに限定されるものではなく、後面が75%以上、前面
が10%以下であれば、本願の目的を達成することができる。 DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a high performance semiconductor laser device having excellent high output characteristics. <Prior Art> In recent years, a 1 W light source using a small and light semiconductor laser as a light source for exciting a YAG laser has been developed.
The above high output operation is required. In general, the high output limit of a semiconductor laser that operates with a very small volume is mainly determined by the saturation of the optical output due to heat generated by a large driving current and the destruction limit due to a high optical density. Therefore, in a high output operation, the light density per unit volume is reduced by using a wide stripe laser having a stripe width of several tens of microns (μm). In such a wide stripe laser, uniformity of a growth layer is a problem, but in recent years, a large area and uniform crystal growth has been performed by a molecular beam epitaxy method (MBE method), a metal organic chemical vapor deposition method (MO-CVD method), or the like. It is possible to obtain high-output oscillation by using a laser having a wide stripe width as described above. Conventionally, when a so-called double hetero (DH) type laser having an active layer thickness of 500 ° or more is used as a high-output laser, coating is performed so that the reflectivity at both end faces of the resonator is 75% or more at the rear face and about 5% at the front face. To reduce the loss of light output to the rear surface. In general, the oscillation threshold current density of a semiconductor laser decreases as the resonator length is increased. However, in the case of a DH laser, increasing the resonator length causes a large decrease in quantum efficiency. Since the optical output is saturated, it is considered that the resonator length is optimally about 250 μm. <Object of the Invention> The present invention reduces the influence of light output saturation due to heat generation by using a quantum well laser advantageous for high output operation, and enables operation at high output. When a quantum well structure is used for the active layer, the injected carrier is quantized in the direction of the quantum well, and the energy state density of the carrier becomes stair-like, so that the gain coefficient of the laser rises sharply with respect to the injected carrier density. Oscillate at a low threshold current density. <Description of Configuration and Effect of the Invention> The present invention is directed to a high-power semiconductor laser having a quantum well active layer having a low drive current and advantageous for high-output operation and having low and high reflectances at front and rear end faces, respectively. In the above, by setting the resonator length to be 300 μm or more and 1000 μm or less, a high output operation without influence of light output saturation due to heat generation during continuous oscillation can be obtained. That is, the semiconductor laser device according to the present invention has a layer thickness of electrons on a GaAs substrate.
In semiconductor laser devices with single or multilayer active layers thinner than the Broy wavelength
And setting the resonance end faces of the active layer to reflectivity of 75% or more and 10% or less, respectively.
And the resonator length is set to 300 μm or more and 1000 μm or less, the above-mentioned effect is obtained.
Get. <Embodiment> FIG. 1 shows a sectional view of one embodiment of the present invention. n-Al substrate on n-GaAs substrate 1
0.7 Ga 0.3 As clad layer 2, Al x Ga 1 -x As graded index guide layer 3 with an Al mixed crystal ratio gradually changed from 0.7 to 0.3 in a parabolic manner, layer thickness 6
0 ° Al 0.1 Ga 0.9 As quantum well active layer 4, Al x Ga 1 -x As graded index guide layer 5 with an Al mixed crystal ratio gradually changed from 0.3 to 0.7 in a parabolic manner, p- Al 0.7 Ga 0.3 As clad layer 6, p-GaAs contact layer 7,
The n-Al 0.5 Ga 0.5 As current confinement layer 8 and the n-GaAs protection layer were sequentially grown by MBE. The n-GaAs protective layer 9 and n-Al 0.5 are formed into a stripe having a width of 100 μm by chemical etching using a generally used photoresist.
Ga 0.5 As current confinement layer 8 is removed, then the n-side, low-reflective coating of the p-side in the reflection ratio of 5%, respectively to form an ohmic electrode on the front laser facet reflectivity on the rear surface 9
A 100 μm electrode stripe type element of a quantum well laser with a graded index guide layer for high output with a high reflection coating of 5% was produced. FIG. 3 shows actual measured values of the maximum light output in continuous oscillation at room temperature of many devices in which the resonator length of this device was changed between 250 μm and 1300 μm. FIG. 3 shows the optical output-current characteristics when the resonator length is 250 μm and 375 μm as typical elements. As can be seen from FIG. 3, when the resonator length is less than 300 μm, the maximum output of the element rapidly decreases. In this case, the light output-current characteristic is saturated due to heat generation as shown in the element of L = 250 μm in FIG. On the other hand, when the resonator length L is in the range of 300 μm ≦ L ≦ 1000 μm, L = 3 in FIG.
As shown for a 75 μm device, the light output extends to the destruction limit and is hardly affected by output saturation due to heat generation. However, above L> 1000 μm, the maximum output is again determined by heat saturation. The existence of such a resonator of light output saturation due to heat will be described with reference to FIGS. FIG. 5 shows the measured values of the thermal resistance of the devices having the resonator lengths of 250 μm and 375 μm. From this, it is considered that there is no significant difference in the thermal resistance between the element having L = 300 μm or more and the following element. FIG. 6 shows theoretical values of the dependence of the drive current density on the cavity length at an optical output of 1 W in the quantum well laser. This does not include the effect of temperature rise due to heat generation. From this, a sharp increase in current density is observed in the region of L = 300 μm or less. From this, it is considered that the output saturation at 300 μm or less in FIG. 3 is due to this increase in current density. Next, FIG. 7 shows theoretical values of the resonator length dependence of the drive current required to obtain an optical output of 1 W for general DH lasers and quantum well lasers. It is assumed that there is no drive current increase due to heat generation. The driving current at the time of high output operation largely depends on the differential quantum efficiency of the device. Generally, the differential quantum efficiency is Is proportional to Here, R and R are the reflectivities of both end faces of the laser, L is the cavity length, and αi is the internal loss of the element. Therefore, when the resonator length is increased, the differential quantum efficiency decreases and the driving current during high-power operation increases. However DH laser can lower Ku case of a quantum well laser internal loss αi is up to about 5 cm -1 becomes extremely small value as compared to about 5 cm -1, even longer first equation L dependence is small cavity The rise in drive current is small. However, as can be seen from equation (1), such an effect can be obtained by a relative relationship between the internal loss αi and the mirror loss 1 / Lln (1 / R 1 R 2 ). Does not appear. According to the experiment, when the rear surface reflectance is 90% or more, the effect of suppressing the light output saturation due to heat at the time of high output is not exhibited unless the front surface reflectance is 10% or less. This can be explained by the following theoretical analysis. FIG. 8 shows the theoretical value of the L dependence of the value of equation (1) when the end face reflectance is changed.
Here, in order to extract light more efficiently than the front surface, the rear surface has a constant reflectance of 95%. When the front surface reflectivity is 5%, the mirror loss is large with respect to the internal loss of the quantum well laser of 5 cm −1, so that the dependence of quantum efficiency on the cavity length is small. However, if the reflectivity of the front surface is increased to 15%, the mirror loss becomes smaller than the internal loss,
When the resonator length is increased, the decrease in quantum efficiency is increased, and the driving current at the time of high output is increased. For comparison, the value of equation (1) for a DH laser with an internal loss of 15 cm -1 is shown in the figure. When the front facet reflectance is made higher than this, even in a quantum well laser having a small internal loss, a quantum efficiency lower than that of a DH laser occurs. In FIG. 3, the effect of the saturation of the light output due to heat in a wide range from 300 μm to 1000 μm is hardly apparent even when the light output is 1 W or more, because the rise of the drive current in FIG. 7 is very small. Conceivable. However, when the cavity length is 1000 μm or more, the saturation of the optical output gradually occurs as the drive current increases. 5%, respectively front and rear surfaces of the laser facets than the above discussion, in a quantum well laser which has been subjected to 95% of co pos- sesses, when the resonator length was set to 300μm or more 1000μm or less, high no influence of light output saturation due to heat generation An output laser is obtained. Next, a second embodiment of the present invention will be described with reference to FIG. After the same layer structure as that of the first embodiment is grown by MBE by MBE, the eighth and ninth layers are etched into stripes having a width of about 100 μm by chemical etching using a photoresist. Next, the seventh layer and the sixth layer are etched by chemical etching using the same photoresist in the stripe from which the eighth and ninth layers have been removed so that a mesa portion having an interval of 1 μm and a width of 2 μm remains. In this case, the sixth portion of the etched portion
The layer remained about 0.2 μm. Thus, a 100 μm wide ridge waveguide array was manufactured. An insulating film was formed on the side surface of the lip by vapor deposition, and then both p and n electrodes were formed. When many devices having different resonator lengths were manufactured using this wafer, the dependency of the maximum optical output on the resonator length showed almost the same tendency as in FIG. 3, and the resonator length was 300 μm.
In the region of not less than m and not more than 1000 μm, no saturation of the light output was observed up to the light output of 1 W. However, the end face reflectivities of these elements were 95% on the rear face and 5% on the front face. In the above embodiment, the mixed crystal ratio of Al was set to x = 0.1 as the active region.
In the range of ≦ x ≦ 0.2, the internal loss due to the quantum well laser is much lower than that of the DH laser, and there is no dependency on the mixed crystal ratio.
When m ≦ L ≦ 1000 μm, a high-output laser without output saturation due to heat can be obtained. Although the active region has a GRIN-SCH structure in the embodiment, the same effect can be obtained by using a multiple quantum well structure in which quantum well active layers are stacked in multiple layers. In the above embodiment, the end face reflectance is set to 95% for the rear face and 3% or 5% for the front face.
However, the present invention is not limited to this.
Is 10% or less, the object of the present application can be achieved.
【図面の簡単な説明】
第1図及び第2図はそれぞれ本発明の1実施例である100μm電極ストライ
プ型グレーディドインデックスガイド層付量子井戸レーザの断面図である。第3
図はGRIN−SCHレーザの最大光出力の共振器長依存性を示す特性図である
。第4図はGRIN−SCHレーザの光出力電流特性を示す特性図である。第5
図はGRIN−SCHレーザの熱抵抗の共振器依存性の実測値を示す特性図であ
る。第6図はGRIN−SCHレーザの光出力1Wにおける駆動電流密度の共振
器長依存性の理論値を示す説明図である。第7図及び第8図はGRIN−SCH
レーザ及びDHレーザの光出力1Wにおける、駆動電流の共振器長依存性の理論
値を示す。
1……n−GaAs基板、2……n−Al0.7Ga0.3Asクラッド層、3……A
lxGa1-xAs(x=0.3〜0.7)グレーディドインデックスガイド層、4
……Al0.1Ga0.9As(60Å)活性層、5……p−AlxGa1-xAsクラッ
ド層、7……p−GaAsコンタクト層、8……n−Al0.5Ga0.5As電流狭
窄層、9……n−GaAs保護層、10……p型オーミック電極、11……n型
オーミック電極、12……絶縁層。BRIEF DESCRIPTION OF THE DRAWINGS FIGS. 1 and 2 are cross-sectional views of a quantum well laser with a 100 μm electrode stripe type graded index guide layer according to an embodiment of the present invention. Third
The figure is a characteristic diagram showing the dependence of the maximum optical output of the GRIN-SCH laser on the cavity length. FIG. 4 is a characteristic diagram showing an optical output current characteristic of the GRIN-SCH laser. Fifth
The figure is a characteristic diagram showing measured values of the dependence of the thermal resistance of the GRIN-SCH laser on the resonator. FIG. 6 is an explanatory diagram showing a theoretical value of a resonator length dependence of a driving current density at an optical output of 1 W of a GRIN-SCH laser. 7 and 8 show GRIN-SCH
The theoretical value of the resonator length dependence of the driving current at the optical output of 1 W of the laser and the DH laser is shown. 1 ...... n-GaAs substrate, 2 ...... n-Al 0.7 Ga 0.3 As cladding layer, 3 ...... A
l x Ga 1-x As (x = 0.3 to 0.7) graded index guide layer, 4
... Al 0.1 Ga 0.9 As (60 °) active layer, 5 p-Al x Ga 1 -x As clad layer, 7 p-GaAs contact layer, 8 n-Al 0.5 Ga 0.5 As current confinement layer , 9 ... n-GaAs protective layer, 10 ... p-type ohmic electrode, 11 ... n-type ohmic electrode, 12 ... insulating layer.
Claims (1)
を単層または多層に形成した半導体レーザ素子において、 前記活性層の共振端面をそれぞれ75%以上及び10%以下の反射率に設定し
かつ共振器長を300μm以上1000μm以下としたことを特徴とする半導体
レーザ素子。1. A semiconductor laser device having a single-layer or multi-layer active layer having a layer thickness smaller than the de Broglie wavelength of electrons formed on a GaAs substrate. A semiconductor laser device having a reflectance of not less than 10% and a resonator length of not less than 300 μm and not more than 1000 μm.
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mawst et al. | 8 W continuous wave front‐facet power from broad‐waveguide Al‐free 980 nm diode lasers | |
US6195381B1 (en) | Narrow spectral width high-power distributed feedback semiconductor lasers | |
JP3116675B2 (en) | Semiconductor laser | |
Ishikawa et al. | 0.98-1.02 mu m strained InGaAs/AlGaAs double quantum-well high-power lasers with GaInP buried waveguides | |
US20090168827A1 (en) | Nitride semiconductor laser chip and method of fabricating same | |
Dittmar et al. | High-power 808-nm tapered diode lasers with nearly diffraction-limited beam quality of M/sup 2/= 1.9 at P= 4.4 W | |
US6700912B2 (en) | High-output semiconductor laser element, high-output semiconductor laser apparatus and method of manufacturing the same | |
JPH08195525A (en) | Semiconductor laser | |
JP5099948B2 (en) | Distributed feedback laser diode | |
US7366216B2 (en) | Semiconductor laser element formed on substrate having tilted crystal orientation | |
EP1675230B1 (en) | Laser diode device | |
JPH0823133A (en) | Flare structure semiconductor laser | |
US5953358A (en) | Semiconductor laser device | |
JPH09307190A (en) | Aluminum-indium-gallium-nitrogen based semiconductor luminous element and semiconductor luminous device | |
US5031183A (en) | Full aperture semiconductor laser | |
JP3037111B2 (en) | Semiconductor lasers and composite semiconductor lasers | |
JP2002111125A (en) | Distributed feedback semiconductor laser | |
WO2016147512A1 (en) | Semiconductor light emitting element and semiconductor light emitting element assembly | |
JP2967757B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP3053139B2 (en) | Strained quantum well semiconductor laser | |
JP2565909B2 (en) | Semiconductor laser device | |
JP2001284704A (en) | Semiconductor laser device | |
JP2613975B2 (en) | Periodic gain type semiconductor laser device | |
JP2565909C (en) | ||
US6738405B1 (en) | Semiconductor laser |