JP2565829Y2 - Optical axis adjustment device for spatial light transmission system - Google Patents

Optical axis adjustment device for spatial light transmission system

Info

Publication number
JP2565829Y2
JP2565829Y2 JP1990076487U JP7648790U JP2565829Y2 JP 2565829 Y2 JP2565829 Y2 JP 2565829Y2 JP 1990076487 U JP1990076487 U JP 1990076487U JP 7648790 U JP7648790 U JP 7648790U JP 2565829 Y2 JP2565829 Y2 JP 2565829Y2
Authority
JP
Japan
Prior art keywords
optical axis
light
optical
transmitting
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1990076487U
Other languages
Japanese (ja)
Other versions
JPH0435109U (en
Inventor
洋治 岡部
政▲吉▼ 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Co Ltd
Original Assignee
Toyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Co Ltd filed Critical Toyo Electric Co Ltd
Priority to JP1990076487U priority Critical patent/JP2565829Y2/en
Publication of JPH0435109U publication Critical patent/JPH0435109U/ja
Application granted granted Critical
Publication of JP2565829Y2 publication Critical patent/JP2565829Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、空間光伝送システムの光軸調整装置に関
し、特に、不可視光光源を用いた空間光伝送システムの
光軸調整装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical axis adjusting device of a spatial light transmission system, and more particularly to an optical axis adjusting device of a spatial light transmission system using an invisible light source. .

(従来の技術) 可視光あるいは不可視光を搬送波として用い、この搬
送波に種々のデータを載せて光送信器から該光を特性方
向に発信し、該光の光軸上に配設された光受信器にて該
光を受信した後これを検波し、必要なデータを取り出し
て、種々のデータ処理に使用する空間光伝送システムは
周知である。
(Prior Art) A visible light or an invisible light is used as a carrier, and various data are loaded on the carrier to transmit the light in a characteristic direction from an optical transmitter, and an optical receiver disposed on the optical axis of the light is used. A spatial light transmission system for detecting the light after receiving the light by a device, extracting necessary data, and using the data for various data processing is well known.

たとえば、広い体育館で臨時に催し物が開催されるよ
うな場合、天井や側壁に投光方向変換や照明色変換が自
在な多くの照明装置を配置し、これらの照明装置を空間
光伝送装置を使用してコントロールルームから遠隔制御
する。
For example, when an extraordinary event is held in a large gymnasium, many lighting devices that can change the light projection direction and lighting color are placed on the ceiling and side walls, and these lighting devices use a spatial light transmission device. And remote control from the control room.

第6図は、上述の如き照明装置など、一般装置に使用
される空間光伝送システムの概略構成を示すブロック図
である。第6図において、1は、コントロールルーム側
に設置される制御側送受信装置であり、可視光あるいは
不可視光を発光する発光素子2とこの発光素子2が発光
する発光光を平行な光束に絞るレンズ系3を有する送光
部T1と、相手側から発信される光束を受光素子4に集光
せしめるレンズ系5を有する受光部R1とを備えたヘッド
部6と、入力装置7と表示装置8とを有し、かつ入力さ
れた信号を変調して送光部T1から送出すべき信号を送光
部T1に送り、受光部R1で受信した信号を処理して表示装
置8に表示させる等の処理をする制御装置9を有する。
10は体育館等の広い室内の天井等に設置した投光器に設
けられた被制御側送受信装置であり、可視光あるいは不
可視光を発光する発光素子12とこの発光素子12が発光す
る発光光を平行な光束に絞るレンズ系13を有する送光部
T2と、相手側から発信される光束を受光素子14に集光せ
しめるレンズ系15を有する受光部R2とを備えたヘッド部
16と、投光器17と、この投光器17の投光方向や照明色を
変更する駆動する駆動装置18とを有し、制御側送受信装
置1から送られてきた光束を復調し、この復調信号を駆
動装置18に印加してこの駆動装置18により投光器17を駆
動せしめると共に、駆動制御された投光器17の位置信号
や現在投光している色の信号を送光部T2に送り、これら
の信号を制御側送受信装置1に送信せしめる制御動作を
司る制御装置19とを有する。なお、制御側送受信装置1
のヘッド部6と被制御側送受信装置10のヘッド部16の詳
細な構成の説明を行うが、これらは共にほぼ同一の構造
を有するため、ヘッド部6についてのみ説明し、ヘッド
部16の詳細な説明は省略する。第7図は、ヘッド部6の
構成を示すブロック図である。第7図に於て、6aは信号
入力端子であり、ここから投光器17を種々動作せしめる
ための信号が入力される。6bはインターフェース回路で
ある。6cは局部発信器、6dは受光素子2を駆動するため
のドライバ、6eは被制御側送受信装置10から送信された
信号を取り出す出力端子、6fはインターフェース回路、
6gは検波器、6hは増幅器、6iは被制御側送受信装置10か
ら送信された信号の出力レベルを検出するレベル検出端
子6iである。このように、制御側送受信装置1または被
制御側送受信装置10には、通常光軸合わせが簡単に実行
できるように、レベル検出端子6iのような受光量をチェ
ックすることができるような構造を備えている。制御側
送受信装置1と被制御側送受信装置10との光軸を合わせ
る場合、まずこれら2つの装置を対向配置して仮設置
し、制御側送受信装置1の送光部T1から被制御側送受信
装置10の受光部R2に光を送る。被制御側送受信装置10側
では、ヘッド部16のレベル検出端子にレベルメータ等、
受光部R2が受光した受光量を検知できる測定装置を接続
し、ヘッド部16の位置を調整してその値が最大になるよ
うにする。次に、被制御側送受信装置10の送光部T2から
制御側送受信装置1の受光部R1に光を送る。制御側送受
信装置1側では、ヘッド部6のレベル検出端子6iにレベ
ルメータ等、受光部R1が受光した受光量を検知できる測
定装置を接続し、ヘッド部6の位置を調整してその値が
最大になるようにする。このような両ヘッド部の位置の
微調整を何回も繰り返して制御側送受信装置1と被制御
側送受信装置10の光軸を一致させる。
FIG. 6 is a block diagram showing a schematic configuration of a spatial light transmission system used for a general device such as the above-mentioned lighting device. In FIG. 6, reference numeral 1 denotes a control-side transmitting / receiving device installed in the control room side, and a light-emitting element 2 that emits visible light or invisible light, and a lens that narrows the light emitted by the light-emitting element 2 into a parallel light flux. A head unit 6 including a light transmitting unit T1 having a system 3 and a light receiving unit R1 having a lens system 5 for condensing a light beam transmitted from the other side to a light receiving element 4, an input device 7 and a display device 8; And a process of modulating an input signal, transmitting a signal to be transmitted from the light transmitting unit T1 to the light transmitting unit T1, processing a signal received by the light receiving unit R1, and displaying the signal on the display device 8, and the like. The control device 9 performs the following.
Reference numeral 10 denotes a controlled-side transmitting / receiving device provided in a projector mounted on a ceiling or the like of a large room such as a gymnasium, and a light emitting element 12 that emits visible light or invisible light and a light emitting element 12 that emits light emitted by the light emitting element 12 in parallel. Transmitter with lens system 13 for focusing on luminous flux
A head unit including T2 and a light receiving unit R2 having a lens system 15 for condensing a light beam transmitted from the other side to the light receiving element 14.
16, a light projector 17, and a driving device 18 for changing the light projection direction and the illumination color of the light projector 17, demodulating the light beam sent from the control transmitting / receiving device 1, and driving the demodulated signal. The light is applied to the device 18 and the light emitting device 17 is driven by the driving device 18, and the position signal of the light emitting device 17 whose driving is controlled and the signal of the color currently being projected are transmitted to the light transmitting unit T2, and these signals are controlled. And a control device 19 that performs a control operation of causing the transmission / reception device 1 to transmit. In addition, the control-side transmitting / receiving device 1
The detailed configuration of the head unit 6 and the head unit 16 of the controlled-side transmission / reception device 10 will be described. However, since both have substantially the same structure, only the head unit 6 will be described. Description is omitted. FIG. 7 is a block diagram showing the configuration of the head unit 6. As shown in FIG. In FIG. 7, reference numeral 6a denotes a signal input terminal, from which a signal for operating the projector 17 in various ways is input. 6b is an interface circuit. 6c is a local oscillator, 6d is a driver for driving the light receiving element 2, 6e is an output terminal for extracting a signal transmitted from the controlled transmitting / receiving device 10, 6f is an interface circuit,
6g is a detector, 6h is an amplifier, and 6i is a level detection terminal 6i for detecting the output level of the signal transmitted from the controlled transceiver 10. As described above, the control-side transmission / reception device 1 or the controlled-side transmission / reception device 10 has a structure such as the level detection terminal 6i that can check the amount of received light so that the optical axis alignment can be easily performed. Have. When aligning the optical axes of the control-side transmission / reception device 1 and the controlled-side transmission / reception device 10, these two devices are first placed facing each other and temporarily installed, and the light-transmitting unit T1 of the control-side transmission / reception device 1 transmits the controlled-side transmission / reception device. Sends light to 10 light receiving units R2. On the controlled transmission / reception device 10 side, a level meter or the like is connected to the level detection terminal of the head unit 16.
A measuring device that can detect the amount of light received by the light receiving unit R2 is connected, and the position of the head unit 16 is adjusted so that the value is maximized. Next, light is transmitted from the light transmitting unit T2 of the controlled transmitting / receiving device 10 to the light receiving unit R1 of the controlled transmitting / receiving device 1. On the control side transmitting / receiving device 1, a measuring device such as a level meter that can detect the amount of light received by the light receiving portion R1 is connected to the level detection terminal 6i of the head portion 6, and the position of the head portion 6 is adjusted and the value is adjusted. Try to maximize. Such fine adjustment of the positions of the two head portions is repeated many times so that the optical axes of the control-side transmitting / receiving device 1 and the controlled-side transmitting / receiving device 10 are matched.

(考案が解決しようとする課題) ところで、上述のような光軸の調整方法は、制御側送
受信装置1と被制御側送受信装置10との間隔が数メート
ルから十数メートル程度のものであり、かつ制御側送受
信装置1、被制御側送受信装置10を取り巻く明るさが適
当に暗い場合には有効である。ところが実際には、光の
到達効率を向上させるために発光素子から受光する光を
レンズ系にて絞り、細い光束としている。したがって両
者の間隔が二十メートルを越えた場合や、周囲の明るさ
が増した場合には、送光部から発した光を受光部位置に
おいてなかなか視認できず、光軸合わせに多大の時間と
労力を必要とする場合が生じる。
(Problems to be Solved by the Invention) By the way, in the method of adjusting the optical axis as described above, the interval between the control-side transmitting / receiving device 1 and the controlled-side transmitting / receiving device 10 is about several meters to several tens of meters. In addition, this is effective when the brightness surrounding the control-side transmitting / receiving device 1 and the controlled-side transmitting / receiving device 10 is appropriately dark. However, in practice, light received from the light emitting element is narrowed down by a lens system to improve the light arrival efficiency, thereby forming a thin light beam. Therefore, when the distance between the two exceeds 20 meters or when the brightness of the surroundings increases, the light emitted from the light transmitting unit cannot be easily visually recognized at the position of the light receiving unit. In some cases, labor is required.

また、周囲の光との干渉を避けるため、送光部から発
する光に不可視光を用いる場合があるが、不可視光は調
整者の目に見えないため、光軸合わせ作業の時、制御側
送受信装置と被制御側送受信装置とを相対向して仮設置
することすらできない場合がある。
In addition, in order to avoid interference with surrounding light, invisible light may be used as the light emitted from the light transmitting unit. However, since the invisible light is invisible to the adjuster, the control side transmission / reception is required during optical axis alignment work. In some cases, it is not even possible to temporarily install the device and the controlled transmitting / receiving device in opposition to each other.

制御側送受信装置と被制御側送受信装置との間隔が大
きい場合や不可視光源を用いた場合に、光軸合わせ用の
可視光ビームを発射する別の光発射装置を用いる方法も
あるが、空間光伝送システムのほかに光発射装置を別に
用意しなければならないし、別設の光発射装置の光軸と
空間光伝送システムの光軸が完全に一致していなければ
役に立たないという欠点がある。
When the distance between the control-side transmitting / receiving device and the controlled-side transmitting / receiving device is large or when an invisible light source is used, there is a method using another light emitting device that emits a visible light beam for optical axis alignment. A light emitting device must be separately prepared in addition to the transmission system, and if the optical axis of the separately provided light emitting device does not completely coincide with the optical axis of the spatial light transmission system, it is useless.

小銃などの照準器と同じような照準器を用いる方法も
あるが、制御側送受信装置と被制御側送受信装置の間隔
が大きく離れている場合には、望遠装置を付属させる必
要があり、全体的に効果となる欠点があるほか、照準器
と空間光伝送システムとの光軸のずれを補正しなければ
ならないという余分な手間もかかることになる。
There is also a method using a sight similar to a sight such as a rifle, but if the distance between the controlling transmitting and receiving device and the controlled transmitting and receiving device is large, it is necessary to attach a telescope, In addition to the disadvantages described above, there is an additional trouble that it is necessary to correct the deviation of the optical axis between the sight and the spatial light transmission system.

(課題を解決するための手段) 本考案は上述のような従来の欠点を解消しようとする
ものであり、その目的は、空間光伝送システムの光軸調
整装置において、送受信装置間の光軸調整を簡単な手段
で容易に実行できるような光軸調整装置を得ることにあ
る。
(Means for Solving the Problems) The present invention is intended to solve the above-mentioned conventional disadvantages, and an object of the present invention is to provide an optical axis adjusting apparatus for a spatial light transmission system, which is used for adjusting an optical axis between transmitting and receiving apparatuses. Is to obtain an optical axis adjusting device that can easily execute the above by simple means.

上述のような本考案の目的を達成するために、本考案
は、光発信器と光受信器とを有する制御側送受信装置
と、光発信器と光受信器とを有する被制御側送受信装置
とを一定間隔を置いて配設し、これら装置の光発信器と
光受信器が互いに一致した光軸に沿って進む光媒体によ
りデータ電送を行う全二重通信方式の空間電送システム
の光軸調整装置において、制御側送受信装置と被制御側
送受信装置の何れかを一方の装置としその一方の装置の
レンズ系の光軸上であって該レンズ系の焦点から外れた
位置に配置され可視光を発光すると共に着脱自在な可視
光発光装置と、上記制御側送受信装置と被制御側送受信
装置の他方の装置に設けられ、前記一方の装置の可視光
発光装置からレンズ系を通して発射された可視光が検知
自在な光受信器と、上記制御側送受信装置と被制御側送
受信装置の他方の装置に設けられた光受信器の出力が最
大となる位置に該光受信器の位置を調整する調整手段
と、を具備してなることを特徴とする空間電送システム
の光軸調整装置を提供する。
In order to achieve the object of the present invention as described above, the present invention provides a control transmitting / receiving apparatus having an optical transmitter and an optical receiver, and a controlled transmitting / receiving apparatus having an optical transmitter and an optical receiver. Are arranged at regular intervals, and the optical transmitter and the optical receiver of these devices adjust the optical axis of a space transmission system of the full duplex communication system in which data transmission is performed by an optical medium traveling along an optical axis coincident with each other. In the device, any one of the control-side transmitting / receiving device and the controlled-side transmitting / receiving device is regarded as one device, and the visible light is disposed on the optical axis of the lens system of the other device and at a position deviated from the focal point of the lens system. A visible light emitting device that emits light and is detachable, and is provided on the other device of the control-side transmitting / receiving device and the controlled-side transmitting / receiving device, and visible light emitted from the visible light emitting device of the one device through a lens system is provided. Detectable optical receiver and upper Adjusting means for adjusting the position of the optical receiver to a position at which the output of the optical receiver provided in the other device of the controlling-side transmitting / receiving device and the controlled-side transmitting / receiving device is maximized. The present invention provides an optical axis adjusting device for a space transmission system.

(作用) 光学系の光軸上であって焦点以外の位置に光軸調整用
の光源を移動自在に配設し、該光源から発光し、末広が
り状に放射された発光光を光軸合わせを行う側で受光し
て、その受光信号が最大となるように位置調整を行う。
(Function) A light source for adjusting the optical axis is movably disposed on the optical axis of the optical system at a position other than the focal point, and the emitted light emitted from the light source and divergently emitted is aligned with the optical axis. The receiving side receives the light and adjusts the position so that the light receiving signal is maximized.

(実施例) 次に、本考案の実施例を、図面を参照して詳細に説明
する。
(Example) Next, the Example of this invention is described in detail with reference to drawings.

第1図は、本考案を全二重通信方式の空間光伝送シス
テムに適用した場合の実施例を示す説明図である。第1
図において、L1は、光発信器となる送光部T1と光受信器
となる受光部R2とを結ぶ光軸であり、L2は光受信器とな
る受光部R1と光発信器となる送光部T2とを結ぶ光軸であ
って、これらは互いに平行である。なお、第1図に於
て、従来装置と同じ部分には同一符号を付してある。ま
た、第1図は光軸L1と光軸L2との間隔を実際の制御側送
受信装置と被制御側送受信装置の間隔より誇張して示し
てある。2は制御側送受信装置1側の発光素子、12は被
制御側送受信装置10側の発光素子であり、この実施例に
おいてこれらの素子は不可視光を発光する発光素子であ
る。従って、制御側送受信装置1と被制御側送受信装置
10との光軸合わせの際、これらの発光素子からの発光光
を肉眼で視認することは出来ない。制御側送受信装置1
側の発光素子2はレンズ系3の焦点位置に配置され、受
光素子4はレンズ系5の焦点位置に配置されている。被
制御側送受信装置10の受光素子14は受光素子14のレンズ
系15の焦点位置に配置され、発光素子12はレンズ系13の
焦点位置に配置されている。20は光軸合わせ用に仮に設
けた可視光発光装置である。該可視光発光装置20はレン
ズ系5の焦点位置からはずれた光軸L2上に取りはずし自
在に配設されているが、その詳細な構造は後に述べる。
FIG. 1 is an explanatory diagram showing an embodiment in which the present invention is applied to a full-duplex communication type spatial light transmission system. First
In the figure, L1 is an optical axis connecting a light transmitting unit T1 serving as an optical transmitter and a light receiving unit R2 serving as an optical receiver, and L2 is a light receiving unit R1 serving as an optical receiver and a light transmitting unit serving as an optical transmitter. Optical axes connecting the portion T2, which are parallel to each other. In FIG. 1, the same parts as those of the conventional device are denoted by the same reference numerals. FIG. 1 shows the distance between the optical axis L1 and the optical axis L2 exaggerated from the actual distance between the control-side transmitting / receiving device and the controlled-side transmitting / receiving device. Reference numeral 2 denotes a light emitting element on the control transmitting / receiving apparatus 1 side, and reference numeral 12 denotes a light emitting element on the controlled transmitting / receiving apparatus 10 side. In this embodiment, these elements are light emitting elements that emit invisible light. Therefore, the control transmitting / receiving apparatus 1 and the controlled transmitting / receiving apparatus
At the time of optical axis alignment with 10, light emitted from these light emitting elements cannot be visually recognized with the naked eye. Control transmitting / receiving device 1
The light emitting element 2 on the side is disposed at the focal position of the lens system 3, and the light receiving element 4 is disposed at the focal position of the lens system 5. The light receiving element 14 of the controlled transmitting / receiving device 10 is arranged at the focal position of the lens system 15 of the light receiving element 14, and the light emitting element 12 is arranged at the focal position of the lens system 13. Reference numeral 20 denotes a visible light emitting device temporarily provided for optical axis alignment. The visible light emitting device 20 is detachably disposed on the optical axis L2 deviated from the focal position of the lens system 5, and its detailed structure will be described later.

次に光軸合わせの手順について説明する。 Next, the procedure of optical axis alignment will be described.

まず、制御側送受信装置1側のヘッド部6をラフに被
制御側送受信装置10方向に向けて仮固定する。そして、
受光素子4の前に配置した可視光発光装置20を点灯し、
可視光を発光せしめる。
First, the head unit 6 on the control-side transmitting / receiving device 1 is temporarily fixed roughly toward the controlled-side transmitting / receiving device 10. And
The visible light emitting device 20 arranged in front of the light receiving element 4 is turned on,
Emit visible light.

一方、被制御側送受信装置10を設置する位置から制御
側送受信装置1を肉眼で見定める。制御側送受信装置1
側のヘッド部6が向いている方向が大幅に狂っている時
には、被制御側送受信装置10側から可視光発光装置20の
発光光を視認することができない。このような場合には
再度制御側送受信装置1側の仮設置位置方向を調整し
て、被制御側送受信装置10方向から可視光発光装置20の
発光光が視認できるようにする。なお、制御側送受信装
置1の設置位置を調整する手段は周知の手段で種々実現
できるが、それらの手段は光受信器の位置を調整する調
整手段となる。このような手段は被制御側送受信装置10
にも設けられている。
On the other hand, the control-side transmission / reception device 1 is visually determined from the position where the controlled-side transmission / reception device 10 is installed. Control transmitting / receiving device 1
When the direction in which the head unit 6 faces is significantly out of order, the emitted light of the visible light emitting device 20 cannot be visually recognized from the controlled transmitting / receiving device 10 side. In such a case, the direction of the temporary installation position on the control-side transmitting / receiving apparatus 1 is adjusted again so that the light emitted from the visible light emitting device 20 can be visually recognized from the controlled-side transmitting / receiving apparatus 10. The means for adjusting the installation position of the control-side transmitting / receiving apparatus 1 can be realized in various ways by known means, but these means are adjusting means for adjusting the position of the optical receiver. Such means is controlled by the controlled transmitting / receiving apparatus 10
Is also provided.

可視光発光装置20から発した可視光の発光光は、レン
ズ系5により放射される。可視光発光装置20はレンズ系
5の焦点位置からはずれているので、末広がり状に放射
される。その結果、その一部の光束22は被制御側送受信
装置10のレンズ系15に入射し、その光は受光素子14に集
光される。ヘッド部16のレベル検出端子に接続されたレ
ベルメータには、受光素子14に入射した光量に従ったレ
スポンスがある。調整者はこのレベルメータを見なが
ら、これの振れが最大となるように前記被制御側送受信
装置10の位置を調整する手段によりヘッド部16の位置を
調整し、ヘッド部16を仮固定する。
Visible light emitted from the visible light emitting device 20 is emitted by the lens system 5. Since the visible light emitting device 20 is deviated from the focal position of the lens system 5, the visible light emitting device 20 radiates in a divergent shape. As a result, a part of the light beam 22 enters the lens system 15 of the controlled transmitting / receiving device 10, and the light is condensed on the light receiving element 14. The level meter connected to the level detection terminal of the head unit 16 has a response according to the amount of light incident on the light receiving element 14. The adjuster adjusts the position of the head unit 16 by means for adjusting the position of the controlled transmission / reception device 10 so that the shake of the level meter becomes maximum while watching the level meter, and temporarily fixes the head unit 16.

第1図に示されてはいないが、次のステップにおい
て、被制御側送受信装置10側のヘッド部16の受光素子14
とレンズ系15との間の光軸L1上でレンズ系15の焦点から
外れた位置に可視光発光装置を取りはずし自在に仮配置
するとともに、ヘッド部6内の光軸L2上に仮配置した可
視光発光装置20を取りはずす。
Although not shown in FIG. 1, in the next step, the light receiving element 14 of the head unit 16 on the controlled transmitting / receiving apparatus 10 side is used.
The visible light emitting device is temporarily detachably disposed at a position deviated from the focal point of the lens system 15 on the optical axis L1 between the optical system L1 and the lens system 15, and the visible light emitting device is temporarily disposed on the optical axis L2 in the head unit 6. The light emitting device 20 is removed.

次に、受光素子14とレンズ系15との間に配置した可視
光発光装置を点灯し、今度は点灯された該可視光発光装
置から発射される可視光を制御側送受信装置1の受光素
子4が受け、ヘッド部6に取りつけたレベルメータを見
ながら、これの振れが最大となるようにヘッド部6の位
置を調整してヘッド部6を仮固定する。
Next, the visible light emitting device disposed between the light receiving element 14 and the lens system 15 is turned on, and then the visible light emitted from the turned on visible light emitting device is transmitted to the light receiving element 4 of the control-side transmitting / receiving device 1. While looking at the level meter attached to the head unit 6, the position of the head unit 6 is adjusted so as to maximize the deflection, and the head unit 6 is temporarily fixed.

このような調整動作を何回か繰り返し、ヘッド部6に
取りつけたレベルメータの振れが最大となるようにヘッ
ド部6の位置調整を行い、さらにヘッド部16に取りつけ
たレベルメータの振れが最大となるようにヘッド部16の
位置調整を行ってヘッド部6と16の光軸合わせを終了す
る。
Such an adjustment operation is repeated several times, and the position of the head unit 6 is adjusted so that the deflection of the level meter attached to the head unit 6 is maximized. Further, the deflection of the level meter attached to the head unit 16 is maximized. The position of the head unit 16 is adjusted so that the optical axes of the head units 6 and 16 are aligned.

なお、第1図は、2本の光軸の間隔と比べて、2つの
ヘッド部の間隔を短く描いているので、可視光発光装置
から受光部に入射する光量が少ないように見えるが、実
際は両ヘッド部間の距離は2000cm以上であり、また両光
軸間の間隔は5cm程度であるので、この間隔を無視する
ことができ、一方のヘッド部から他方のヘッド部を見た
時、可視光発光装置から発射される光は、あたかも発光
素子から発光されたように見える。
In FIG. 1, since the interval between the two heads is shorter than the interval between the two optical axes, the amount of light incident on the light receiving unit from the visible light emitting device seems to be small. The distance between the two heads is 2,000 cm or more, and the distance between the two optical axes is about 5 cm, so this distance can be ignored, and when one head looks at the other head, it is visible. The light emitted from the light emitting device appears to be emitted from the light emitting element.

第2図及び第3図は、可視光発光装置20を備えたボー
ドを抜き差し自在に設けた実施例を示す斜視図と断面図
である。第2図において、30はヘッド部を構成する外筐
である。外筐の中には、送光部T1と受光部R1とが並設さ
れている。受光部R1の上面にはスリット32が設けられて
おり、該スリット32から可視光発光装置20を備えたテス
トボード34が挿入される。テストボード34は第3図から
も明らかなように、上端にツマミ36を持ち、下端には平
板状のプラグ38を持っている。テストボード34の内部に
は可視光を発射する可視光発光装置20が取りつけられて
いる。該テストボード34がスリット32から完全に挿入さ
れた時、プラグ38は外筐30の内部に設けられたレセプタ
クル40に挿入される。そして、光軸合わせ作業の時には
可視光発光装置20が点灯され、前述のような手順で光軸
合わせ作業が行われる。なお、第3図において、受光素
子4は、レンズ系5の焦点位置に設置され、テストボー
ド34はレンズ系5の焦点位置からずれた位置に配置され
ていることは言うまでもない。
FIG. 2 and FIG. 3 are a perspective view and a sectional view showing an embodiment in which a board provided with the visible light emitting device 20 is detachably provided. In FIG. 2, reference numeral 30 denotes an outer casing constituting a head unit. In the outer casing, a light transmitting unit T1 and a light receiving unit R1 are provided side by side. A slit 32 is provided on the upper surface of the light receiving unit R1, and a test board 34 including the visible light emitting device 20 is inserted through the slit 32. 3, the test board 34 has a knob 36 at the upper end and a flat plug 38 at the lower end. A visible light emitting device 20 that emits visible light is mounted inside the test board 34. When the test board 34 is completely inserted through the slit 32, the plug 38 is inserted into a receptacle 40 provided inside the outer casing 30. Then, at the time of the optical axis alignment operation, the visible light emitting device 20 is turned on, and the optical axis alignment operation is performed in the above-described procedure. In FIG. 3, it is needless to say that the light receiving element 4 is installed at the focal position of the lens system 5, and the test board 34 is arranged at a position shifted from the focal position of the lens system 5.

第2、3図において、42はスリット32が不要なとき、
これを閉鎖する蓋であり、スライド自在に外筐30の裏側
に設けられる。なお、44は蓋42に取りつけられたノブで
あり、46は閉鎖中の蓋42がみだりに開かないようにロッ
クするねじである。
2 and 3, reference numeral 42 denotes when the slit 32 is unnecessary.
This is a lid that closes the cover, and is slidably provided on the back side of the outer casing 30. Reference numeral 44 denotes a knob attached to the cover 42, and reference numeral 46 denotes a screw for locking the closed cover 42 so as not to be opened unintentionally.

第4図は、可視光発光装置20を回転自在に光軸上に配
置した実施例を示す斜視図である。第4図において、50
は受光部R1を構成する基板である。該基板50上には、受
光素子4を取りつけた受光素子保持板52とレンズ系5を
有するレンズ保持対54が取りつけられている。受光素子
保持板52の前面には、断面“「”型をした固定台56がス
ポットウエルド法などの方法で取りつけられている。固
定台56の上面端部には回転台58が回転自在に取りつけら
れている。この回転台58には、可視光発光装置20を固定
した回転板60の端部が固定されている。該回転板60の周
縁と固定台56との間には位置決め用の引張りスプリング
62が張設されている。回転台58には先端にノブ64を備え
た回転軸66が設けられている。図には示されてはいない
が、ノブ64は外筐より外側に突出している。従って、該
ノブ64を回転すると、回転板60もこれに連れて回転す
る。前述のように、回転板60と固定台56との間にはスプ
リング62が張設されているので、回転板60は固定台56の
前縁に当接された位置か、下縁をストッパ68に当接した
位置のいずれかに安定して停止している。すなわち第5
図に示すように、スプリング62の先端が回転板60に掛け
止めされた位置70が、スプリング62の受光素子保持板52
への固定位置72と回転軸66の中心点とを結んだ中心線CL
より右側にある時は、回転板60が固定台56の前縁に当接
して可視光発光装置20が受光素子4の前に位置し、光軸
合わせ作業を行える状態である。該位置70が前記中心線
CLより左側にある時は、回転板60がストッパ68に当接し
て、受光素子4が第4図に示す光軸L1から外れ、退避位
置をとる。
FIG. 4 is a perspective view showing an embodiment in which the visible light emitting device 20 is rotatably arranged on the optical axis. In FIG. 4, 50
Is a substrate that constitutes the light receiving unit R1. On the substrate 50, a light receiving element holding plate 52 on which the light receiving element 4 is mounted and a lens holding pair 54 having the lens system 5 are mounted. On the front surface of the light receiving element holding plate 52, a fixing base 56 having a cross section of "" is mounted by a method such as a spot weld method. A turntable 58 is rotatably attached to the upper end of the fixed stand 56. The end of a rotating plate 60 to which the visible light emitting device 20 is fixed is fixed to the turntable 58. A tension spring for positioning is provided between the periphery of the rotating plate 60 and the fixed base 56.
62 are stretched. The turntable 58 is provided with a rotation shaft 66 having a knob 64 at the tip. Although not shown in the drawing, the knob 64 projects outside the outer casing. Therefore, when the knob 64 is rotated, the rotary plate 60 is rotated accordingly. As described above, since the spring 62 is stretched between the rotary plate 60 and the fixed base 56, the rotary plate 60 is positioned at a position where it is in contact with the front edge of the fixed base 56 or at the lower edge with the stopper 68. Is stably stopped at one of the positions where it abuts. That is, the fifth
As shown in the figure, the position 70 where the tip of the spring 62 is hooked on the rotary plate 60 is located at the light receiving element holding plate 52 of the spring 62.
Center line CL connecting the fixed position 72 to the axis and the center point of the rotating shaft 66
When it is further to the right, the rotary plate 60 is in contact with the front edge of the fixed base 56 and the visible light emitting device 20 is located in front of the light receiving element 4 so that the optical axis alignment work can be performed. The position 70 is the center line
When it is on the left side of CL, the rotating plate 60 comes into contact with the stopper 68, and the light receiving element 4 deviates from the optical axis L1 shown in FIG.

上記実施例は、発光素子に不可視光を発光する発光素
子を送光部T1に使用したものであるが、送光部T1に可視
光を発光する発光素子を使用した実施例においては、発
光素子そのものを光軸上で移動させることができるよう
な構造、たとえば光軸と平行に設けたレール上を送光部
が移動できるように構成しかつスクリュー棒を回転自在
に該レールと平行に配置して、これを回転した時、この
スクリュー棒と螺合し送光部に固着されたナットが移動
し、結果的に送光部を光軸に添って移動させるような構
造を設け、光軸合わせ作業の時は、送光部をレンズ系の
焦点位置からずらし、レンズ系から発射される光束を末
広がり状にして光軸合わせを行い、通常の通信時には送
光部を焦点位置に戻し平行な光束をレンズ系から発射さ
せるような構造を取ることができる。
In the above embodiment, a light emitting element that emits invisible light is used for the light emitting unit in the light transmitting unit T1, but in the embodiment using a light emitting element that emits visible light in the light transmitting unit T1, the light emitting element is used. A structure capable of moving itself on the optical axis, for example, a structure in which the light transmitting unit is movable on a rail provided in parallel with the optical axis, and a screw rod is rotatably arranged parallel to the rail. Then, when this is rotated, a nut is screwed with this screw rod and the nut fixed to the light-sending section moves, and as a result, a structure is provided to move the light-sending section along the optical axis. At the time of work, the light-sending section is shifted from the focal position of the lens system, the light beam emitted from the lens system is divergent, and the optical axis is aligned. During normal communication, the light-sending section is returned to the focal position and parallel light beams Take a structure that fires from the lens system be able to.

(考案の効果) 以上詳細に説明したように、本考案は、全二重通信方
式の空間光伝送システムにおいて光通信の一方側の光学
系の光軸上であって焦点位置からずれた位置に光軸調整
用の光源を移動自在に配設するだけの簡単な構造を空間
光伝送システムに追加し、後は空間光伝送システム既存
の装置を使用するだけで簡単に光軸合わせを行うことが
できる。従って、従来のように光軸合わせようの複雑で
高価な光発射装置を用意することもなく、また、小銃等
の銃砲に用いるのと同じような高価な照準器を用意する
こともない。
(Effects of the Invention) As described in detail above, the present invention provides a spatial light transmission system of a full-duplex communication system at a position shifted from a focal position on the optical axis of one optical system of optical communication. A simple structure in which a light source for adjusting the optical axis can be freely arranged is added to the spatial light transmission system, and the optical axis can be easily adjusted simply by using existing equipment in the spatial light transmission system. it can. Therefore, there is no need to prepare a complicated and expensive light emitting device for aligning the optical axis unlike the related art, nor to prepare an expensive sight similar to that used for a gun such as a rifle.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本考案を全二重通信方式の空間光伝送システ
ムに適用した場合の実施例を示す説明図、第2図及び第
3図は、可視光発光装置20を備えたボードを抜き差し自
在に設けた実施例を示す斜視図と断面図、第4図は、可
視光発光装置20を回転自在に光軸上に配置基在な実施例
を示す斜視図、第5図は、回転板の安定位置を説明する
ための説明図、第6図は、一般装置に使用される空間光
伝送システムの概略構成を示すブロック図、第7図は、
ヘッド部6の構成を示すブロック図である。 T1,T2……送光部、R1,R2……受光部 2,12……発光素子 4,14……受光素子 3、5、13、15……レンズ系 20……可視光発光装置 34……テストボード 60……回転板60
FIG. 1 is an explanatory view showing an embodiment in which the present invention is applied to a full-duplex communication type spatial light transmission system, and FIGS. 2 and 3 show a case where a board provided with a visible light emitting device 20 is inserted and removed. FIG. 4 is a perspective view and a sectional view showing an embodiment provided freely, FIG. 4 is a perspective view showing an embodiment in which the visible light emitting device 20 is rotatably arranged on an optical axis, and FIG. FIG. 6 is a block diagram showing a schematic configuration of a spatial light transmission system used for a general device, and FIG.
FIG. 3 is a block diagram illustrating a configuration of a head unit 6. T1, T2: light transmitting unit, R1, R2: light receiving unit 2, 12, light emitting element 4, 14, light receiving element 3, 5, 13, 15, lens system 20: visible light emitting device 34 … Test board 60 …… Rotating plate 60

Claims (3)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】光発信器と光受信器とを有する制御側送受
信装置と、光発信器と光受信器とを有する被制御側送受
信装置とを一定間隔を置いて配設し、これら装置の光発
信器と光受信器が互いに一致した光軸に沿って進む光媒
体によりデータ電送を行う全二重通信方式の空間電送シ
ステムの光軸調整装置において、 制御側送受信装置と被制御側送受信装置の何れかを一方
の装置としその一方の装置のレンズ系の光軸上であって
該レンズ系の焦点から外れた位置に配置され可視光を発
光すると共に着脱自在な可視光発光装置と、 上記制御側送受信装置と被制御側送受信装置の他方の装
置に設けられ、前記一方の装置の可視光発光装置からレ
ンズ系を通して発射された可視光が検知自在な光受信器
と、 上記制御側送受信装置と被制御側送受信装置の他方の装
置に設けられた光受信器の出力が最大となる位置に該光
受信器の位置を調整する調整手段と、 を具備してなることを特徴とする空間電送システムの光
軸調整装置。
A control transmitting / receiving apparatus having an optical transmitter and an optical receiver, and a controlled transmitting / receiving apparatus having an optical transmitter and an optical receiver are arranged at regular intervals. An optical axis adjusting device for a full-duplex communication space transmission system in which an optical transmitter and an optical receiver transmit data using an optical medium traveling along an optical axis coincident with each other. A visible light emitting device which is disposed on the optical axis of a lens system of one of the devices and is out of focus of the lens system, emits visible light, and is detachable, An optical receiver provided in the other of the control-side transmitting / receiving device and the controlled-side transmitting / receiving device, and capable of detecting visible light emitted from the visible light emitting device of the one device through a lens system; And controlled transceiver Optical axis adjustment device of the spatial electrical transmission system, characterized in that the output of the optical receiver provided on the other of the apparatus is then provided with adjustment means for adjusting the position of the light receiver in a position of maximum, the.
【請求項2】光軸調整用の光源を、光軸上から取り外し
自在なテストボード上に配設したことを特徴とする請求
項(1)に記載の空間電送システムの光軸調整装置。
2. The optical axis adjusting device according to claim 1, wherein the optical axis adjusting light source is provided on a test board that is detachable from the optical axis.
【請求項3】光軸調整用の光源を取り付けた回転板を光
軸近傍に回転自在に設け、光軸合わせ時に該回転板を回
転して光軸調整用の光源を、光軸上であって光学系の焦
点以外の位置に移動配置せしめることを特徴とする請求
項(1)に記載の空間電送システムの光軸調整装置。
3. A rotating plate having a light source for adjusting the optical axis is rotatably provided near the optical axis, and the rotating plate is rotated at the time of aligning the optical axis so that the light source for adjusting the optical axis is positioned on the optical axis. The optical axis adjusting device for a space transmission system according to claim 1, wherein the optical axis adjusting device is moved and arranged at a position other than the focal point of the optical system.
JP1990076487U 1990-07-18 1990-07-18 Optical axis adjustment device for spatial light transmission system Expired - Lifetime JP2565829Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1990076487U JP2565829Y2 (en) 1990-07-18 1990-07-18 Optical axis adjustment device for spatial light transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1990076487U JP2565829Y2 (en) 1990-07-18 1990-07-18 Optical axis adjustment device for spatial light transmission system

Publications (2)

Publication Number Publication Date
JPH0435109U JPH0435109U (en) 1992-03-24
JP2565829Y2 true JP2565829Y2 (en) 1998-03-25

Family

ID=31618003

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1990076487U Expired - Lifetime JP2565829Y2 (en) 1990-07-18 1990-07-18 Optical axis adjustment device for spatial light transmission system

Country Status (1)

Country Link
JP (1) JP2565829Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004357248A (en) 2003-05-30 2004-12-16 Sharp Corp Free-space optical communication apparatus and its control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6297438A (en) * 1985-10-23 1987-05-06 Nec Corp Optical transmission and reception equipment

Also Published As

Publication number Publication date
JPH0435109U (en) 1992-03-24

Similar Documents

Publication Publication Date Title
AU2008201779B2 (en) Device and method for a sight
US4065778A (en) Automatic rangefinder and focusing apparatus
US6137569A (en) Survey instrument
US5065455A (en) Optical atmospheric link system
US7200248B2 (en) Eye image pickup apparatus and entry/leave management system
GB2149141A (en) Day and night sighting apparatus
US4200251A (en) Device for a sight
US6834164B1 (en) Alignment of an optical transceiver for a free-space optical communication system
US20230103297A1 (en) Laser projector
JP2565829Y2 (en) Optical axis adjustment device for spatial light transmission system
US5123737A (en) Device for determining the deviation of a target from a predetermined location
US7146105B1 (en) MEMS-based optical wireless communication system
US20210102807A1 (en) Surveying instrument
EP0541800A4 (en) Projection type display device
JPH06164512A (en) Pointing apparatus for optical space communication device
EP0081651B1 (en) Three-axis angle sensor
JP4737578B2 (en) Sighting device for security sensor device
GB2178863A (en) Optical viewing apparatus
JP2009268530A (en) Visual target presenting apparatus
CN115097416B (en) Laser receiving module and laser radar
US5036206A (en) Combined laser position detector, infrared emissivity target and TV target
JPS5887932A (en) Communication system for spatial beam
JPH04295739A (en) Optical-axis aligning method for beam sensor
US4669069A (en) Dual reflected energy beam alignment system
JP3383355B2 (en) Remote control lighting device with irradiation point detector