JP2565291B2 - Fine pattern formation method - Google Patents

Fine pattern formation method

Info

Publication number
JP2565291B2
JP2565291B2 JP5270710A JP27071093A JP2565291B2 JP 2565291 B2 JP2565291 B2 JP 2565291B2 JP 5270710 A JP5270710 A JP 5270710A JP 27071093 A JP27071093 A JP 27071093A JP 2565291 B2 JP2565291 B2 JP 2565291B2
Authority
JP
Japan
Prior art keywords
substrate
gas
needle
electric field
fine pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5270710A
Other languages
Japanese (ja)
Other versions
JPH07122509A (en
Inventor
雅和 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP5270710A priority Critical patent/JP2565291B2/en
Publication of JPH07122509A publication Critical patent/JPH07122509A/en
Application granted granted Critical
Publication of JP2565291B2 publication Critical patent/JP2565291B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微小な電界を用いたド
ーピングによる微細パターンを形成方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a fine pattern by doping with a minute electric field.

【0002】[0002]

【従来の技術】従来、基板中にドーピングする場合、イ
オン注入装置を用いて行われており、図3にその工程を
示す。被ドーピング基板31上にイオン注入用マスク3
2をパターン形成し、イオン注入装置を用いて所用のド
ーピング材33を被ドーピング基板31内へドーピング
し、ドーピング領域34を形成する。最後に、イオン注
入用マスク32を除去する。
2. Description of the Related Art Conventionally, when doping a substrate, it has been carried out using an ion implantation apparatus, and the process is shown in FIG. Ion implantation mask 3 on the substrate 31 to be doped
2 is patterned, and a desired doping material 33 is doped into the substrate 31 to be doped by using an ion implantation device to form a doping region 34. Finally, the ion implantation mask 32 is removed.

【0003】[0003]

【発明が解決しようとする課題】ところが、上記の方法
では工程が極めて長く、また、用いるイオンのエネルギ
ーが非常に大きく基板表面がチャージアップをして種々
の問題が発生する。
However, in the above method, the steps are extremely long, and the energy of the ions used is very large, and the substrate surface is charged up, causing various problems.

【0004】本発明の目的は、イオン注入のためのマス
クを必要とせず、また、低エネルギーにより加工を行
う、高精度の微細なドーピングを簡単に形成する事が出
来る微細加工方法を提供することにある。
An object of the present invention is to provide a microfabrication method which does not require a mask for ion implantation, and which can carry out processing with low energy and which can easily form highly precise microdoping. It is in.

【0005】[0005]

【課題を解決するための手段】本発明は、先を細くした
導電性の針を基板の所望する箇所にトンネル電流が流れ
る距離まで近づけ、この状態で針と基板との間に電圧を
加えて微少な範囲に広がる電界を形成し、そこにドーパ
ントを構成元素として含んだガスを流し、先に形成した
電界によってガスを分解し、前記ドーパントを基板にド
ープすることを特徴とする微細パターン形成方法であ
る。
According to the present invention, a tapered conductive needle is brought close to a desired portion of a substrate to a distance where a tunnel current flows, and a voltage is applied between the needle and the substrate in this state. A method for forming a fine pattern, characterized in that an electric field spreading in a minute range is formed, a gas containing a dopant as a constituent element is caused to flow therethrough, and the gas is decomposed by the electric field previously formed to dope the substrate with the dopant. Is.

【0006】針を基板に近づけた後ガスを流し、その後
電界を形成してドープしてもよい。また、ガスを流した
後針を近づけ、その後電界を形成してドープしてもよ
い。
After the needle is brought close to the substrate, gas may be caused to flow, and then an electric field may be formed to dope. Alternatively, the needle may be moved closer after flowing the gas, and then an electric field may be formed to dope.

【0007】またガスを基板上に流す際、ガス分子を基
板表面に一層だけ吸着させ、浮遊しているガスを真空排
気して除去する方法も本発明に含まれる。
The present invention also includes a method of adsorbing gas molecules on the surface of the substrate only once when the gas is flown onto the substrate and removing the floating gas by evacuation.

【0008】ドーピングガスには、基板がSiの場合、
BドーピングにはBCl3 ,BBr3 ,BF3 ,B
3 ,B2 6 等、あるいはPドーピングではPC
3 ,PH3等、AsドーピングではAsH3 を用い
る。さらにGaAs基板へのドーピング材としてはSi
やZnがあり、各々、ガスとしてSiH4 ,SiH2
2 ,SiCl4 等、そして、Zn(CH3 2 等が存
在する。
For the doping gas, if the substrate is Si,
BCl 3 , BBr 3 , BF 3 , B for B doping
H 3 , B 2 H 6, etc., or PC for P doping
AsH 3 is used for As doping such as l 3 and PH 3 . Further, Si is used as a doping material for the GaAs substrate.
And Zn, and SiH 4 and SiH 2 C as gases, respectively
l 2 , SiCl 4, etc., and Zn (CH 3 ) 2 etc. are present.

【0009】導電性の針には通常の走査型トンネル顕微
鏡(STM:Scanning Tunneling
Microscope)で用いるようなタングステン
(W)や白金(Pt)を機械研磨あるいは電界研磨した
ものを用いる。
A conventional scanning tunneling microscope (STM: Scanning Tunneling) is used for the conductive needle.
Mechanical polishing or electropolishing of tungsten (W) or platinum (Pt) used in Microscope is used.

【0010】前述した針と基板の間に電圧(数V)をか
けた状態で針を基板表面に近づけていき、針と基板の距
離が数オングストロームになると数ナノアンペアの電流
が流れる。一般にはこの電流は電流・電圧特性によりト
ンネル電流とか電界放出電流などと呼ばれ、その電流の
大きさを測定することは容易である。
When a voltage (several volts) is applied between the needle and the substrate, the needle is brought closer to the surface of the substrate, and when the distance between the needle and the substrate becomes several angstroms, a current of several nanoamperes flows. Generally, this current is called a tunnel current or a field emission current depending on the current / voltage characteristics, and it is easy to measure the magnitude of the current.

【0011】針と基板の間隔の精密な制御は圧電素子
(PZT)を用いることで容易に行える。この圧電素子
は5オングストローム/V程度の圧電比をもちセラミッ
クスのため加工も簡単で、精密な位置決め機構を形成す
ることが可能である。
Precise control of the distance between the needle and the substrate can be easily performed by using a piezoelectric element (PZT). Since this piezoelectric element has a piezoelectric ratio of about 5 angstrom / V and is made of ceramics, it can be easily processed and a precise positioning mechanism can be formed.

【0012】[0012]

【作用】請求項1の発明について、図1を用いて説明す
る。超高真空中に置かれた基板13を洗浄した後、ドー
ピングさせるべき材料を構成元素として含むガスを基板
13上に流す。この時、図1(a)のように一部のガス
は基板表面13上に吸着層12を形成し残りは容器内の
浮遊ガス11となる。この状態で針14を基板表面13
に近づけていき基板13と針14の間に電圧15をかけ
ると極小電界16が形成される。電界16の下にある吸
着層12と浮遊ガス11は電界中のエネルギーによって
数Vの低い電圧で揮発性ガス17とドーピング原子18
とに分解し揮発性ガスは基板表面から解離し、ドーピン
グ原子は基板内部へと拡散していく(図1(b))。ガ
スを流し続ければ分解・拡散が連続して生じる。
The invention of claim 1 will be described with reference to FIG. After cleaning the substrate 13 placed in an ultrahigh vacuum, a gas containing a material to be doped as a constituent element is flown on the substrate 13. At this time, as shown in FIG. 1A, a part of the gas forms the adsorption layer 12 on the substrate surface 13, and the rest becomes the floating gas 11 in the container. In this state, the needle 14 is attached to the substrate surface 13
When a voltage 15 is applied between the substrate 13 and the needle 14 while approaching to, a minimum electric field 16 is formed. The adsorption layer 12 and the floating gas 11 under the electric field 16 are volatile gas 17 and doping atoms 18 at a low voltage of several V depending on the energy in the electric field.
And the volatile gas is dissociated from the substrate surface, and the doping atoms diffuse into the substrate (FIG. 1 (b)). If gas is kept flowing, decomposition and diffusion will occur continuously.

【0013】請求項4の発明では、針14を近づける前
にガスの供給を止め吸着層一層分だけ残して残留ガスを
排気する事により、吸着層一層分だけに含まれるドーピ
ング原子だけをドーピングし、極めて微小な平面そして
極めて浅い領域でのドーピングを可能とするものであ
る。
According to the fourth aspect of the present invention, the gas supply is stopped before the needle 14 is brought close to it, and the residual gas is exhausted leaving only one layer of the adsorption layer to dope only the doping atoms contained in one layer of the adsorption layer. It enables doping in extremely small planes and extremely shallow regions.

【0014】なお、以上の原理は針を近づけてから反応
ガスを流しそのあと電界を加える場合や、反応ガスを流
したあと針を近づけそのあと電界を加える場合も同様で
ある。このようにして、基板表面13上に極小電界16
により、微細パターンが形成される。一般に極小電界1
6の強度は小さいのでドーピング速度は小さくドーピン
グの制御性はよい。
The above principle is the same when the reaction gas is made to flow after the needle is brought close to it, and then the electric field is applied, or when the reaction gas is made to flow and then the needle is brought near and then the electric field is applied. In this way, the minimum electric field 16 is applied to the substrate surface 13.
Thus, a fine pattern is formed. Generally a minimum electric field 1
Since the intensity of 6 is low, the doping rate is low and the controllability of doping is good.

【0015】[0015]

【実施例】以下、この発明の実施例を図に基づいて詳細
に説明する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

【0016】図2は本発明の一実施例で用いる装置の構
成を示す概略図である。本装置では針207の移動用圧
電素子202,ガス収納室203および基板ホルダー2
01とから構成されている。まず請求項1の発明の実施
例を述べる。本実施例においては、基板208としてS
iを用い、ドーピングガス204としてBCl3 を用い
る。真空容器205内を10- 6 Torrまで排気した
後、真空バルブ206を通じてドーピングガス204を
流す。
FIG. 2 is a schematic diagram showing the structure of an apparatus used in one embodiment of the present invention. In this device, the piezoelectric element 202 for moving the needle 207, the gas storage chamber 203, and the substrate holder 2
01. First, an embodiment of the invention of claim 1 will be described. In this embodiment, the substrate 208 is S
i and BCl 3 is used as the doping gas 204. The vacuum chamber 205 10 - was evacuated to 6 Torr, flow doping gas 204 through vacuum valve 206.

【0017】針207は白金Pt210を機械研磨した
ものを使う。この針を圧電素子202を用いて移動さ
せ、電気制御系209を通じて針207と基板208の
間のバイアス電圧と電流を制御する。バイアス電圧を1
Vにし、針207を試料208の所望の位置に近づけて
いき針207と基板208の間が2nmぐらいになると
電流が急速に流れはじめる。形成された電界により吸着
分子はBとCl2 に分解し、Cl2 は真空容器205内
に浮遊する。ガスを流すのを止めた後真空容器205内
のガスを排気する。本実施例では所望の位置の50nm
×50nm領域に、Bを局所的にドーピングした。
As the needle 207, platinum Pt 210 mechanically polished is used. This needle is moved using the piezoelectric element 202, and the bias voltage and current between the needle 207 and the substrate 208 are controlled through the electric control system 209. Bias voltage is 1
When the voltage is set to V and the needle 207 is brought closer to a desired position of the sample 208 and the distance between the needle 207 and the substrate 208 becomes about 2 nm, a current starts to flow rapidly. Adsorbed molecules by being formed electric field is decomposed into B and Cl 2, Cl 2 is suspended in the vacuum vessel 205. After stopping the flow of gas, the gas in the vacuum container 205 is exhausted. In this embodiment, a desired position of 50 nm
B was locally doped in the x50 nm region.

【0018】また、請求項4の発明の実施例ではドーピ
ングの精度をあげるために、真空容器205内を10
- 1 0 Torrまで排気した後、BCl3 ドーピングガ
ス204をほんのわずか(真空度が10- 9 Torrで
10秒くらい)流し、基板213にガス分子を吸着させ
た後、真空容器内を10- 1 0 Torrまで排気し浮遊
ガスを排気してしまう。前述と同様にして電界を基板2
08に形成すると、吸着したガス分子一層分だけが分解
されドープされるので不純物濃度を極めて精密に制御す
ることができた。もし必要であればこの吸着からドープ
までの工程を何回かくり返して目標の濃度にすることも
できる。
Further, in the embodiment of the invention of claim 4, in order to improve the accuracy of doping, the inside of the vacuum container 205 is set to 10
- was evacuated to 1 0 Torr, a BCl 3 doping gas 204 only slightly (vacuum of 10 - at 9 Torr about 10 seconds) passed after the gas molecules adsorbed on the substrate 213, a vacuum container 10 - 1 Evacuate to 0 Torr and exhaust floating gas. The electric field is applied to the substrate 2 in the same manner as described above.
When it is formed in 08, only one layer of the adsorbed gas molecule is decomposed and doped, so that the impurity concentration can be controlled extremely precisely. If necessary, the steps from adsorption to dope can be repeated several times to reach the target concentration.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
イオン注入装置の場合のように大がかりな装置と高いエ
ネルギーを必要とせず、基板上の微細な領域に、ドーピ
ングできる。
As described above, according to the present invention,
It is possible to dope fine regions on a substrate without requiring a large-scale device and high energy as in the case of an ion implantation device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による微細パターン形成を模式的に示し
た説明図である。
FIG. 1 is an explanatory view schematically showing formation of a fine pattern according to the present invention.

【図2】本発明の方法を実施するための装置の一例を示
す概略図である。
FIG. 2 is a schematic diagram showing an example of an apparatus for carrying out the method of the present invention.

【図3】従来技術を示す模式図である。FIG. 3 is a schematic diagram showing a conventional technique.

【符号の説明】[Explanation of symbols]

11 浮遊ガス 12 吸着層 13 表面素子 14 針 15 電圧 16 極小電界 17 揮発性ガス分子 18 ドーピング原子 31 被ドーピング基板 32 マスク 33 ドーピング材 34 ドーピング領域 202 圧電素子 204 反応ガス 207 針 11 Floating Gas 12 Adsorption Layer 13 Surface Element 14 Needle 15 Voltage 16 Minimal Electric Field 17 Volatile Gas Molecule 18 Doping Atom 31 Doped Substrate 32 Mask 33 Doping Material 34 Doping Area 202 Piezoelectric Element 204 Reactive Gas 207 Needle

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 先を細くした導電性の針を基板の所望す
る箇所にトンネル電流が流れる距離まで近づけ、この状
態で針と基板との間に電圧を加えて微少な範囲に広がる
電界を形成し、そこにドーパントを構成元素として含ん
だガスを流し、先に形成した電界によってガスを分解
し、前記ドーパントを基板にドープすることを特徴とす
る微細パターン形成方法。
1. A tapered conductive needle is brought close to a desired portion of a substrate to a distance where a tunnel current flows, and in this state, a voltage is applied between the needle and the substrate to form an electric field spreading in a minute range. Then, a gas containing a dopant as a constituent element is caused to flow therethrough, and the gas is decomposed by the electric field previously formed to dope the substrate with the dopant.
【請求項2】 針を基板に近づけた後ガスを流し、その
後電界を形成してドープする請求項1に記載の微細パタ
ーン形成方法。
2. The fine pattern forming method according to claim 1, wherein a gas is caused to flow after the needle is brought close to the substrate, and then an electric field is formed to dope.
【請求項3】 ガスを流した後針を近づけ、その後電界
を形成してドープする請求項1に記載の微細パターン形
成方法。
3. The method for forming a fine pattern according to claim 1, wherein after the gas is passed, the needle is brought close to the needle, and then an electric field is formed to dope.
【請求項4】 ガスを基板上に流す際、ガス分子を基板
表面に一層だけ吸着させ、浮遊しているガスを真空排気
して除去する請求項1、2または3に記載の微細パター
ン形成方法。
4. The method for forming a fine pattern according to claim 1, 2 or 3, wherein when the gas is flown on the substrate, gas molecules are adsorbed on the surface of the substrate only once and the floating gas is removed by evacuation. .
JP5270710A 1993-10-28 1993-10-28 Fine pattern formation method Expired - Lifetime JP2565291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5270710A JP2565291B2 (en) 1993-10-28 1993-10-28 Fine pattern formation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5270710A JP2565291B2 (en) 1993-10-28 1993-10-28 Fine pattern formation method

Publications (2)

Publication Number Publication Date
JPH07122509A JPH07122509A (en) 1995-05-12
JP2565291B2 true JP2565291B2 (en) 1996-12-18

Family

ID=17489890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5270710A Expired - Lifetime JP2565291B2 (en) 1993-10-28 1993-10-28 Fine pattern formation method

Country Status (1)

Country Link
JP (1) JP2565291B2 (en)

Also Published As

Publication number Publication date
JPH07122509A (en) 1995-05-12

Similar Documents

Publication Publication Date Title
EP0456479B1 (en) Pattern forming process and process for preparing semiconductor device utilizing said pattern forming process
Marchi et al. Growth of silicon oxide on hydrogenated silicon during lithography with an atomic force microscope
US20200190669A1 (en) Nanofabrication using a new class of electron beam induced surface processing techniques
Enquist et al. The fabrication of amorphous SiO2 substrates suitable for transmission electron microscopy studies of ultrathin polycrystalline films
JP2565291B2 (en) Fine pattern formation method
Lebreton et al. Nanowriting on an atomically flat gold surface with scanning tunneling microscope
Gerlach et al. Focused ion beam methods of nanofabrication: room at the bottom
JPH03116727A (en) Manufacture of semiconductor device
JPH05190517A (en) Microscopic pattern forming method
JP2664636B2 (en) Local supply of heteroatoms to material surfaces
JP3387047B2 (en) Solid selective growth method
JP2694625B2 (en) Method for etching compound semiconductor substrate and method for manufacturing the same
JP2681118B2 (en) Method for forming fine pattern of semiconductor
US5808311A (en) Method for detecting displacement of atoms on material surface and method for local supply of heteroatoms
Allgair et al. Nanoscale patterning of silicon dioxide thin films by catalyzed HF vapor etching
JP3240305B2 (en) Solid growth method
JP2820113B2 (en) Atomic mask and pattern forming method using the same
JP2717165B2 (en) Method for forming structure of compound semiconductor
JPH04291720A (en) Three-dimensional fine pattern formation
JPH02183530A (en) Manufacture of semiconductor element
JPH06140374A (en) Fine processing method for semiconductor
Petrov Laser cleaning of semiconductor surface
JPH03208327A (en) Fine pattern formation
JPH07130710A (en) Apparatus and method for fine pattern
JPS63232333A (en) Treatment of extra-fine surface

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960813