JP2564357B2 - Rotating machine rotor - Google Patents
Rotating machine rotorInfo
- Publication number
- JP2564357B2 JP2564357B2 JP63102569A JP10256988A JP2564357B2 JP 2564357 B2 JP2564357 B2 JP 2564357B2 JP 63102569 A JP63102569 A JP 63102569A JP 10256988 A JP10256988 A JP 10256988A JP 2564357 B2 JP2564357 B2 JP 2564357B2
- Authority
- JP
- Japan
- Prior art keywords
- rotor
- stator
- cooling
- ventilation
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Motor Or Generator Cooling System (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は回転電機の通風,冷却方式に係り、特に、固
定子温度低減及び均一化に好適な固定子冷却用の冷却ガ
スを流す風通溝を設けた回転電機の回転子に関する。Description: TECHNICAL FIELD The present invention relates to a ventilation and cooling system for a rotating electric machine, and more particularly to a ventilation system for flowing a cooling gas for cooling the stator, which is suitable for reducing and equalizing the stator temperature. The present invention relates to a rotor of a rotary electric machine provided with a groove.
従来の回転電機の内部通風の例としてタービン発電機
の通風図を第3図に示す。回転子軸5に取付けられたフ
アン6により冷却ガスは大別して三方向に分流する。即
ち、一つは回転子胴部7の端から回転子内部軸方向へ、
一つは固定子内径と回転子外径との間の空隙15へ、そし
てもう一つは固定子鉄心2の外径側背部へと、それぞ
れ、流れる。FIG. 3 shows a ventilation diagram of a turbine generator as an example of internal ventilation of a conventional rotating electric machine. The fan 6 attached to the rotor shaft 5 roughly divides the cooling gas into three directions. That is, one is from the end of the rotor body 7 to the axial direction of the rotor,
One flows into the air gap 15 between the stator inner diameter and the rotor outer diameter, and the other flows into the outer diameter side back portion of the stator core 2.
固定子鉄心は同図に示すように冷却ガスが外径側に流
れるセクシヨンと内径側に流れるセクシヨンとがあり仕
切り板4に仕切られ、風通管8により各々のセクシヨン
と連結している。これらの冷却ガスは各部を冷却した後
にクーラ9に集まり、熱交換されて再び機内に入る。As shown in the figure, the stator core has a section in which cooling gas flows to the outer diameter side and a section in which the cooling gas flows to the inner diameter side, and is partitioned by a partition plate 4 and is connected to each section by a ventilation pipe 8. After cooling each part, these cooling gases gather in the cooler 9, undergo heat exchange, and enter the inside of the machine again.
従来、この通風方式では、第1図に示すように、冷却
ガスを仕切板4で軸方向温度分布が均一となるように、
冷ガス(),温ガス()ゾーンを交互に配置
し、固定子内温度分布の一様化を図つている。Conventionally, in this ventilation method, as shown in FIG. 1, the cooling gas is made uniform in the axial temperature distribution by the partition plate 4,
The cold gas () and hot gas () zones are arranged alternately to make the temperature distribution inside the stator uniform.
上記従来技術では、第3図の固定子鉄心2のセクシヨ
ンはセクシヨンを冷却した冷却ガスとセクシヨン
を冷却した冷却ガス、および、回転子を冷却した冷却ガ
スが混合した温ガスにより冷却される。従つて、この温
ガスゾーンと冷ガスゾーンの温度差は、従来、10
〜20度程度生じ、固定子を効果的に冷却出来なかつた。
これは、温ガスゾーンであるセクシヨンについても同
様である。タービン発電機の体格を決める上で制限とな
る固定子、および、回転子の温度は何れかが先に温度上
の制限となつて発電機体格が決定されるが、回転子が直
接冷却方式で、固定子が間接冷却方式であるタービン発
電機、特に、コージエネレーシヨン等に適用される100M
W級の比較的小容量発電機では、固定子温度の方が回転
子よりも高く、固定子の冷却構造が発電機体格を決定す
る上で制限となつていた。In the above-mentioned prior art, the section of the stator core 2 shown in FIG. 3 is cooled by a hot gas in which a cooling gas for cooling the section, a cooling gas for cooling the section, and a cooling gas for cooling the rotor are mixed. Therefore, the temperature difference between the hot gas zone and the cold gas zone is 10
It occurred at about 20 degrees and could not cool the stator effectively.
The same applies to the section which is the warm gas zone. The temperature of the stator and the rotor, which are the limits when determining the size of the turbine generator, is the temperature limit first, which determines the size of the generator, but the rotor is a direct cooling system. , 100M applied to turbine generators where the stator is an indirect cooling system, especially for cogeneration
In the W-class relatively small capacity generator, the temperature of the stator is higher than that of the rotor, and the cooling structure of the stator is a limitation in determining the size of the generator.
本発明の目的は、固定子鉄心2の軸方向中央部に位置
する温ガスゾーンに回転子より冷却ガスを送り込み、固
定子の温度最高点を効果的に冷却することにある。An object of the present invention is to send a cooling gas from a rotor to a warm gas zone located at a central portion in the axial direction of the stator core 2 to effectively cool the maximum temperature of the stator.
上記目的を達成するためには、回転子冷却用の通風溝
とは別に回転子テイース部,ポール部等、冷却ガス温度
が上昇しにくい所に風通溝を設け、回転子を通して固定
子温ガスゾーンに冷却ガスを集中的に送り込むことによ
り達成される。In order to achieve the above object, in addition to the ventilation groove for cooling the rotor, an air ventilation groove is provided in a place where the temperature of the cooling gas is unlikely to rise, such as the rotor teeth portion and the pole portion, and the stator temperature gas is passed through the rotor. It is achieved by centrally feeding cooling gas into the zone.
回転子ポール部、又は、テイース部に設けられた通風
溝は回転子の回転により内径側流入口と外径側排出口と
にヘツド差を生じ、このポンプ作用によつて冷却ガスが
流れて固定子温ガスゾーンに集中的に冷却ガスを供給す
る。回転子導体で発生する抵抗損による発熱は別途設け
られた通風流路により導体を直接冷却するので、ポール
部、又は、テイース部に設けられた通風溝を流れる冷却
ガスの温度上昇は小さい。このため上記通風溝により固
定子温ガスゾーンに供給される冷却ガスは低温であり、
固定子冷却効果が増加する。Ventilation grooves provided in the rotor poles or the teeth create a head difference between the inner diameter side inlet and the outer diameter side outlet due to the rotation of the rotor, and the cooling gas flows and is fixed by this pump action. Cooling gas is intensively supplied to the child temperature gas zone. Since the heat generated by the resistance loss generated in the rotor conductor directly cools the conductor by the ventilation passage provided separately, the temperature rise of the cooling gas flowing through the ventilation groove provided in the pole portion or the teeth portion is small. Therefore, the cooling gas supplied to the stator temperature gas zone by the ventilation groove has a low temperature,
Stator cooling effect is increased.
以下、本発明の一実施例を第1図,第2図により説明
する。An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.
第1図において、回転子巻線を直接冷却する通風冷却
路以外に、回転子胴部テイース13には軸方向に通風溝17
が設けられる。通風溝17の外径側には通風溝ウエツジ16
が挿入され、回転子エンド部から取り込まれた冷却ガス
を軸方向に流すための径路をを形成している。通風孔18
は、第2図において、軸方向セクシヨン及びに相当
するステータコア温ガスゾーン部分の通風溝ウエツジ16
に設けられている。In FIG. 1, in addition to the ventilation cooling path for directly cooling the rotor winding, ventilation grooves 17 are formed in the rotor body portion 13 in the axial direction.
Is provided. Ventilation groove wedge 16 on the outer diameter side of ventilation groove 17
Is formed and forms a path for axially flowing the cooling gas taken in from the rotor end portion. Ventilation hole 18
2 is a ventilation groove wedge 16 in the stator core warm gas zone portion corresponding to the axial section and in FIG.
It is provided in.
フアン6を出た冷却ガスは回転子エンド部より通風溝
17を通過し、通風孔18より空隙15に排出され、温ガスゾ
ーン及びの固定子を冷却し、クーラ9で熱交換して
フアン6に戻る。The cooling gas exiting the fan 6 is ventilated from the rotor end.
After passing through 17, the air is discharged into the void 15 through the ventilation hole 18, the hot gas zone and the stator are cooled, and heat is exchanged by the cooler 9 to return to the fan 6.
本実施例における、内部通風径路を第2図に示す。ロ
ータ・テイース部に設けられた通風溝を通る固定子温ガ
スゾーン冷却用の冷却ガス19は、ロータ中で、あまり温
度上昇することなく、温ガスゾーン及びに供給され
る。The internal ventilation passage in this embodiment is shown in FIG. The cooling gas 19 for cooling the stator hot gas zone, which passes through the ventilation grooves provided in the rotor teeth portion, is supplied to the hot gas zone and in the rotor without the temperature rising so much.
本実施例によれば、回転子コイル11に発生した熱はサ
ブスロツト12を通る冷却ガスによつて回転子コイルを、
直接、冷却し通風孔14から空隙15に排出されるので、通
風溝17を通る冷却ガス空隙15に排出されるとき冷却ガス
の温度上昇は小さい。従つて温ガスゾーン及びに送
りこまれる冷却ガスの温度は全体的に低下し固定子コイ
ル3の温度を低減する効果がある。なお、図中1は固定
子枠、3は固定子コイル、5は回転子軸、10は回転子ウ
エツジ。According to this embodiment, the heat generated in the rotor coil 11 causes the cooling gas passing through the sub-slot 12 to cool the rotor coil,
Since it is directly cooled and discharged from the ventilation hole 14 to the void 15, the temperature rise of the cooling gas is small when discharged to the cooling gas void 15 passing through the ventilation groove 17. Therefore, the temperature of the cooling gas sent to the hot gas zone and the temperature of the cooling gas is lowered as a whole, and the temperature of the stator coil 3 is reduced. In the figure, 1 is a stator frame, 3 is a stator coil, 5 is a rotor shaft, and 10 is a rotor wedge.
上記実施例と同様の効果は、同様の通風溝をロータ・
テース部ではなく、ロータ・ポール部に設けても得られ
る。The same effect as that of the above embodiment is obtained by using the same ventilation groove in the rotor
It can also be obtained by providing it on the rotor pole part instead of the teeth part.
本発明によれば、固定子コイル3で最も高い温度の温
ガスゾーンに回転子に設けた通風溝を通して冷却ガスを
供給できるので、固定子コイル3の温度上昇を低減する
ことができる。According to the present invention, since the cooling gas can be supplied to the hot gas zone of the highest temperature in the stator coil 3 through the ventilation groove provided in the rotor, the temperature rise of the stator coil 3 can be reduced.
第1図は本発明の一実施例の回転子の通風を説明する斜
視図、第2図は本発明の回転電機の内部通風径路の縦断
面図、第3図は回転電機の内部通風径路を説明する縦断
面図を示す。 1……固定子枠、2……固定子鉄心、9……クーラ、10
……回転子ウエツジ、17……通風溝、18……通風孔。FIG. 1 is a perspective view illustrating ventilation of a rotor according to an embodiment of the present invention, FIG. 2 is a vertical cross-sectional view of an internal ventilation passage of a rotating electric machine of the present invention, and FIG. 3 is an internal ventilation passage of a rotating electric machine. The longitudinal cross-sectional view to demonstrate is shown. 1 ... Stator frame, 2 ... Stator core, 9 ... Cooler, 10
...... Rotor wedge, 17 …… Ventilation groove, 18 …… Ventilation hole.
Claims (1)
風用の間隔をおいて積まれた固定子鉄心と、固定子を冷
却する冷却ガスの通風径路を作る仕切板と、前記仕切板
により仕切られた温ガスゾーンと冷ガスゾーンとが交互
に配置された固定子と、回転子を冷却する前記冷却ガス
が前記回転子の内径側から外径側へ流れ、固定子の内径
と前記回転子の外径との間の空隙へ全て排出する回転子
から構成される回転電機に於いて、 前記固定子の軸方向中央部にある前記温ガスゾーンにの
み前記冷却ガスを送風する通風溝を設けたことを特徴と
する回転電機の回転子。1. A stator core which is laminated in the axial direction and is stacked at a constant ventilation thickness at a ventilation interval, and a partition plate which forms a ventilation path for cooling gas for cooling the stator, A stator in which hot gas zones and cold gas zones that are partitioned by partition plates are alternately arranged, and the cooling gas that cools the rotor flows from the inner diameter side of the rotor to the outer diameter side, and the inner diameter of the stator. In a rotary electric machine configured by a rotor that exhausts all into a space between the rotor and the outer diameter of the rotor, the cooling gas is blown only to the warm gas zone at the axial center of the stator. A rotor for a rotating electric machine, characterized in that a ventilation groove is provided.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63102569A JP2564357B2 (en) | 1988-04-27 | 1988-04-27 | Rotating machine rotor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63102569A JP2564357B2 (en) | 1988-04-27 | 1988-04-27 | Rotating machine rotor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01274639A JPH01274639A (en) | 1989-11-02 |
JP2564357B2 true JP2564357B2 (en) | 1996-12-18 |
Family
ID=14330856
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63102569A Expired - Lifetime JP2564357B2 (en) | 1988-04-27 | 1988-04-27 | Rotating machine rotor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2564357B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5652469A (en) * | 1994-06-16 | 1997-07-29 | General Electric Company | Reverse flow ventilation system with stator core center discharge duct and/or end region cooling system |
JP5497346B2 (en) * | 2009-06-12 | 2014-05-21 | 東芝三菱電機産業システム株式会社 | Rotating electric machine cooling mechanism and rotating electric machine |
-
1988
- 1988-04-27 JP JP63102569A patent/JP2564357B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01274639A (en) | 1989-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3661529B2 (en) | Motor cooling device | |
US8288901B2 (en) | Method and device for cooling an electric machine | |
JP2649931B2 (en) | Electric machine | |
JP2001086679A (en) | Rotating machine | |
JP3721361B2 (en) | Improved cooling of generator coil ends | |
JPH07322565A (en) | Cooling mechanism of motor-driven rotary machine | |
JPH04229049A (en) | Liquid cooling of rotor for electric machine | |
JPS5952622B2 (en) | gas cooled electric machine | |
JP2003204643A (en) | Tapered air gap between rotor and stator for superconducting synchronous machine | |
JP2010104225A (en) | Heat transfer enhancement of dynamoelectric machine rotor | |
US4508985A (en) | Dynamoelectric machine with rotor ventilation system including axial duct inlet fairing | |
JP2564357B2 (en) | Rotating machine rotor | |
JP3564915B2 (en) | Rotating electric machine | |
JPH09285046A (en) | Dynamo-electric machine and its stator | |
JPH04351439A (en) | Rotary electric equipment | |
JP2005185095A (en) | Heat management of rotor end coil | |
JPS6337588B2 (en) | ||
JP2000078781A (en) | Stator core for electric machine | |
JP3590849B2 (en) | Rotating electric machine rotor | |
JPS607894B2 (en) | Salient pole rotating electric machine | |
JPS60200737A (en) | Cylindrical rotor | |
JPH10150737A (en) | Rotor for electric rotating machine | |
JP3465661B2 (en) | Rotating electric machine | |
JP2003219606A (en) | Rotating electric machine | |
JP2001016813A (en) | Dynamo-electric machine |