JP2563006B2 - Coating composition for galvanized steel wire and galvanized steel wire for cable applied with the same - Google Patents

Coating composition for galvanized steel wire and galvanized steel wire for cable applied with the same

Info

Publication number
JP2563006B2
JP2563006B2 JP3152044A JP15204491A JP2563006B2 JP 2563006 B2 JP2563006 B2 JP 2563006B2 JP 3152044 A JP3152044 A JP 3152044A JP 15204491 A JP15204491 A JP 15204491A JP 2563006 B2 JP2563006 B2 JP 2563006B2
Authority
JP
Japan
Prior art keywords
steel wire
coating
galvanized steel
thickness
coating composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3152044A
Other languages
Japanese (ja)
Other versions
JPH05156582A (en
Inventor
恵太 鈴村
實 米野
和雄 吉井
忠史 西本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Paint Co Ltd
Nippon Steel Corp
Original Assignee
Kansai Paint Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co Ltd, Nippon Steel Corp filed Critical Kansai Paint Co Ltd
Priority to JP3152044A priority Critical patent/JP2563006B2/en
Publication of JPH05156582A publication Critical patent/JPH05156582A/en
Application granted granted Critical
Publication of JP2563006B2 publication Critical patent/JP2563006B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ropes Or Cables (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、亜鉛メッキ鋼線用被覆
組成物およびこれを施した現地施工が容易で、かつ耐食
性が優れている橋梁ケーブル用亜鉛メッキ鋼線に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coating composition for galvanized steel wires and a galvanized steel wire for bridge cables which is easy to be installed locally and has excellent corrosion resistance.

【0002】[0002]

【従来の技術】橋梁ケーブルは、ケーブル架設後、橋梁
完成までの期間、屋外に暴露され橋梁完成後に防食を行
う。そのためケーブル製造、保管からさらに橋梁完成ま
での間のケーブル防食対策として、ケーブル素線には亜
鉛メッキを施し、さらに亜鉛の腐食を防止するため表面
処理(一次防錆処理と言われている)を行っている。古
くはクロメート処理が行われていたが、降雨によりクロ
メート被覆層が溶出し、環境への影響が懸念されること
から1980年代以降は非クロメート処理が施されるよ
うになった。
2. Description of the Related Art A bridge cable is exposed outdoors after the cable is erected until the bridge is completed, and corrosion protection is performed after the bridge is completed. Therefore, as cable anticorrosion measures from cable production and storage to the completion of the bridge, the cable strands are galvanized, and surface treatment (called primary rust prevention treatment) is performed to prevent zinc corrosion. Is going. Chromate treatment has been performed for a long time, but since chromate coating layers were eluted due to rainfall and there is concern about the impact on the environment, non-chromate treatment has been applied since the 1980s.

【0003】非クロメート処理としては(イ)特公昭6
2−40473号公報、(ロ)特公昭63−11383
号公報などに記載されている処理が公知になっている。
これらの防食被覆は、前記のクロメート処理に比べると
必ずしも十分な耐食性を有していない。特に被覆層の加
工性、密着性が十分でないため、橋梁建設地におけるケ
ーブル施工の間に剥離などの損傷を受け耐食性を損なう
ことになる。
The non-chromate treatment is (a) Japanese Patent Publication No. 6
No. 2-40473, (B) Japanese Patent Publication No. 63-11383.
The processes described in Japanese Patent Publications and the like are known.
These anticorrosion coatings do not always have sufficient corrosion resistance as compared with the above chromate treatment. In particular, since the workability and adhesion of the coating layer are not sufficient, the coating layer is damaged during the cable construction in the bridge construction site such as peeling and the corrosion resistance is deteriorated.

【0004】[0004]

【発明が解決しようとする課題】ところで、ケーブル鋼
線に要求される特性は、長期間の屋外暴露に耐え得る耐
食性、ケーブル施工時の鋼線の引出し時に摩擦、折り曲
げ加工等に耐える被覆層の密着性、および施工し易い適
度な摩擦係数である。摩擦係数はケーブル素線引き出し
に際しては小さいことが好ましく、橋板を支えるための
ケーブルバンドを設置するためには大きい方が好まし
い。これまでのケーブル施工機器は表面処理なしの亜鉛
メッキ鋼線を対象としたものが多いため、亜鉛メッキ鋼
線の摩擦係数と差が少ないことが望まれる。
By the way, the properties required for a cable steel wire are: corrosion resistance that can withstand long-term outdoor exposure, and coating layer that resists friction and bending when drawing the steel wire during cable construction. Adhesion and a moderate friction coefficient for easy construction. The coefficient of friction is preferably small when the cable strand is drawn out, and is preferably large when the cable band for supporting the bridge plate is installed. Since most of the conventional cable construction equipment is intended for galvanized steel wire without surface treatment, it is desirable that the difference from the friction coefficient of galvanized steel wire is small.

【0005】一次防錆処理のための被覆層の要求性能
は、耐食性、密着性、適度な摩擦係数を有することであ
るが、橋梁が長大化するに従いケーブル用鋼線の製造か
らケーブル全体の防食までの期間が長くなり、従来の非
クロメート系の一次防錆処理では十分な耐食性が得られ
なかった。
The required performance of the coating layer for the primary anticorrosion treatment is that it has corrosion resistance, adhesion, and a moderate friction coefficient. However, sufficient corrosion resistance could not be obtained by the conventional non-chromate type primary rust preventive treatment.

【0006】[0006]

【課題を解決するための手段】本発明者らは、かかる観
点から亜鉛メッキを施した鋼線表面に密着性の良好なエ
ポキシ樹脂を基体樹脂とし、硬化剤およびシリカから成
る被覆組成物を均一な厚さに被覆して、加熱乾燥するこ
とによって、耐食性、加工性、密着性に優れ、かつ適度
な摩擦係数を有する被覆層を形成することができること
を見出し、本発明の亜鉛メッキ鋼線用被覆組成物および
これを被覆したケーブル用亜鉛メッキ鋼線を開発するに
至った。かくして、本発明に従う被覆組成物は、(A)
数平均分子量8,000〜20,000のフェノキシ樹
脂(i)、または脂肪酸変性もしくは無変性のエポキシ
当量300以上のエポキシ樹脂(ii)、(B)尿素樹
脂、メラミン樹脂およびポリイソシアネート化合物から
選ばれる少なくとも1種の硬化剤、(C)シリカ、を必
須成分として含有し、かつ{(A)+(B)}/(C)
の割合が重量比で95/5〜50/50の範囲であるこ
とを特徴とする。
From such a viewpoint, the present inventors have made a coating composition consisting of an epoxy resin having good adhesion to a galvanized steel wire surface a base resin and a curing agent and silica uniformly. It was found that a coating layer having excellent corrosion resistance, workability, and adhesion, and having an appropriate friction coefficient can be formed by coating with a uniform thickness and heating and drying, and for the galvanized steel wire of the present invention. The present invention has led to the development of a coating composition and a galvanized steel wire for cables coated therewith. The coating composition according to the invention thus comprises (A)
A phenoxy resin (i) having a number average molecular weight of 8,000 to 20,000, or a fatty acid-modified or unmodified epoxy resin having an epoxy equivalent of 300 or more (ii), (B) a urea resin, a melamine resin and a polyisocyanate compound. At least one curing agent, (C) silica, is contained as an essential component, and {(A) + (B)} / (C)
Is in the range of 95/5 to 50/50 by weight.

【0007】本発明において(A)成分として用いられ
るフェノキシ樹脂(i)はビスフェノールA型とエピク
ロルヒドリンから合成される数平均分子量約8,000
〜20,000のポリヒドロキシポリエーテル樹脂であ
る。このようなフェノキシ樹脂は、従来から公知であ
り、ユニオンカーバイド社(米国)からPKHH等の銘
柄で市販されている。
The phenoxy resin (i) used as the component (A) in the present invention is a number average molecular weight of about 8,000 synthesized from bisphenol A type and epichlorohydrin.
.About.20,000 polyhydroxypolyether resin. Such a phenoxy resin has been conventionally known, and is commercially available from Union Carbide (USA) under the brand names PKHH and the like.

【0008】またエポキシ樹脂(ii)としては、ビス
フェノールA型、ビスフェノールF型、ノボラック型、
グリシジルエーテル型エポキシ樹脂、またエポキシ樹脂
中のエポキシ基およびヒドロキシル基を乾性油脂肪酸中
のカルボキシル基と反応させたエポキシエステル樹脂、
イソシアネートと反応させたウレタン変性エポキシ樹脂
などの変性エポキシ樹脂、エポキシ樹脂の末端に少なく
とも1個以上の塩基性窒素原子と少なくとも2個以上の
1級水酸基を付加させた塩基性エポキシ樹脂などを挙げ
ることができる。
As the epoxy resin (ii), bisphenol A type, bisphenol F type, novolac type,
Glycidyl ether type epoxy resin, and epoxy ester resin obtained by reacting the epoxy group and hydroxyl group in the epoxy resin with the carboxyl group in the drying oil fatty acid,
Examples include modified epoxy resins such as urethane-modified epoxy resins reacted with isocyanates, basic epoxy resins in which at least one basic nitrogen atom and at least two primary hydroxyl groups have been added to the ends of the epoxy resin. You can

【0009】本発明において(B)成分として用いられ
る硬化剤は、尿素樹脂、メラミン樹脂、およびポリイソ
シアネート化合物であり、これらは単独または組み合わ
せて使用することができる。また、本発明において
(C)成分として用いられるシリカにはコロイダルシリ
カ、フュームドシリカと呼ばれる親水性シリカと疎水性
シリカがあり、いずれも使用することができるが防食性
の面からフュームドシリカが好ましい。シリカの粒径と
しては1〜500mμが適当であり、特に10〜100
mμが好ましい。
The curing agent used as the component (B) in the present invention is a urea resin, a melamine resin, and a polyisocyanate compound, and these can be used alone or in combination. Further, the silica used as the component (C) in the present invention includes colloidal silica, hydrophilic silica called fumed silica and hydrophobic silica. Any of them can be used, but fumed silica is preferred from the viewpoint of corrosion resistance. preferable. The particle size of silica is suitably 1 to 500 mμ, and particularly 10 to 100
mμ is preferred.

【0010】本発明において、前記した(A)〜(C)
成分を{(A)+(B)}/(C)の重量比で、95/
5〜50/50、好適には90/10〜70/30の範
囲で配合することが必要である。前記した配合割合以外
では、すなわち樹脂成分がシリカより多い場合には、被
覆層の耐食性が劣り、他方、シリカが樹脂成分より多い
場合には密着性が劣るという問題がある。
In the present invention, the above-mentioned (A) to (C)
The weight ratio of the components is {(A) + (B)} / (C) is 95 /
It is necessary to blend in the range of 5 to 50/50, preferably 90/10 to 70/30. There is a problem that the corrosion resistance of the coating layer is inferior when the content of the resin component is higher than that of silica except the above-mentioned mixing ratio, and the adhesion is inferior when the content of silica is higher than the resin component.

【0011】本発明において前記した(A)〜(C)成
分からなる被覆組成物が従来の課題を十分に解決する
が、より高度の耐食性が要求される場合には、(A)成
分として、エポキシ樹脂の末端に少なくとも1個以上の
塩基性窒素原子と少なくとも2個の1級水酸基を付加さ
せてなる塩基性エポキシ樹脂の使用が好適である。エポ
キシ樹脂に塩基性窒素原子と1級水酸基を導入するに
は、例えばアルカノールアミンをエポキシ樹脂のオキシ
ラン基に付加させる方法などをとることができる。これ
らのアルカノールアミンとしては、例えばモノエタノー
ルアミン、ジエタノールアミン、ジメチルアミノエタノ
ール、モノプロパノールアミン、ジプロパノール、ジブ
タノールアミンなどがあり、これらのアミンは単独また
は混合して使用することができる。
In the present invention, the coating composition comprising the above-mentioned components (A) to (C) sufficiently solves the conventional problems, but when higher corrosion resistance is required, as the component (A), It is preferable to use a basic epoxy resin obtained by adding at least one basic nitrogen atom and at least two primary hydroxyl groups to the terminal of the epoxy resin. To introduce a basic nitrogen atom and a primary hydroxyl group into the epoxy resin, for example, a method of adding an alkanolamine to the oxirane group of the epoxy resin can be used. Examples of these alkanolamines include monoethanolamine, diethanolamine, dimethylaminoethanol, monopropanolamine, dipropanol and dibutanolamine, and these amines can be used alone or in combination.

【0012】本発明の被覆組成物を用いて被覆層を形成
する場合、フェノキシ樹脂(i)を使用する組成物では
それ自体が高分子であるため硬化剤を必ずしも必要とし
ないが、エポキシ樹脂(ii)を用いる場合には硬化剤
の使用が必要である。硬化剤としてはメラミン、尿素、
ベンゾグアナミンから選ばれた1種以上にホルムアルデ
ヒドを反応させてなるメチロール化合物の一部もしくは
全部に炭素数1〜5の1価アルコールを反応させてなる
従来から公知のアルキルエーテル化アミノ樹脂を使用す
ることもできるが、本発明の被覆組成物を用いて被覆層
を形成する場合、ポリイソシアネート化合物を使用して
基体樹脂中の水酸基との間にウレタン結合を形成するこ
とが好適である。
When a coating layer is formed using the coating composition of the present invention, the composition using the phenoxy resin (i) does not necessarily require a curing agent because it is a polymer itself, but an epoxy resin ( When using ii), it is necessary to use a curing agent. As a curing agent, melamine, urea,
Use of a conventionally known alkyl etherified amino resin obtained by reacting a part or all of a methylol compound obtained by reacting one or more selected from benzoguanamine with formaldehyde, and a monohydric alcohol having 1 to 5 carbon atoms However, when a coating layer is formed using the coating composition of the present invention, it is preferable to use a polyisocyanate compound to form a urethane bond with the hydroxyl group in the base resin.

【0013】本発明の被覆組成物を安定に保存させるた
めには、硬化剤として用いられるポリイソシアネート化
合物中のイソシアネート基を一次的に保護する必要があ
る。イソシアネート基の保護方法としては、加熱時に保
護基(ブロック剤)が脱離し、イソシアネート基が再生
する保護方法を採用できる。ポリイソシアネート化合物
は、1分子中に少なくとも2個のイソシアネート基を有
する脂肪族、脱環族(複素環も含む)または芳香族イソ
シアネート化合物、もしくはそれらの化合物を多価アル
コールで部分反応させた化合物である。
In order to stably store the coating composition of the present invention, it is necessary to primarily protect the isocyanate group in the polyisocyanate compound used as a curing agent. As a method of protecting the isocyanate group, a protecting method in which the protecting group (blocking agent) is released during heating and the isocyanate group is regenerated can be adopted. The polyisocyanate compound is an aliphatic, decyclic (including heterocyclic) or aromatic isocyanate compound having at least two isocyanate groups in one molecule, or a compound obtained by partially reacting these compounds with a polyhydric alcohol. is there.

【0014】また、ブロック剤は、脂肪族モノアルコー
ル類、フェノール、クレゾール類などの芳香族アルコー
ル、アセトオキシム、メチルエチルケトンオキシムなど
のオキシムなどがあり、これらはポリイソシアネート化
合物と反応させることにより、常温下で安定に保護され
たポリイソシアネート化合物が得られる。このようなブ
ロックされたポリイソシアネート化合物は、硬化剤とし
て基体樹脂(固形分)100部に対して5〜40部、好
ましくは10〜30部の割合で配合される。
Examples of the blocking agent include aliphatic monoalcohols, aromatic alcohols such as phenol and cresols, oximes such as acetoxime and methyl ethyl ketone oxime, and the like. These are reacted at room temperature with a polyisocyanate compound. A polyisocyanate compound stably protected with is obtained. Such a blocked polyisocyanate compound is blended as a curing agent in a ratio of 5 to 40 parts, preferably 10 to 30 parts, relative to 100 parts of the base resin (solid content).

【0015】本発明の被覆組成物から形成される被覆層
の耐食性は、被覆層の厚さが4μm以上あれば十分であ
り、厚みを増大させても耐食性向上の効果は比較的小さ
い。また被覆層の厚さが30μmを超えると折り曲げ加
工による被覆層の密着性が低下する。また被覆した鋼線
の摩擦係数は被覆層の厚さにより変動するが3〜30μ
mの範囲で、前記した従来技術(イ)および(ロ)の被
覆鋼線に比較して、より無処理の亜鉛メッキ鋼線に近い
値となる。従って使用に際しての性能面から、前記エポ
キシ樹脂を基体樹脂とする被覆層を3〜30μmの厚さ
に被覆することによって適度な摩擦係数を得るという目
的を達成することができる。
The corrosion resistance of the coating layer formed from the coating composition of the present invention is sufficient if the thickness of the coating layer is 4 μm or more, and even if the thickness is increased, the effect of improving the corrosion resistance is relatively small. Further, if the thickness of the coating layer exceeds 30 μm, the adhesion of the coating layer due to the bending process deteriorates. Further, the friction coefficient of the coated steel wire varies depending on the thickness of the coating layer, but is 3 to 30 μm.
In the range of m, the value is closer to that of the untreated galvanized steel wire as compared with the coated steel wires of the above-mentioned conventional techniques (a) and (b). Therefore, from the viewpoint of performance in use, it is possible to achieve the purpose of obtaining an appropriate friction coefficient by coating the coating layer containing the epoxy resin as the base resin to a thickness of 3 to 30 μm.

【0016】鋼線に前記した範囲内の厚さに、エポキシ
樹脂を基体樹脂とする被覆組成物を被覆するには被覆組
成物中の固形分濃度を15〜28重量%とし、これ以外
の成分を有機溶剤とする塗液を作成して、その塗液の粘
度を20〜170センチポイズの範囲に調整する必要が
ある。鋼線を水平方向に走行させながら連続的に被覆す
る場合には鋼線の上表面と下表面との間では当然のこと
ながら被覆層の厚さに差が生じる。塗液の粘度が20セ
ンチポイズ未満では上面の被覆層の厚さを3μm以上に
保持することができず、また170センチポイズを超え
た場合には下面の被覆層の厚さは30μm超となってし
まう。
In order to coat a steel wire with a coating composition having an epoxy resin as a base resin to a thickness within the above-mentioned range, the solid content concentration in the coating composition is set to 15 to 28% by weight, and other components are used. It is necessary to prepare a coating liquid using as an organic solvent and adjust the viscosity of the coating liquid within the range of 20 to 170 centipoise. When the steel wire is continuously coated while traveling in the horizontal direction, a difference naturally occurs in the thickness of the coating layer between the upper surface and the lower surface of the steel wire. If the viscosity of the coating liquid is less than 20 centipoise, the thickness of the coating layer on the upper surface cannot be maintained at 3 μm or more, and if it exceeds 170 centipoise, the thickness of the coating layer on the lower surface exceeds 30 μm. .

【0017】一方、塗液の固形分濃度を15重量%未満
にすると、粘度を上記範囲内に調整しても、鋼線の上面
の被覆層の厚さを3μm以上に保持することがきず、
また28重量%を超えると有機溶剤の溶解力、沸点等の
特性から塗液の粘度を前記範囲に調整しても鋼線の下面
の被覆層の厚さが30μmを超える。本発明によって得
られる被覆組成物は亜鉛メッキ鋼線に直接塗布しても、
あるいは、りん酸塩処理、クロメート処理などを施して
から塗布してもよい。塗布方法としては通常浸漬塗装が
用いられる。被覆組成物の乾燥は、常温〜250℃の温
度で自然乾燥または加熱乾燥することによって行われ
る。
Meanwhile, when the solid concentration of the coating solution to less than 15 wt%, even by adjusting the viscosity within the above range, flaws in it to hold the thickness of the coating layer on the upper surface of the steel wire above 3μm ,
On the other hand, if it exceeds 28% by weight, the thickness of the coating layer on the lower surface of the steel wire exceeds 30 μm even if the viscosity of the coating liquid is adjusted to the above range due to the characteristics such as the dissolving power of the organic solvent and the boiling point. The coating composition obtained by the present invention can be directly applied to galvanized steel wire,
Alternatively, it may be applied after being subjected to phosphate treatment, chromate treatment, or the like. As a coating method, dip coating is usually used. The coating composition is dried by natural drying or heat drying at room temperature to 250 ° C.

【0018】[0018]

【実施例】以下に実施例より本発明を具体的に説明す
る。実施例1、2および3は、それぞれ塩基性エポキシ
樹脂、フェノキシ樹脂、脂肪酸変性エポキシ樹脂を基体
樹脂とする被覆層の厚さに対する耐食性を示し、実施例
4および5は塗液の固形分濃度(重量%)および塗液の
粘度について数値限定の根拠を示すものである。
EXAMPLES The present invention will be described in detail below with reference to examples. Examples 1, 2 and 3 show the corrosion resistance with respect to the thickness of the coating layer containing a basic epoxy resin, a phenoxy resin and a fatty acid modified epoxy resin as a base resin, respectively, and Examples 4 and 5 show the solid content concentration ( (% By weight) and the viscosity of the coating liquid show the grounds for limiting the numerical values.

【0019】樹脂溶液の調製 (1)塩基性エポキシ樹脂溶液の調製 反応装置に、エピコート1009(シェル化学社製エポ
キシ樹脂、分子量約3,750)1,880g(0.5
モル)とブチルセロソルブ/メチルイソブチルケトン=
78/22(重量比)の混合溶剤1,950gを加えた
後、攪拌加熱し、均一に溶解した。ついで70℃まで冷
却し、液体滴下装置に分取したジ(n−プロパノール)
アミン70gを30分間要して滴下した。この間反応温
度を70℃に保持した。滴下終了後120℃で2時間保
持し、冷却後に前記ブチルセロソルブ/メチルイソブチ
ルケトン=78/22の混合溶剤950gを加え反応を
終了させた。得られた反応物を塩基性エポキシ樹脂溶液
とする。樹脂の有効成分は50%である。
Preparation of Resin Solution (1) Preparation of Basic Epoxy Resin Solution 1,880 g (0.5) of Epicoat 1009 (epoxy resin manufactured by Shell Chemical Co., molecular weight of about 3,750) was placed in a reactor.
Mol) and butyl cellosolve / methyl isobutyl ketone =
After adding 1,950 g of a mixed solvent of 78/22 (weight ratio), the mixture was stirred and heated to uniformly dissolve. Then, it was cooled to 70 ° C., and di (n-propanol) was collected in a liquid dropping device.
70 g of amine was added dropwise over 30 minutes. During this time, the reaction temperature was maintained at 70 ° C. After the completion of dropping, the temperature was maintained at 120 ° C. for 2 hours, and after cooling, 950 g of the mixed solvent of butyl cellosolve / methyl isobutyl ketone = 78/22 was added to terminate the reaction. The obtained reaction product is used as a basic epoxy resin solution. The active ingredient of the resin is 50%.

【0020】(2)フェノキシ樹脂(ポリヒドロキシポ
リエーテル樹脂)溶液の調製 ポリヒドロキシポリエーテル樹脂(フェノキシ樹脂、ユ
ニオンカーバイト社製の商品名 PKHH、数平均分子
量12,000)200gにシクロヘキサノン溶液1,
000gを加えた後、60℃に加熱し、均一に溶解し有
効成分が20%の樹脂溶液を得た。
(2) Preparation of phenoxy resin (polyhydroxypolyether resin) solution Polyhydroxypolyether resin (phenoxy resin, trade name PKHH manufactured by Union Carbide Co., number average molecular weight 12,000) 200 g of cyclohexanone solution 1
After adding 000 g, the mixture was heated to 60 ° C. and uniformly dissolved to obtain a resin solution containing 20% of active ingredient.

【0021】(3)硬化剤の調製 反応容器にイソホロンジイソシアネート222部を取
り、これにセロソルブアセテート100部を加え、均一
に溶解した後、50%のトリメチロールプロパンのセロ
ソルブアセテート溶液88部を、前記滴下ロートから7
0℃に保持した攪拌状態のイソシアネート溶液中に1時
間を要して滴下した。この後、さらに1時間、70℃に
保持した後、90℃で1時間保持した。その後、メチル
エチルケトンオキシム90部を加え、90℃で3時間反
応させてブロック化ポリイソシアネートを得た。冷却後
にセロソルブアセテート70部を加え、得られたものを
硬化剤Aとする。硬化剤の有効成分は60%であった。
(3) Preparation of Curing Agent 222 parts of isophorone diisocyanate was placed in a reaction vessel, 100 parts of cellosolve acetate was added thereto and uniformly dissolved, and then 88 parts of a cellosolve acetate solution of 50% trimethylolpropane was added thereto. 7 from the dropping funnel
The solution was added dropwise to the stirred isocyanate solution kept at 0 ° C. over 1 hour. After that, the temperature was held at 70 ° C. for 1 hour and then at 90 ° C. for 1 hour. Then, 90 parts of methyl ethyl ketone oxime was added and reacted at 90 ° C. for 3 hours to obtain a blocked polyisocyanate. After cooling, 70 parts of cellosolve acetate was added, and the obtained product was used as a curing agent A. The active ingredient of the curing agent was 60%.

【0022】(実施例1)希釈溶剤として、ブチルセロ
ソルブ/キシレン=1/1の組成のものを使用し、固形
分20%の塗液を調製した。塗液の組成を表1に示す。
Example 1 A coating solution having a solid content of 20% was prepared by using a solvent having a composition of butyl cellosolve / xylene = 1/1 as a diluting solvent. The composition of the coating liquid is shown in Table 1.

【0023】[0023]

【表1】 [Table 1]

【0024】この塗液(粘度20℃、80センチポイ
ズ)を溶融亜鉛メッキ鋼板(板厚0.8mm、メッキ付
着量90g/m2 )にバーコーターで被覆層の厚さを変
えて塗布後、最終鋼板温度を220℃、時間60秒間の
条件で加熱硬化を行った。これらの鋼板を塩水噴霧試験
(JIS Z 2371)に供し、72時間後の全表面
積に対する白錆発生面積比率を調べた結果を表4に示
す。被覆層の厚さは3μm以上、望ましくは4μm以上
であることがわかる。この結果より、本発明の被覆組成
物は耐食性に優れていることが明らかである。
This coating solution (viscosity 20 ° C., 80 centipoise) was applied to a hot-dip galvanized steel sheet (plate thickness 0.8 mm, coating weight 90 g / m 2 ) with a bar coater while changing the thickness of the coating layer. The steel plate was heat-cured at 220 ° C. for 60 seconds. Table 4 shows the results obtained by subjecting these steel plates to a salt spray test (JIS Z 2371) and examining the ratio of white rust generation area to the total surface area after 72 hours. It can be seen that the thickness of the coating layer is 3 μm or more, preferably 4 μm or more. From this result, it is clear that the coating composition of the present invention has excellent corrosion resistance.

【0025】(実施例2)希釈溶剤にシクロヘキサノン
を使用し、固形分が15%の塗液を調製した。この塗液
の組成を表2に示す。
Example 2 Cyclohexanone was used as a diluting solvent to prepare a coating liquid having a solid content of 15%. The composition of this coating liquid is shown in Table 2.

【0026】[0026]

【表2】 [Table 2]

【0027】この塗液(粘度20℃、95センチポイ
ズ)を溶融亜鉛メッキ鋼板(板厚0.8mm、メッキ付
着量90g/m2 )にバーコーターで被覆層の厚さを変
えて塗布後、最終鋼板温度を220℃、時間60秒間の
条件で加熱硬化を行った。これらの鋼板を塩水噴霧試験
(JIS Z 2371)に供し、72時間後の全表面
積に対する白錆発生面積比率を調べた結果を表4に示
す。被覆層の厚さは3μm以上、望ましくは4μm以上
であることがわかる。この結果より、本発明の被覆組成
物は耐食性に優れていることが明らかである。
This coating solution (viscosity 20 ° C., 95 centipoise) was applied to a hot-dip galvanized steel sheet (plate thickness 0.8 mm, coating amount 90 g / m 2 ) with a bar coater while changing the thickness of the coating layer, and then the final coating. The steel plate was heat-cured at 220 ° C. for 60 seconds. Table 4 shows the results obtained by subjecting these steel plates to a salt spray test (JIS Z 2371) and examining the ratio of white rust generation area to the total surface area after 72 hours. It can be seen that the thickness of the coating layer is 3 μm or more, preferably 4 μm or more. From this result, it is clear that the coating composition of the present invention has excellent corrosion resistance.

【0028】(実施例3)希釈溶剤にブチルセロソルブ
/キシレン=1/1を使用し、固形分25%の塗液を調
製した。この塗液の組成を表3に示す。
(Example 3) Butyl cellosolve / xylene = 1/1 was used as a diluting solvent to prepare a coating liquid having a solid content of 25%. The composition of this coating liquid is shown in Table 3.

【0029】[0029]

【表3】 [Table 3]

【0030】この塗液(粘度20℃、45センチポイ
ズ)を溶融亜鉛メッキ鋼板(板厚0.8mm、メッキ付
着量90g/m2 )にバーコーターで被覆層の厚さを変
えて塗布後、最終鋼板温度を220℃、時間60秒間の
条件で加熱硬化を行った。これらの鋼板を塩水噴霧試験
(JIS Z 2371)に供し、72時間後の全表面
積に対する白錆発生面積比率を調べた結果を表4に示
す。被覆層の厚さは3μm以上、望ましくは4μm以上
であることがわかる。
This coating solution (viscosity 20 ° C., 45 centipoise) was applied to a hot-dip galvanized steel sheet (plate thickness 0.8 mm, coating amount 90 g / m 2 ) with a bar coater while changing the thickness of the coating layer. The steel plate was heat-cured at 220 ° C. for 60 seconds. Table 4 shows the results obtained by subjecting these steel plates to a salt spray test (JIS Z 2371) and examining the ratio of white rust generation area to the total surface area after 72 hours. It can be seen that the thickness of the coating layer is 3 μm or more, preferably 4 μm or more.

【0031】(比較例)特公昭63−11383号公報
に記載のNo.1の水分散型被覆組成物を用いた。性能
比較を表4に示す。
(Comparative Example) No. 6 described in Japanese Patent Publication No. 63-11383. The water-dispersed coating composition of No. 1 was used. The performance comparison is shown in Table 4.

【0032】[0032]

【表4】 [Table 4]

【0033】(実施例4)前記実施例1と同じ組成の被
覆組成物の固形分を10〜30重量%に変動させ、有機
溶剤としてブチルセロソルブとキシレンの比率を変えて
表5に示す塗液を作成した。
Example 4 A coating composition shown in Table 5 was prepared by varying the solid content of the coating composition having the same composition as in Example 1 to 10 to 30% by weight and changing the ratio of butyl cellosolve and xylene as the organic solvent. Created.

【0034】[0034]

【表5】 [Table 5]

【0035】この時、塗液の20℃における粘度は表5
に示すように9〜240センチポイズであった。これら
の塗液に直径5.2mm、長さ250mmの亜鉛メッキ
鋼線を浸漬し、垂直に保持して最終鋼線温度が220
℃、時間60秒間の条件で加熱硬化を行うと表5に示す
被覆層の厚さとなった。これらの被覆した鋼線について
直径500mmの曲げ加工を施し、外径頂点部分を接着
テープを用いて剥離試験を行い、図1の結果が得られ
た。この結果から、被覆層の厚さは30μm以下にしな
ければならないことがわかる。
At this time, the viscosity of the coating liquid at 20 ° C. is shown in Table 5.
It was 9 to 240 centipoise as shown in FIG. A galvanized steel wire having a diameter of 5.2 mm and a length of 250 mm was dipped in these coating liquids and kept vertically so that the final steel wire temperature was 220.
When heat curing was carried out under the conditions of ° C and a time of 60 seconds, the coating layer thicknesses shown in Table 5 were obtained. The coated steel wires were bent to have a diameter of 500 mm, and a peel test was performed on the apex portion of the outer diameter using an adhesive tape. The results shown in FIG. 1 were obtained. From this result, it is understood that the thickness of the coating layer must be 30 μm or less.

【0036】表5には被覆した鋼線の摩擦係数も示され
ており、無処理の亜鉛メッキ鋼線では0.13〜0.1
5、特公昭63−11383号公報記載の組成物を用い
たものでは、0.24〜0.48であり、本発明の被覆
組成物を用いたものでは、厚さ3〜30μmの間では従
来品より無処理の亜鉛メッキ鋼線に近いことがわかる。
摩擦係数はHEIDON社のHEIDON−14で測定
した(測定条件 荷重1kg、引っ張りスピード10c
m/分)。
Table 5 also shows the coefficient of friction of the coated steel wire, which is 0.13 to 0.1 for untreated galvanized steel wire.
5, the composition using the composition described in JP-B-63-11383 is 0.24 to 0.48, and the composition using the coating composition of the present invention has a conventional thickness of 3 to 30 μm. It can be seen that it is closer to untreated galvanized steel wire than the product.
The friction coefficient was measured by HEIDON-14 manufactured by HEIDON (measurement condition load 1 kg, pulling speed 10 c).
m / min).

【0037】(実施例5)前記実施例1の被覆組成のも
のについて希釈溶剤としてブチルセロソルブを使用し、
塗液の固形分を5〜28%に変動させ、塗液槽のなかに
直径5.2mmの溶融亜鉛メッキ鋼線を毎分10mの速
度で水平方向に走行させ、塗液槽を通過させた後、最終
鋼線温度が220℃となるように調整された加熱炉中で
加熱硬化させた。その際、鋼線の上面と下面では被覆層
の厚さに差を生じ、塗液の固形分(重量%)と被覆層の
厚さとの関係をプロットしたものが図2であり、塗液の
粘度と被覆層の厚さとの関係をプロットしたものが図3
である。図2より塗液の固形分が15重量%未満では鋼
線の上面の被覆層の厚さが3μm未満となり、28重量
%を超えると鋼線の下面の被覆層の厚さは30μmを超
える。図3からは塗液の粘度が20センチポイズ未満で
は鋼線の上面の被覆層の厚さが3μm未満となり、20
0センチポイズを超えると鋼線の下面の被覆層の厚さが
30μmを超えることがわかる。
(Example 5) For the coating composition of Example 1 above, butyl cellosolve was used as a diluting solvent,
The solid content of the coating liquid was changed to 5 to 28%, and a hot dip galvanized steel wire having a diameter of 5.2 mm was run horizontally in the coating liquid tank at a speed of 10 m / min and passed through the coating liquid tank. Then, it was heat-cured in a heating furnace adjusted so that the final steel wire temperature was 220 ° C. At that time, there is a difference in the thickness of the coating layer between the upper surface and the lower surface of the steel wire, and the relationship between the solid content (% by weight) of the coating liquid and the thickness of the coating layer is plotted in FIG. Fig. 3 is a plot of the relationship between viscosity and coating layer thickness.
Is. From FIG. 2, when the solid content of the coating liquid is less than 15% by weight, the thickness of the coating layer on the upper surface of the steel wire is less than 3 μm, and when it exceeds 28% by weight, the thickness of the coating layer on the lower surface of the steel wire exceeds 30 μm. From FIG. 3, when the viscosity of the coating liquid is less than 20 centipoise, the thickness of the coating layer on the upper surface of the steel wire is less than 3 μm,
It can be seen that when it exceeds 0 centipoise, the thickness of the coating layer on the lower surface of the steel wire exceeds 30 μm.

【0038】[0038]

【発明の効果】本発明の被覆組成物を用いてその固形分
および粘度を調整した塗液を鋼線表面に塗布し、加熱硬
化させることにより、耐食性、密着性に優れ、現場施工
に適した摩擦係数を有するケーブル用亜鉛メッキ鋼線を
提供することができる。そしてケーブル架設後の長期に
わたる屋外暴露においても亜鉛メッキ鋼線の腐食を防止
することが可能になる。
The coating composition of the present invention is used to apply a coating solution whose solid content and viscosity are adjusted to the surface of a steel wire, and by heating and curing it, it is excellent in corrosion resistance and adhesion and suitable for on-site construction. A galvanized steel wire for a cable having a coefficient of friction can be provided. Further, it becomes possible to prevent corrosion of the galvanized steel wire even after long-term outdoor exposure after the cable is installed.

【図面の簡単な説明】[Brief description of drawings]

【図1】被覆層の厚さに対する剥離の程度を示す図であ
る。 剥離の程度の評価基準(○:剥離なし、△:一部剥離、
×:全面剥離)
FIG. 1 is a diagram showing the degree of peeling with respect to the thickness of a coating layer. Evaluation criteria for degree of peeling (○: No peeling, △: Partial peeling,
×: Complete peeling)

【図2】塗液の固形分に対する被覆層の厚さを示す図で
ある。 ○:下面の厚さ、●:上面の厚さ。
FIG. 2 is a diagram showing the thickness of the coating layer with respect to the solid content of the coating liquid. ○: Thickness of lower surface, ●: Thickness of upper surface.

【図3】塗液の粘度に対する被覆層の厚さを示す図であ
る。 ○:下面の厚さ、●:上面の厚さ。
FIG. 3 is a diagram showing the thickness of a coating layer with respect to the viscosity of a coating liquid. ○: Thickness of lower surface, ●: Thickness of upper surface.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C09D 163/00 PKJ C09D 163/00 PKJ 171/10 PLQ 171/10 PLQ 175/04 PHP 175/04 PHP PHW PHW (72)発明者 吉井 和雄 神奈川県平塚市東八幡4丁目17番1号 関西ペイント株式会社内 (72)発明者 西本 忠史 神奈川県平塚市東八幡4丁目17番1号 関西ペイント株式会社内 (56)参考文献 特開 昭61−55281(JP,A)─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C09D 163/00 PKJ C09D 163/00 PKJ 171/10 PLQ 171/10 PLQ 175/04 PHP 175/04 PHP PHW PHW (72) Inventor Kazuo Yoshii 4-17-1, Higashi-Hachiman, Hiratsuka City, Kanagawa Prefecture Kansai Paint Co., Ltd. 56) References JP-A-61-55281 (JP, A)

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (A)数平均分子量8,000〜20,
000のフェノキシ樹脂(i)、または脂肪酸変性もし
くは無変性のエポキシ当量300以上のエポキシ樹脂
(ii)、 (B)尿素樹脂、メラミン樹脂およびポリイソシアネー
ト化合物から選ばれる少なくとも1種の硬化剤、 (C)シリカ、を必須成分として含有し、かつ{(A)
+(B)}/(C)の割合が重量比で95/5〜50/
50の範囲で成る亜鉛メッキ鋼線用被覆組成物。
1. A number average molecular weight of 8,000 to 20,
000 phenoxy resin (i), or a fatty acid-modified or non-modified epoxy resin having an epoxy equivalent of 300 or more (ii), (B) at least one curing agent selected from urea resins, melamine resins and polyisocyanate compounds, (C) ) Silica is contained as an essential component, and {(A)
The ratio of + (B)} / (C) is 95/5 to 50 / by weight.
A coating composition for galvanized steel wire in the range of 50.
【請求項2】 エポキシ樹脂が末端に少なくとも1個以
上の塩基性窒素原子と少なくとも2個以上の1級水酸基
を有するものである請求項1記載の亜鉛メッキ鋼線用被
覆組成物。
2. The coating composition for galvanized steel wire according to claim 1, wherein the epoxy resin has at least one basic nitrogen atom and at least two primary hydroxyl groups at the terminal.
【請求項3】 請求項1または2記載の被覆組成物を1
5〜28重量%含み、その粘度を20〜170センチポ
イズとなるように有機溶剤と混合した塗液を塗布、焼付
硬化し、硬化後の樹脂被覆層の厚みを3〜30μmとし
たケーブル用亜鉛メッキ鋼線。
3. A coating composition according to claim 1 or 2
Zinc plating for cables, containing 5 to 28% by weight, and applying a coating liquid mixed with an organic solvent so that the viscosity is 20 to 170 centipoise, and baking and curing the resin coating layer after curing to have a thickness of 3 to 30 μm. Steel wire.
JP3152044A 1991-06-24 1991-06-24 Coating composition for galvanized steel wire and galvanized steel wire for cable applied with the same Expired - Lifetime JP2563006B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3152044A JP2563006B2 (en) 1991-06-24 1991-06-24 Coating composition for galvanized steel wire and galvanized steel wire for cable applied with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3152044A JP2563006B2 (en) 1991-06-24 1991-06-24 Coating composition for galvanized steel wire and galvanized steel wire for cable applied with the same

Publications (2)

Publication Number Publication Date
JPH05156582A JPH05156582A (en) 1993-06-22
JP2563006B2 true JP2563006B2 (en) 1996-12-11

Family

ID=15531833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3152044A Expired - Lifetime JP2563006B2 (en) 1991-06-24 1991-06-24 Coating composition for galvanized steel wire and galvanized steel wire for cable applied with the same

Country Status (1)

Country Link
JP (1) JP2563006B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2230612A1 (en) * 1997-04-24 1998-10-24 Basf Corporation Acid epoxy-isocyanate clear coat systems
KR100396084B1 (en) * 1998-12-01 2003-08-27 주식회사 포스코 Surface-Treated Steel Sheet for Automotive Fuel Tanks and Method of Fabricating thereof
KR100402014B1 (en) * 1999-11-12 2003-10-17 주식회사 포스코 A resin coating solution for coated steel sheets with exellent adhesion after forming and a method for manufacturing resin coating steel sheets by using it
KR100482211B1 (en) * 2000-11-22 2005-04-13 주식회사 포스코 Resin solution for automotive fuel tank and method for manufacturing resin coated steel sheet by using it
KR100498094B1 (en) * 2000-12-21 2005-07-01 주식회사 포스코 A coating composition for fuel container having corrosion resistance adhesive and a coating method by using them
JP4998935B2 (en) * 2006-05-24 2012-08-15 大日本塗料株式会社 Paint composition
US20110193442A1 (en) * 2007-10-12 2011-08-11 Kengo Yoshida Insulated wire, electrical coil using the insulated wire, and motor

Also Published As

Publication number Publication date
JPH05156582A (en) 1993-06-22

Similar Documents

Publication Publication Date Title
EP0573016B1 (en) Anticorrosive primer composition
US4075153A (en) Corrosion-resistant epoxy-amine chromate-containing primers
JP3784638B2 (en) Metal surface treatment agent and metal material coated with the same
JPH0215177A (en) Production of surface-treated steel sheet having high corrosion resistance
JP2563006B2 (en) Coating composition for galvanized steel wire and galvanized steel wire for cable applied with the same
CA1205231A (en) Process for applying a coating to a substrate and a liquid aqueous composition to be used therein
JPH02258335A (en) Organic coated steel sheet of superior resistance to corrosion after processing
JPS6264872A (en) Primer composition for metallic material and method of coating
US3759751A (en) Corrosion resisting wash primer composition and corrosion protected metal surface
JPH02155966A (en) Surface treating method of galvanized sheet steel
JP7457846B2 (en) Coated plated steel plate
JPH06146010A (en) Galvanized steel wire for resin coated cable
JP2553979B2 (en) Colored coating composition for galvanized steel wire and colored galvanized steel wire for cable using the same
JP2000281946A (en) Zinc-based metal plated steel plate or aluminum-based metal plated steel plate and organically covered steel plate
JP3497818B2 (en) Paint composition and coated steel sheet using the same
JP3383596B2 (en) Organic coated steel sheet with excellent corrosion resistance
JP2004277664A (en) Aqueous coating composition and coated metal plate using thereof
JPS58113216A (en) Resin and coating composition containing same
JP7163949B2 (en) Surface treated steel plate
JPH0448348B2 (en)
JPH09151299A (en) Epoxy resin composition for coating material
JPH0475941B2 (en)
JPS6220232B2 (en)
JPH0463109B2 (en)
JPH0564770A (en) Organic matter coated aluminum material excellent in after-processing corrosion resistance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960611