JP2562654Y2 - Container for electron beam irradiation treatment of polytetrafluoroethylene - Google Patents

Container for electron beam irradiation treatment of polytetrafluoroethylene

Info

Publication number
JP2562654Y2
JP2562654Y2 JP7910392U JP7910392U JP2562654Y2 JP 2562654 Y2 JP2562654 Y2 JP 2562654Y2 JP 7910392 U JP7910392 U JP 7910392U JP 7910392 U JP7910392 U JP 7910392U JP 2562654 Y2 JP2562654 Y2 JP 2562654Y2
Authority
JP
Japan
Prior art keywords
container
electron beam
ptfe
beam irradiation
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7910392U
Other languages
Japanese (ja)
Other versions
JPH0642120U (en
Inventor
利男 佐藤
正昭 武久
徹 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RADIA INDUSTRY CO., LTD.
Original Assignee
RADIA INDUSTRY CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RADIA INDUSTRY CO., LTD. filed Critical RADIA INDUSTRY CO., LTD.
Priority to JP7910392U priority Critical patent/JP2562654Y2/en
Publication of JPH0642120U publication Critical patent/JPH0642120U/en
Application granted granted Critical
Publication of JP2562654Y2 publication Critical patent/JP2562654Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】この考案はコンベヤ等の搬送手段
を使用しポリテトラフルオルエチレン(以下PTFEと
いう)を収容した照射容器を移動しながら電子ビーム照
射処理するPTFEの電子ビーム照射処理用容器に関す
るものである。
BACKGROUND OF THE INVENTION The present invention relates to a PTFE electron beam irradiation container in which an electron beam irradiation process is performed while moving an irradiation container containing polytetrafluoroethylene (hereinafter referred to as PTFE) using a conveyor means or the like. It is about.

【0002】[0002]

【従来の技術】一般に、PTFEに電離放射線を照射し
その分子量を低下させて製造したPTFE微粉末は、印
刷インク,塗料,潤滑油,プラスチック成形原料などに
分散、配合して、印刷インク,塗料などでは印刷面或い
は塗膜の耐磨耗性の向上、また潤滑油では機械の騒音防
止,耐磨耗性の向上による機械寿命の延長等、プラスチ
ック成形原料では成形中のフロー特性の向上に加えて成
形後の製品の耐磨耗性,耐薬品性の向上等の目的で各産
業分野に用いられている。
2. Description of the Related Art In general, PTFE fine powder produced by irradiating PTFE with ionizing radiation to reduce its molecular weight is dispersed and blended in printing inks, paints, lubricating oils, raw materials for plastic molding, and the like, and is used for printing inks and paints. In addition to improving the flow characteristics during molding, plastic molding materials improve the abrasion resistance of the printed surface or coating film, and lubricating oils prevent machine noise and prolong the life of the machine due to improved abrasion resistance. It is used in various industrial fields for the purpose of improving the abrasion resistance and chemical resistance of products after molding.

【0003】従来、PTFEの電離放射線の照射処理す
る方法としては、例えばコバルト60線源によるガンマ
線照射及び電子ビーム照射の方法が用いられている。ガ
ンマ線を照射処理する場合は、コバルト60線源の近傍
にPTFEを通気性のある容器(段ボール箱,開口の金
属容器など)に収納して静止状態で照射する方法が採ら
れているが、コバルト60線源からのガンマ線は、線量
率(単位時間当たりの放射線量)が1〜10kGy/時
間と低いため、当該PTFEの分子量を低下させるに要
する30kGy〜3000kGyの吸収線量を与えるに
は長時間を要する。また、PTFEの分解ガス(フッ化
水素及び酸化性フッ化物)は照射中及び照射後長時間に
わたって少量ずつ発生する。この照射中に発生する分解
ガスは、照射室内の空気に拡散混合されるが、その濃度
は1PPM程度と低い。照射室内の空気は吸引してアル
カリ水溶液と接触させ分解ガスを吸収した後、大気に放
出するなどしている。また、照射に伴なう発熱も線量率
が低いため、熱拡散により過度に熱せられる事はない。
Conventionally, as a method for irradiating PTFE with ionizing radiation, for example, a method of gamma ray irradiation and electron beam irradiation by a cobalt 60 radiation source has been used. When irradiating with gamma rays, a method has been adopted in which PTFE is stored in a gas-permeable container (such as a cardboard box or a metal container with an opening) in the vicinity of a cobalt 60 radiation source and irradiated in a stationary state. Since the dose rate (radiation dose per unit time) of a gamma ray from a 60 source is as low as 1 to 10 kGy / hour, it takes a long time to give an absorbed dose of 30 kGy to 3000 kGy required to reduce the molecular weight of the PTFE. It costs. Further, PTFE decomposition gas (hydrogen fluoride and oxidizable fluoride) is generated little by little during irradiation and for a long time after irradiation. The decomposition gas generated during the irradiation is diffused and mixed into the air in the irradiation chamber, and its concentration is as low as about 1 PPM. The air in the irradiation chamber is sucked, brought into contact with an alkaline aqueous solution to absorb the decomposed gas, and then released to the atmosphere. Further, since the dose rate of the heat generated by the irradiation is low, the heat is not excessively heated by the thermal diffusion.

【0004】一方、電子ビーム照射処理の場合は、線量
率がガンマ線の約1000倍にも達し、従って短時間の
照射で必要な吸収線量を与える利点がある。
On the other hand, in the case of the electron beam irradiation treatment, the dose rate reaches about 1000 times that of gamma rays, and therefore, there is an advantage that a short-time irradiation gives a necessary absorbed dose.

【0005】[0005]

【考案が解決しようとする課題】しかし、この電子ビー
ム照射では、分解ガス濃度及びPTFEの温度上昇が極
端に高く、分解ガス濃度は照射処理容器内で100PP
M以上となり、条件によっては1000PPMを超える
こともある。しかも、PTFE温度も吸収線量に伴って
上昇し、大線量ではPTFEの溶融温度以上となり、変
色,変質など好ましからぬ変化を来す。
However, in this electron beam irradiation, the decomposition gas concentration and the temperature rise of the PTFE are extremely high, and the decomposition gas concentration is 100 PP in the irradiation container.
M or more, and may exceed 1000 PPM depending on conditions. In addition, the PTFE temperature also rises with the absorbed dose, and when the dose is large, the PTFE temperature becomes higher than the melting temperature of PTFE, and undesired changes such as discoloration and deterioration occur.

【0006】また、これらの問題点を解決するため、例
えばリボンブレンダー等を使用し、PTFEを流動状態
に機械的に攪拌しながら、水冷ジャケットに冷却水を通
し、或いは水を直接PTFE粉末に吹き付けるなどの方
法で除熱し、分解ガスを吸引し、アルカリ水溶液と接触
中和処理するバッチ処理する方法が提案されている(特
開平1ー294010号公報)。しかし、この方法では
設備が大掛かりとなり、設備投資額も多いことから、大
量処理或いは専用に処理する場合でないと向かない。他
方、乳化重合した未焼成PTFEは高温下で機械的に攪
拌したり、過度の振動を与えると凝集固化するため、ブ
レンダー方式は採用できない。
In order to solve these problems, for example, using a ribbon blender or the like, cooling water is passed through a water cooling jacket or water is directly sprayed on the PTFE powder while mechanically stirring PTFE in a fluid state. For example, there has been proposed a method of performing a batch treatment in which heat is removed by such a method as described above, a decomposition gas is sucked, and a contact neutralization treatment is performed with an aqueous alkali solution (Japanese Patent Laid-Open No. 1-294010). However, this method requires a large amount of equipment and a large amount of equipment investment, and therefore is not suitable for mass processing or dedicated processing. On the other hand, the unpolymerized PTFE emulsion-polymerized is mechanically stirred at a high temperature or coagulated and solidified when subjected to excessive vibration, so that the blender method cannot be adopted.

【0007】本考案は上記実情に鑑み、分解ガスを処理
しえる装置を備えた照射容器とすることで、上記課題を
解決するPTFEの電子ビーム照射処理用容器を提供す
ることを目的としたものである。
The present invention has been made in view of the above circumstances, and has as its object to provide a PTFE electron beam irradiation processing container which solves the above-mentioned problems by providing an irradiation container provided with a device capable of processing a decomposition gas. It is.

【0008】[0008]

【課題を解決するための手段】本考案は、高分子量のP
TFEの分子量を低下させ、粉砕を容易ならしめるため
にコンベヤ等の搬送手段を用い移動させながら電子ビー
ム照射処理する容器において、容器本体を電子ビームが
充分透過可能な薄い金属等の窓を有する薄型容器とし、
且つ容器本体に電子ビーム照射にて発生する分解ガスを
吸収する吸収剤を詰めた吸収缶を設けると共に、電子ビ
ーム照射による温度上昇を冷却する送風口を備えたもの
である。
DISCLOSURE OF THE INVENTION The present invention provides a high molecular weight P
In order to reduce the molecular weight of TFE and to facilitate the pulverization, the container to be subjected to electron beam irradiation while being moved using a conveyor or other transport means has a thin main body with a window made of a thin metal or the like through which the electron beam can be sufficiently transmitted. Container and
In addition, the container body is provided with an absorbing can filled with an absorbent for absorbing a decomposition gas generated by electron beam irradiation, and is provided with an air outlet for cooling a rise in temperature due to electron beam irradiation.

【0009】[0009]

【作用】上記のように、容器本体の端部には電子ビーム
照射にて発生する分解ガスを吸収する吸収剤を詰めた吸
収缶と、電子ビーム照射による温度上昇を冷却する送風
口を備えたことにより、容器本体の上面となる薄い金属
窓より透過した電子ビームが内部のPTFEを照射し、
このエネルギーの吸収により分子鎖が切断されフッ化水
素,酸化性フッ化物等の分解ガスが発生するが、この分
解ガスは容器本体の側部の吸収缶に流入し吸収剤で吸収
され、発生ガスを除去したガス(空気)のみが大気に放
出されると共に、エネルギーの吸収により発生した熱は
送風口から吹き込まれる空気により持ち去られ冷却さ
れ、この熱風も前記吸収缶を経て同様に大気に放出され
る。
As described above, at the end of the container body, there are provided an absorption can filled with an absorbent for absorbing decomposition gas generated by electron beam irradiation, and a blowing port for cooling a temperature rise caused by electron beam irradiation. Thereby, the electron beam transmitted through the thin metal window on the upper surface of the container body irradiates the inside PTFE,
The absorption of this energy breaks the molecular chains and generates decomposed gas such as hydrogen fluoride and oxidizable fluoride. The decomposed gas flows into the absorption can on the side of the container body and is absorbed by the absorbent, and the generated gas Only the gas (air) from which air has been removed is released to the atmosphere, and the heat generated by the absorption of energy is taken away and cooled by the air blown from the blowing port, and this hot air is similarly released to the atmosphere via the absorption can. You.

【0010】[0010]

【実施例】以下、本考案を実施例の図面に基づいて説明
すれば、次の通りである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings of embodiments.

【0011】図1,図2は照射容器の下部にPTFEを
収容した実施例を示し、1は長方形の薄型筐体となる容
器本体で、該容器本体1の上面には電子ビームが充分透
過可能なチタン又はステンレススチール箔等の薄い金属
製窓2を配設し、容器本体1の上部1aに冷却用空気が
流通しえる所定間隙3を介在し下部1bに高分子量のP
TFE4を収容し、且つ容器本体1の前記上部間隙3の
一端に、内部にシリカゲル,活性炭,活性炭にアルミナ
シリカゲルを配合したもの等よりなる吸収剤5を詰めた
吸収缶6を接続し、該吸収缶6の上端には吸引ポンプ
(図示せず)に連絡する吸引口7を設けている。また、
容器本体1の前記上部間隙3の他端に送風口8が臨む送
風管9を配設する。この送風管9の中途にはバルブ10
を取付け、常時は該バルブ10を締め吸収缶6側となる
一端のみが開放され容器本体1を密閉状とし、これら全
体の構成で電子ビーム照射処理用容器11となる。
FIGS. 1 and 2 show an embodiment in which PTFE is accommodated in the lower part of an irradiation container. Reference numeral 1 denotes a container main body which is a rectangular thin housing, and the upper surface of the container main body 1 is capable of sufficiently transmitting an electron beam. A thin metal window 2 made of, for example, titanium or stainless steel foil, is disposed, a predetermined gap 3 through which cooling air can flow through an upper portion 1a of the container body 1, and a high molecular weight P
An absorption can 6 containing TFE 4 and filled with an absorbent 5 made of silica gel, activated carbon, or a mixture of activated carbon and alumina silica gel is connected to one end of the upper gap 3 of the container body 1. The upper end of the can 6 is provided with a suction port 7 communicating with a suction pump (not shown). Also,
At the other end of the upper gap 3 of the container body 1, there is disposed a blower tube 9 whose blower opening 8 faces. In the middle of the blower pipe 9, there is a valve 10.
The valve 10 is normally closed, and only one end on the absorption can 6 side is opened to make the container body 1 hermetically closed. Thus, the entire structure constitutes a container 11 for electron beam irradiation processing.

【0012】いまこの作用を説明すると、先ずPTFE
に対する電子ビームの照射に際し、このPTFE4を電
子ビーム照射処理用容器11の下部に、蓋構成となる窓
2を外して電子ビームaが充分透過し得る厚さ分量を収
容し、再度窓2を被せて密閉状態とする。
Now, this operation will be described.
When the PTFE 4 is irradiated with the electron beam, the PTFE 4 is placed in the lower part of the electron beam irradiation processing container 11 by removing the window 2 serving as a lid and accommodating a thickness amount enough to allow the electron beam a to pass therethrough. To a closed state.

【0013】ここにおいて、この電子ビーム照射処理用
容器11を、例えば図5に示すような搬送手段、即ちロ
ーラコンベヤAに載置し適宜速度で移動させながら電子
ビーム発生装置Bの下端の突設した取り出しスキャンホ
ーンCの下方を通過させれば、該スキャンホーンCから
照射された電子ビームaは電子ビーム入射面となる薄い
金属製窓2を透過する。この薄い金属製窓2は、例えば
5MVの加速エネルギーの場合には、窓材はチタン又は
ステンレススチール箔を使用したとき、50μm〜20
0μmの厚さが良い。
In this case, the electron beam irradiation processing container 11 is mounted on, for example, a conveying means, that is, a roller conveyor A as shown in FIG. When the electron beam a emitted from the scan horn C passes below the take-out scan horn C, the electron beam a passes through the thin metal window 2 serving as an electron beam incident surface. When the acceleration energy of, for example, 5 MV, the thin metal window 2 has a window material of 50 μm to 20 μm when using titanium or stainless steel foil.
A thickness of 0 μm is good.

【0014】ここで、PTFE4に電子ビームaが照射
されるとこのエネルギーが吸収され分子量が低下する
が、このとき容器内の温度上昇(電子ビームを容器底部
まで届かせないと充分な反応が起こらないため、必然的
に容器自体も加熱され温度上昇する)並びにフッ化水素
を主体とする毒性の強い分解ガスbの発生を招く。この
分解ガスの発生で容器11内の空気が体積膨脹し、この
分解ガスが連通となる吸収缶6へ流れ込み吸収剤5で吸
着され、吸引口7側から清浄となったガスが大気に放出
される。
Here, when the PTFE 4 is irradiated with the electron beam a, the energy is absorbed and the molecular weight decreases. At this time, the temperature inside the container rises (unless the electron beam reaches the bottom of the container, a sufficient reaction occurs. Therefore, the container itself is inevitably heated and the temperature rises), and highly toxic decomposition gas b mainly composed of hydrogen fluoride is generated. Due to the generation of the decomposed gas, the volume of the air in the container 11 expands, and the decomposed gas flows into the communicating can 6 which is adsorbed by the absorbent 5, and the clean gas is released to the atmosphere from the suction port 7 side. You.

【0015】また、当該容器11に取り付けた冷却風送
風口8は通常の照射処理中ではバルブ10を閉じておく
が、PTFE4の低分子化を促進するため、或いは除熱
のためなどに冷風を吹き込む場合はバルブ10を開き送
風口8を開放し空気cを間隙(空隙)3へ流入させ、吸
収缶6の吸引口7に連結した吸引ポンプ(図示せず)を
もって強制的に吸引することにより、容器内部の除熱と
PTFE4に吸着したフッ化水素等の分解ガスの処理
と、更にPTFE4に酸素の供給を同時に行い得る。特
に、乳化重合したPTFEの場合には、外部からの応力
を掛けることなく照射処理ができるので、その物性を損
なうことなく低分子化が可能となる。
Further, the cooling air blow port 8 attached to the container 11 keeps the valve 10 closed during normal irradiation processing, but cool air is blown to promote the depolymerization of PTFE 4 or to remove heat. In the case of blowing, the valve 10 is opened, the air outlet 8 is opened, the air c flows into the gap (gap) 3, and the air c is forcibly sucked by a suction pump (not shown) connected to the suction port 7 of the absorption can 6. In addition, heat removal inside the container, treatment of a decomposition gas such as hydrogen fluoride adsorbed on the PTFE 4, and supply of oxygen to the PTFE 4 can be simultaneously performed. In particular, in the case of emulsion-polymerized PTFE, irradiation treatment can be performed without applying external stress, so that the molecular weight can be reduced without impairing its physical properties.

【0016】図3,図4は容器本体の底部に吸熱用水槽
を組み合わせた他の実施例を示す。この場合は、容器本
体1に収容するPTFE4を、中間部に敷設した金網1
2等に載置し中間収容とし上下部に間隙3,13を形成
し、且つ容器本体1の底部にPTFE層を通過した余っ
た熱を吸収するための水槽14を取り付けた重ね構造と
する。また、このときの冷却風送風口8は前記下部の間
隙13の一端に配設し、送風口8からの冷却の空気cは
金網12,PTFE4中を上昇し上部間隙3を経て吸収
缶6側へ流れる流路を取る。
FIGS. 3 and 4 show another embodiment in which a heat absorbing water tank is combined with the bottom of the container body. In this case, the PTFE 4 housed in the container body 1 is
2 and the like, and intermediate storage is provided to form gaps 3 and 13 in the upper and lower portions, and a water tank 14 for absorbing excess heat passing through the PTFE layer is attached to the bottom of the container body 1 to form a stacked structure. At this time, the cooling air blowing port 8 is disposed at one end of the lower gap 13, and the cooling air c from the blowing port 8 rises in the wire mesh 12 and the PTFE 4 and passes through the upper gap 3 to the absorption can 6 side. Take the channel that flows to.

【0017】このときは、PTFE4に対し充分な電子
ビームaを上方から照射させ、電子ビームaがPTFE
4を透過しても、該PTFE4の下面に直接容器底面が
位置せず間隙13を介在して容器底面が有り、且つ該容
器底面には熱を吸収するため水を注入した水槽14を配
設しているため、余分なエネルギーを水槽14で吸収し
てしまい容器本体1に対する加熱による温度上昇を招か
ず、材料(PTFE4)のオーバーヒートを防ぐもので
ある。
At this time, the PTFE 4 is irradiated with a sufficient electron beam a from above, and the electron beam a
4, the bottom surface of the container is not directly located on the lower surface of the PTFE 4, and the bottom surface of the container is provided with a gap 13 therebetween. A water tank 14 into which water is injected to absorb heat is provided on the bottom surface of the container. As a result, excess energy is absorbed by the water tank 14, so that the temperature of the container body 1 does not rise due to heating, and the material (PTFE 4) is prevented from overheating.

【0018】実施例 縦148cm,横45cm,深さ10cmの照射処理容
器に100μmのステンレススチール製箔窓を取り付
け、12kgのPTFEを入れ、平らに均す。分解ガス
吸収缶は直径5cm,長さ15cmの円筒状のものに活
性炭30%,シリカアルミナゲル70%の混練ペレット
300gを充填し、1回の照射で25kGyの吸収線量
をPTFEに与えるよう照射条件を設定し、24回照射
して600kGyの吸収線量を与えるようにコンベヤを
使用して照射した。
EXAMPLE A 100 μm stainless steel foil window was attached to an irradiation treatment vessel having a length of 148 cm, a width of 45 cm, and a depth of 10 cm, and 12 kg of PTFE was put therein and leveled. The cracking gas absorption can is filled with a cylinder of 5 cm in diameter and 15 cm in length filled with 300 g of kneaded pellets of 30% activated carbon and 70% silica-alumina gel. Irradiation conditions are such that a single irradiation gives an absorption dose of 25 kGy to PTFE. Was set and irradiated 24 times using a conveyor to give an absorbed dose of 600 kGy.

【0019】 照射条件 加速電圧 5MV ビーム電流 10mA コンベア速度 2m/分 吸収線量と吸収缶を通して大気中に放出されるフッ化水
素濃度を表1に示す。
Irradiation conditions Acceleration voltage 5 MV Beam current 10 mA Conveyor speed 2 m / min Table 1 shows the absorbed dose and the concentration of hydrogen fluoride released into the atmosphere through the absorber.

【0020】 [0020]

【0021】本照射処理したPTFEの分子量分布の目
安として融点を測定したら、313℃であり、ガンマ線
により600kGy照射処理したPTFEと同等の分子
量低下を認めた。また、ガンマ線により600kGy照
射処理したPTFEと同一条件で本照射処理したPTF
Eを微粉砕機で粉砕した結果、その粒度分布はγ線処理
したものと同等の結果を得た。
When the melting point was measured as a measure of the molecular weight distribution of the irradiated PTFE, it was found to be 313 ° C., and a decrease in the molecular weight equivalent to that of the PTFE irradiated with 600 kGy by gamma rays was recognized. In addition, the PTF that has been subjected to the main irradiation treatment under the same conditions as the PTFE that has been subjected to the irradiation treatment of 600 kGy with gamma rays
As a result of pulverizing E with a fine pulverizer, the particle size distribution obtained a result equivalent to that obtained by γ-ray treatment.

【0022】以上の実施例に示す如く本考案の照射容器
を使用してコンベヤ等の搬送手段を備えた電子ビーム照
射装置でPTFEの低分子化を可能にした。また、本考
案の照射容器は、その材質,電子ビーム透過箔窓の材
質,分解ガス吸着剤の種類等は本考案の詳細な説明に限
定するまでもなく、その機能を満たすものであればよ
い。
As shown in the above embodiment, the irradiation container of the present invention can be used to reduce the molecular weight of PTFE by an electron beam irradiation apparatus equipped with a conveyor or other conveying means. Further, the material of the irradiation container of the present invention, the material of the electron beam transmitting foil window, the type of the decomposition gas adsorbent, etc. are not limited to the detailed description of the present invention, but may be any as long as they fulfill the function. .

【0023】[0023]

【考案の効果】上述の様に、本考案のPTFEの電子ビ
ーム照射処理用容器は薄型筐体の容器本体内に収容する
PTFE層の少なくとも上部又は下部に冷風通過用の間
隙を設け、且つ容器本体の両端に送風口と吸収剤を入れ
た吸収缶を配設したことにより、電子ビーム照射にて発
生する有毒な分解ガスを吸収剤で吸着し、容器内の温度
上昇を冷風通過で冷却するので、PTFEが必要以上に
温度上昇がなく、変色,変質等を招かず、また分解ガス
の排気がないため室内汚染をも招かない。また、本考案
は構成が簡略化されているため、製作が容易で、且つ電
子ビーム照射装置,搬送手段もコンパクトにまとまり
得、設置が簡単で、操作も容易となる等の効果を有す
る。なお、照射容器の搬送手段としては、図示のローラ
コンベヤの他、スラットコンベヤや走行台車,トレー等
を用いても同様である。
As described above, the PTFE electron beam irradiation processing container of the present invention has a gap for passing cool air at least above or below the PTFE layer housed in the container body of the thin case. By arranging an air canister containing an air absorber and an air vent at both ends of the main body, the toxic decomposition gas generated by electron beam irradiation is absorbed by the absorber, and the temperature rise in the container is cooled by passing cool air. Therefore, the PTFE does not raise the temperature more than necessary, does not cause discoloration, deterioration, and the like, and does not cause indoor pollution because there is no exhaust of the decomposition gas. In addition, the present invention has the advantages that the structure is simplified, the manufacturing is easy, the electron beam irradiating device and the transporting means can be made compact, the installation is simple, and the operation is easy. It should be noted that a slat conveyor, a traveling cart, a tray, or the like may be used as a means for conveying the irradiation container in addition to the illustrated roller conveyor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この考案の実施例を示す電子ビーム照射処理用
容器の一部切り欠き側面図である。
FIG. 1 is a partially cutaway side view of an electron beam irradiation processing container showing an embodiment of the present invention.

【図2】同平面図である。FIG. 2 is a plan view of the same.

【図3】他の実施例を示す電子ビーム照射処理用容器の
一部切り欠き側面図である。
FIG. 3 is a partially cutaway side view of an electron beam irradiation processing container showing another embodiment.

【図4】同平面図である。FIG. 4 is a plan view of the same.

【図5】容器に対する電子ビーム照射の説明図である。FIG. 5 is an explanatory diagram of electron beam irradiation on a container.

【符号の説明】[Explanation of symbols]

1 容器本体 2 薄い金属製窓 3 間隙 5 吸収剤 6 吸収缶 8 送風口 DESCRIPTION OF SYMBOLS 1 Container main body 2 Thin metal window 3 Gap 5 Absorbent 6 Absorber can 8 Blast port

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // B29K 27:18 Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location // B29K 27:18

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 高分子量のポリテトラフルオルエチレン
の分子量を低下させ、粉砕を容易ならしめるためにコン
ベヤ等の搬送手段を用い移動させながら電子ビーム照射
処理する容器において、容器本体を電子ビームが充分透
過可能な薄い金属等の窓を有する薄型容器とし、且つ容
器本体に電子ビーム照射にて発生する分解ガスを吸収す
る吸収剤を詰めた吸収缶を設けると共に、電子ビーム照
射による温度上昇を冷却する送風口を備えたことを特徴
とするポリテトラフルオルエチレンの電子ビーム照射処
理用容器。
1. A container which is subjected to an electron beam irradiation process while moving using a conveyor means or the like in order to reduce the molecular weight of high molecular weight polytetrafluoroethylene and to facilitate pulverization. A thin container with a window made of a thin metal or the like that is sufficiently permeable, and an absorbent can filled with an absorbent that absorbs decomposition gas generated by electron beam irradiation are provided in the container body, and the temperature rise due to electron beam irradiation is cooled. A container for electron beam irradiation treatment of polytetrafluoroethylene, comprising:
JP7910392U 1992-11-17 1992-11-17 Container for electron beam irradiation treatment of polytetrafluoroethylene Expired - Lifetime JP2562654Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7910392U JP2562654Y2 (en) 1992-11-17 1992-11-17 Container for electron beam irradiation treatment of polytetrafluoroethylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7910392U JP2562654Y2 (en) 1992-11-17 1992-11-17 Container for electron beam irradiation treatment of polytetrafluoroethylene

Publications (2)

Publication Number Publication Date
JPH0642120U JPH0642120U (en) 1994-06-03
JP2562654Y2 true JP2562654Y2 (en) 1998-02-16

Family

ID=13680557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7910392U Expired - Lifetime JP2562654Y2 (en) 1992-11-17 1992-11-17 Container for electron beam irradiation treatment of polytetrafluoroethylene

Country Status (1)

Country Link
JP (1) JP2562654Y2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019947A1 (en) 2013-08-06 2015-02-12 日本バルカー工業株式会社 Method for producing electrode film for electric double layer capacitors

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015019947A1 (en) 2013-08-06 2015-02-12 日本バルカー工業株式会社 Method for producing electrode film for electric double layer capacitors
US10373768B2 (en) 2013-08-06 2019-08-06 Valqua, Ltd. Method for producing electrode film for electric double layer capacitors

Also Published As

Publication number Publication date
JPH0642120U (en) 1994-06-03

Similar Documents

Publication Publication Date Title
US4309388A (en) Ozone sterilizing apparatus
CA1334257C (en) Sterilization employing uv and non-air atmosphere
EP1183052A1 (en) Sealed enclosure sterilization
JP5128251B2 (en) Aseptic environment maintenance device
JPH10502563A (en) Cleaning equipment
KR20000070649A (en) Apparatus and method for disposal of infectious and medical waste
EP0522083A4 (en) Method and apparatus for rendering medical materials safe
US5523052A (en) Method and apparatus for rendering medical materials safe
EP1566103B1 (en) Method and device for converting ethylene in ethane and freshness keeping apparatus for fresh agricultural product
EP0559500B1 (en) Apparatus for forming resin coating on surface of article having three-dimensional structure
JP2562654Y2 (en) Container for electron beam irradiation treatment of polytetrafluoroethylene
CA2078954C (en) Aspiration unit for conditioning air during rail car unloading of perishable food products
US3861292A (en) Liquid smoke regenerator
JP5280512B2 (en) Aseptic environment maintenance device
JPS6240597Y2 (en)
US20230056171A1 (en) Sterilizing device and method for sterilizing an outer face of a receptacle
CN208785343U (en) A kind of novel electron accelerator radiation chamber
JPH0491134A (en) Pulverization of polymer
JPH081075Y2 (en) Volatile scatter remover
JPS6058979B2 (en) Flash sterilization method
JP2543638Y2 (en) Ethylene removal equipment
JP3072999B2 (en) Air shutoff particle beam irradiation processing equipment
JP2802376B2 (en) Method for pulverizing polymer
JP3226574B2 (en) Air-blocking particle beam rotation irradiation processing device
JP3479262B2 (en) Carbonization container with far infrared rays and carbonization treatment device for medical waste using this container