JP2561150B2 - Surface treatment method for copper and copper alloys - Google Patents

Surface treatment method for copper and copper alloys

Info

Publication number
JP2561150B2
JP2561150B2 JP1148136A JP14813689A JP2561150B2 JP 2561150 B2 JP2561150 B2 JP 2561150B2 JP 1148136 A JP1148136 A JP 1148136A JP 14813689 A JP14813689 A JP 14813689A JP 2561150 B2 JP2561150 B2 JP 2561150B2
Authority
JP
Japan
Prior art keywords
copper
acid
added
zinc
imidazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1148136A
Other languages
Japanese (ja)
Other versions
JPH0313584A (en
Inventor
修二 吉田
啓樹 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Chemicals Corp
Original Assignee
Shikoku Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Chemicals Corp filed Critical Shikoku Chemicals Corp
Priority to JP1148136A priority Critical patent/JP2561150B2/en
Priority to EP89309866A priority patent/EP0364132A1/en
Priority to KR89013993A priority patent/KR0142409B1/en
Publication of JPH0313584A publication Critical patent/JPH0313584A/en
Application granted granted Critical
Publication of JP2561150B2 publication Critical patent/JP2561150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/149Heterocyclic compounds containing nitrogen as hetero atom

Description

【発明の詳細な説明】 産業上の利用分野 本発明は銅及び銅合金の表面に耐熱性に優れたアルキ
ルイミダゾールを主成分とする被膜を形成する方法に関
するものであり、特にプリント配線板における回路図の
プリフラックス処理として、好適な方法を提供するもの
である。
Description: TECHNICAL FIELD The present invention relates to a method for forming a coating film containing alkylimidazole as a main component, which has excellent heat resistance, on the surface of copper and a copper alloy, and particularly to a circuit in a printed wiring board. The present invention provides a suitable method as the pre-flux treatment shown in the figure.

従来の技術 銅あるいは銅合金の表面に、2位長鎖アルキルイミダ
ゾール化合物の被膜を形成する表面処理方法は、特公昭
46−17046号、同48−11454号、同48−25621号、同49−1
983号、同49−26183号、同58−22545号、同61−41988号
及び特開昭61−90492号の各公報に記載されている。
2. Description of the Related Art A surface treatment method for forming a film of a 2-position long-chain alkylimidazole compound on the surface of copper or a copper alloy is disclosed in Japanese Patent Publication No.
46-17046, 48-11454, 48-25621, 49-1
983, 49-26183, 58-22545, 61-41988 and JP-A-61-90492.

発明が解決しようとする課題 銅あるいは銅合金の表面に形成した2位長鎖アルキル
イミダゾール化合物の被膜は、室温近辺においては安定
であるが高温下では比較的短時間に変色し、膜表面のは
んだ付けに支障を来す惧れがある。プリント配線板に対
する電子部品の接合方法として、近年表面実装法が多く
採用されているが、この方法によればチップ部品の仮止
め、部品装置の両面装着あるいはチップ部品とディスク
リート部品の混載などのため、特にプリント配線板が高
温下に曝されるようになった。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention A coating film of a 2-position long-chain alkylimidazole compound formed on the surface of copper or a copper alloy is stable at around room temperature but discolors in a relatively short time at high temperature, and solder on the film surface There is a fear that it will interfere with the attachment. In recent years, a surface mounting method has been widely adopted as a method for joining electronic components to a printed wiring board. According to this method, chip components are temporarily fixed, both sides of a component device are mounted, or chip components and discrete components are mixedly mounted. , Especially printed wiring boards are exposed to high temperatures.

従って良好にはんだ付け性を得るためには、プリフラ
ックスとして使用されているアルキルイミダゾールの被
膜の耐熱性を向上させる必要があった。
Therefore, in order to obtain good solderability, it is necessary to improve the heat resistance of the alkylimidazole coating used as the preflux.

課題を解決するための手段 本発明者等は、種々の試験を繰り返した結果、2位長
鎖アルキルイミダゾール化合物、有機酸及び亜鉛化合物
を含む水溶液に、銅あるいは銅合金の表面を接触させる
ことにより、従来の方法に比べて耐熱性に優れた化成被
膜が得られることを見い出し、本発明を完遂した。
Means for Solving the Problems As a result of repeating various tests, the inventors of the present invention contacted the surface of copper or a copper alloy with an aqueous solution containing a 2-position long-chain alkylimidazole compound, an organic acid and a zinc compound. The inventors have found that a chemical conversion coating having excellent heat resistance as compared with conventional methods can be obtained, and completed the present invention.

本発明方法において用いられる2位長鎖アルキルイミ
ダゾール化合物の代表的なものとしては、2−アミルイ
ミダゾール、2−ヘプチルイミダゾール、2−デシルイ
ミダゾール、2−ウンデシルイミダゾール、2−ドデシ
ルイミダゾール、2−トリデシルイミダゾール、2−テ
トラデシルイミダゾール、2−ヘプタデシルイミダゾー
ル、2−ウンデシル−4−メチルイミダゾール、2−ヘ
プタデシル−4−メチルイミダゾール及びこれらの塩が
あり、特に2−ウンデシルイミダゾールと2−ウンデシ
ル−4−メチルイミダゾール及びこれらの塩が好適であ
る。
Typical examples of the 2-position long-chain alkylimidazole compound used in the method of the present invention include 2-amylimidazole, 2-heptylimidazole, 2-decylimidazole, 2-undecylimidazole, 2-dodecylimidazole and 2-tridecylimidazole. There are decyl imidazole, 2-tetradecyl imidazole, 2-heptadecyl imidazole, 2-undecyl-4-methyl imidazole, 2-heptadecyl-4-methyl imidazole and salts thereof, particularly 2-undecyl imidazole and 2-undecyl- 4-Methylimidazole and salts thereof are preferred.

本発明方法の実施に当たっては、水に対して2位長鎖
アルキルイミダゾール化合物を0.01〜5%の範囲、好ま
しくは0.1〜2%の割合で添加すればよい。
In carrying out the method of the present invention, the 2-position long-chain alkylimidazole compound may be added to water in the range of 0.01 to 5%, preferably 0.1 to 2%.

本発明方法の実施においては、2位長鎖アルキルイミ
ダゾールは水に対して難溶性であるため、これらを水に
溶解させるには、長鎖アルキルイミダゾールを有機酸と
反応させて、水に可溶な塩とすればよい。
In the practice of the method of the present invention, the 2-chain long-chain alkylimidazole is poorly soluble in water. Therefore, in order to dissolve them in water, the long-chain alkylimidazole is reacted with an organic acid to dissolve it in water. You can use salt.

本発明方法の実施において用いられる有機酸として
は、蟻酸、酢酸、プロピオン酸、カプリン酸、グリコー
ル酸、アクリル酸、安息香酸、パラニトロ安息香酸、パ
ラブチル安息香酸、パラトルエンスルフォン酸、ピクリ
ン酸、サリチル酸、m−トルイル酸、蓚酸、琥珀酸、マ
レイン酸、フマール酸、酒石酸、アジピン酸等があり、
水に対して0.01〜15%の範囲、好ましくは0.2〜5%の
割合で添加すればよい。
As the organic acid used in the practice of the method of the present invention, formic acid, acetic acid, propionic acid, capric acid, glycolic acid, acrylic acid, benzoic acid, paranitrobenzoic acid, parabutyl benzoic acid, paratoluene sulfonic acid, picric acid, salicylic acid, m-toluic acid, oxalic acid, succinic acid, maleic acid, fumaric acid, tartaric acid, adipic acid, etc.,
It may be added in the range of 0.01 to 15%, preferably 0.2 to 5% with respect to water.

本発明方法の実施に適する亜鉛化合物としては、蟻酸
亜鉛、酢酸亜鉛、蓚酸亜鉛、乳酸亜鉛、クエン酸亜鉛、
安息香酸亜鉛、サリチル酸亜鉛、塩化亜鉛、硫酸亜鉛、
硝酸亜鉛、リン酸亜鉛等があり、水に対して0.02〜5%
の範囲、好ましくは0.1〜2%の割合で添加すればよ
い。
Suitable zinc compounds for carrying out the method of the present invention include zinc formate, zinc acetate, zinc oxalate, zinc lactate, zinc citrate,
Zinc benzoate, zinc salicylate, zinc chloride, zinc sulfate,
There are zinc nitrate, zinc phosphate, etc., 0.02-5% to water
In the range of 0.1 to 2%, preferably 0.1 to 2%.

本発明方法を実施するには、銅あるいは銅合金の表面
を機械研磨するかあるいは酸洗浄したのち、これら金属
を処理液中に浸漬するかあるいは金属表面に処理液を塗
布または噴霧すれば良い。
In order to carry out the method of the present invention, the surface of copper or a copper alloy may be mechanically polished or acid washed, and then these metals may be immersed in a treatment liquid, or the treatment liquid may be applied or sprayed on the metal surface.

本発明方法においては、銅あるいは銅合金の表面に処
理液を、約20℃から60℃の温度範囲で5秒ないし数分間
接触させれば良い。
In the method of the present invention, the treatment liquid may be brought into contact with the surface of copper or copper alloy in the temperature range of about 20 ° C. to 60 ° C. for 5 seconds to several minutes.

作 用 2位長鎖アルキルイミダゾール化合物は酸性水溶液に
よく溶けイオン化する。このイオン化したイミダゾール
は銅に対し強い反応性を有し、銅表面に単分子のイミダ
ゾール膜を形成する。前記の単分子膜上に、長鎖アルキ
ルイミダゾール間の水素結合とファンデルワールス力の
両作用によって、処理液中の残余のアルキルイミダゾー
ルがさらに集まり、銅表面の膜が厚く成長することが知
られている。この場合イミダゾール膜の形成速度は、加
えられる有機酸の種類と量により異なる。
The working 2-position long-chain alkylimidazole compound dissolves well in an acidic aqueous solution and is ionized. This ionized imidazole has a strong reactivity with copper and forms a monomolecular imidazole film on the copper surface. It is known that the remaining alkyl imidazole in the treatment liquid is further gathered on the monomolecular film due to both the hydrogen bond between long-chain alkyl imidazoles and the Van der Waals force, and the film on the copper surface grows thickly. ing. In this case, the formation rate of the imidazole film depends on the type and amount of the organic acid added.

このようにして形成されたイミダゾールの被膜は銅と
の反応性が高いため、基板上の金属銅と容易に反応し、
短時間のうちにアルキルイミダゾール金属錯体を形成す
る。このアルキルイミダゾール金属錯体は、分子中の銅
原子の触媒作用により高温下では徐々に酸化分解する。
またこの錯体が銅金属上に形成された場合には、金属銅
の触媒作用により空気中高温下で容易に酸化分解する。
従ってこの強い銅の触媒作用を抑えることが、形成され
た被膜の耐熱性を向上させることにつながる。
Since the imidazole film formed in this way has high reactivity with copper, it easily reacts with metallic copper on the substrate,
It forms an alkyl imidazole metal complex in a short time. This alkylimidazole metal complex gradually undergoes oxidative decomposition at high temperature due to the catalytic action of copper atoms in the molecule.
When this complex is formed on copper metal, it is easily oxidatively decomposed in air at high temperature due to the catalytic action of metallic copper.
Therefore, suppressing the strong catalytic action of copper leads to improvement in heat resistance of the formed film.

処理液に亜鉛イオンを存在させた場合に、被膜の耐熱
性が改善される詳細なメカニズムについては定かでない
が、ひとつの理由としては亜鉛の高いイオン化係合に起
因していると考えられる。すなわち亜鉛のイオン化傾向
は銅と比べて高いため、銅及び銅合金の表面をアルキル
イミダゾール、有機酸及び亜鉛化合物を含む水溶液で処
理をするとき、液中及び膜中への銅イオンの溶解がかな
り抑えられ、また膜が形成された再に取り込まれた亜鉛
イオンが加熱時の銅の触媒作用をかなり抑えるため、こ
の化成被膜の耐熱性を向上させるものと思われる。
The detailed mechanism by which the heat resistance of the coating is improved when zinc ions are present in the treatment liquid is not clear, but one reason is considered to be due to the high ionization engagement of zinc. That is, since the ionization tendency of zinc is higher than that of copper, when the surfaces of copper and copper alloys are treated with an aqueous solution containing an alkylimidazole, an organic acid and a zinc compound, the dissolution of copper ions in the liquid and the film is considerably reduced. It is considered that zinc ions, which are suppressed and are re-entrapped in the film formed, considerably suppress the catalytic action of copper at the time of heating, so that the heat resistance of this chemical conversion film is improved.

また各種のイミダゾールと亜鉛の錯体はフラックスの
活性剤としても使用されるため(特願昭62−222371
号)、形成された被膜中に存在していると思われるアル
キルイミダゾール亜鉛錯体は、はんだ付け性の向上に寄
与する可能性も考えられる。
In addition, various imidazole-zinc complexes are also used as flux activators (Japanese Patent Application No. 62-222371).
No.), the alkylimidazole zinc complex, which is considered to be present in the formed film, may contribute to the improvement of solderability.

以下実施例及び比較例によって、本発明方法を具体的
に説明する。
The method of the present invention will be specifically described below with reference to Examples and Comparative Examples.

なお、これらの試験において金属表面における化成被
膜の厚さは、所定の大きさの試験片を0.5%塩酸水溶液
に浸漬して、長鎖アルキルイミダゾールを溶出させ、紫
外線分光光度計を用いて、この溶液中に含まれる長鎖ア
ルキルイミダゾールの濃度を測定し、下記の実験式に基
づいて化成被膜の厚さを算出したものである。
In these tests, the thickness of the chemical conversion coating on the metal surface was determined by immersing a test piece of a predetermined size in a 0.5% aqueous hydrochloric acid solution to elute the long-chain alkylimidazole and using an ultraviolet spectrophotometer. The concentration of the long-chain alkyl imidazole contained in the solution was measured, and the thickness of the chemical conversion coating was calculated based on the following empirical formula.

膜厚(μ)=0.253×A×y/S 実施例1及び比較例1 2−ウンデシル−4−メチルイミダゾール1.0gに酢酸
0.40mlを加えてイミダゾールを溶解させ、さらに純水10
0mlを加え、よく撹拌して均一な溶液(pH4.75)とし、
この溶液に酢酸亜鉛2水和物0.34gを加えて撹拌溶解し
て処理液を調製した。
Film thickness (μ) = 0.253 x A x y / S Example 1 and Comparative Example 1 2-undecyl-4-methylimidazole (1.0 g) in acetic acid
Add 0.40 ml to dissolve imidazole and
Add 0 ml and stir well to make a uniform solution (pH 4.75),
0.34 g of zinc acetate dihydrate was added to this solution and dissolved with stirring to prepare a treatment liquid.

次いで、4cm×4cmの銅張積層板の銅表面を湿式研磨材
〔商品名「スコッチブライト」住友3M社製〕を用いて研
磨し、0.5%塩酸水溶液に15秒間浸漬したのち、よく水
洗し乾燥させて試験片とした。この試験片を陽動しなが
ら前記処理液に、液温50℃で1分間浸漬したのち、水洗
し、乾燥したところ、その試験片の化成被膜は0.65μで
あった。この試験片を温度150℃、210℃の循環式乾燥器
の中に所定の時間放置し、加熱処理を行った。
Then, the copper surface of the 4 cm x 4 cm copper clad laminate was polished with a wet abrasive (trade name "Scotch Bright" manufactured by Sumitomo 3M), immersed in a 0.5% hydrochloric acid aqueous solution for 15 seconds, washed thoroughly with water and dried. It was made into the test piece. The test piece was immersed in the treatment solution at a liquid temperature of 50 ° C. for 1 minute while oscillating, washed with water and dried, and the chemical conversion film of the test piece was 0.65 μm. This test piece was left to stand in a circulating dryer at a temperature of 150 ° C. and 210 ° C. for a predetermined time to perform a heat treatment.

加熱処理をした試験片に共晶はんだを用いて、はんだ
の広がり率をJIS Z−3197の方法により測定した。
A eutectic solder was used for the heat-treated test piece, and the spread rate of the solder was measured by the method of JIS Z-3197.

その結果は表1に示したとおりであった。なおこの試
験においてはポストフラックスとしてw/wロジンのイソ
プロピルアルコール溶液120g/dlを用い、測定は5回行
ってその平均値によって算定した。
The results are as shown in Table 1. In this test, 120 g / dl of isopropyl alcohol solution of w / w rosin was used as post-flux, the measurement was performed 5 times, and the average value was calculated.

比較のために、2−ウンデシル−4−メチルイミダゾ
ール1.0gに酢酸0.40mlを加えて溶解させ、さらに純水10
0mlを加え、よく撹拌してpH4.75の処理液を調製した。
この処理液を用いて前記実施例1と同様の条件で処理を
行ったところ、試験片の表面における化成被膜の厚みは
0.60μであり、加熱後のはんだ広がり率は同表に示した
とおりであった。
For comparison, 1.0 g of 2-undecyl-4-methylimidazole was added to 0.40 ml of acetic acid to dissolve it, and then 10 g of pure water was added.
0 ml was added and well stirred to prepare a treatment liquid having a pH of 4.75.
When a treatment was carried out using this treatment liquid under the same conditions as in Example 1, the thickness of the chemical conversion coating on the surface of the test piece was
It was 0.60μ, and the solder spreading ratio after heating was as shown in the same table.

実施例2 2−ウンデシル−4−メチルイミダゾール1.0gに乳酸
0.57gを加えてイミダゾールを溶解し、さらに純水100ml
を加え、よく撹拌して均一な溶液(pH4.62)とし、この
溶液に乳酸亜鉛0.91gを加えて撹拌溶解して処理液を調
製した。
Example 2 Lactic acid in 1.0 g of 2-undecyl-4-methylimidazole
0.57 g was added to dissolve imidazole, and 100 ml of pure water was added.
Was added and stirred well to form a uniform solution (pH 4.62), and 0.91 g of zinc lactate was added to this solution and dissolved by stirring to prepare a treatment solution.

次いで実施例1と同様な操作を行ったところ、膜厚は
0.55μであり、はんだの広がり率は150℃で3時間加熱
後80.9%、150℃で5時間加熱後67.2%、210℃で20分間
加熱後51.0%であり、実施例1とほぼ同じ結果であっ
た。
Then, when the same operation as in Example 1 was performed, the film thickness was
0.55μ, the spread of the solder was 80.9% after heating at 150 ° C. for 3 hours, 67.2% after heating at 150 ° C. for 5 hours, and 51.0% after heating at 210 ° C. for 20 minutes. there were.

実施例3 2−ウンデシルイミダゾール1.0gに蟻酸0.29gを加え
てイミダゾールを溶解し、さらに純水100mlを加え、よ
く撹拌してpH4.60の均一な溶液とし、このようにして造
った溶液に蟻酸亜鉛0.29g、0.59g及び0.88gを夫々加え
て撹拌溶解し、3種の処理液を調製した。
Example 3 To 0.2 g of 2-undecylimidazole, 0.29 g of formic acid was added to dissolve imidazole, 100 ml of pure water was added, and the mixture was well stirred to give a uniform solution of pH 4.60, and the solution thus prepared was added. Zinc formate 0.29 g, 0.59 g and 0.88 g were added respectively and dissolved by stirring to prepare three kinds of treatment liquids.

次いで、実施例1と同じ試験片を用い、同様の前処理
を行い、前記処理液に液温50℃で30秒間浸漬したのち、
250℃のはんだ浴上に4分間放置して加熱処理したの
ち、ポストフラックスとしてw/wロジンのイソプロピル
アルコール溶液20g/dlを用い、はんだの広がり率の測定
をした。その結果、はんだの広がり率は蟻酸亜鉛0.29g
を加えた場合に65.3%、同じく0.59gを加えた場合に78.
8%、同じく0.8gを加えた場合に70.0%であった。
Then, using the same test piece as in Example 1, the same pretreatment was performed, and after dipping in the treatment liquid at a liquid temperature of 50 ° C. for 30 seconds,
After heating for 4 minutes on a solder bath at 250 ° C., 20 g / dl of isopropyl alcohol solution of w / w rosin was used as post flux to measure the spread rate of solder. As a result, the spread rate of the solder was 0.29 g of zinc formate.
65.3% when adding, and 78 when adding 0.59 g.
8% and 70.0% when 0.8g was added.

比較例2 2−ウンデシルイミダゾール1.0gに蟻酸0.29gを加え
てイミダゾールを溶解し、さらに純水100mlを加え、よ
く撹拌してpH4.60の処理液を調製し、前記実施例3と同
様にして被膜形成、加熱処理を行ったのち、はんだの広
がり率を測定したところ33.8%であった。
Comparative Example 2 0.29 g of formic acid was added to 1.0 g of 2-undecylimidazole to dissolve the imidazole, 100 ml of pure water was further added, and the mixture was stirred well to prepare a treatment liquid having a pH of 4.60, and treated in the same manner as in Example 3 above. After forming a coating film and heat treatment, the spread rate of the solder was measured and found to be 33.8%.

実施例4 2−ウンデシルイミダゾール1.5gに乳酸0.92gを加え
てイミダゾールを溶解し、さらに純水100mlを加え、よ
く撹拌してpH4.65の均一な溶液とし、この溶液に酢酸亜
鉛2水和物0.34gを加えて撹拌溶解して処理液を調製し
た。
Example 4 0.92 g of lactic acid was added to 1.5 g of 2-undecylimidazole to dissolve the imidazole, 100 ml of pure water was added, and the mixture was stirred well to obtain a uniform solution of pH 4.65, and zinc acetate dihydrate was added to this solution. 0.34 g of the product was added and dissolved by stirring to prepare a treatment liquid.

他方10mm×50mm×0.3mmの脱酸素銅(JIS C−1220)の
表面を湿式研磨材〔商品名「スコッチブライト」住友3M
社製〕を用いて研磨し、次いでエタノールで脱脂を行
い、さらに0.5%塩酸水溶液に15秒間浸漬したのち、よ
く水洗し乾燥させて試験片とした。この試験片を前記処
理液に、液温50℃で30秒間浸漬したのち、温度150℃の
循環式乾燥器の中に90分間放置し加熱処理を行った。
On the other hand, the surface of deoxidized copper (JIS C-1220) of 10 mm x 50 mm x 0.3 mm was wet-polished with the product name "Scotch Bright" Sumitomo 3M
Manufactured by K.K.], degreased with ethanol, further immersed in a 0.5% hydrochloric acid aqueous solution for 15 seconds, washed well with water and dried to obtain a test piece. This test piece was immersed in the treatment liquid at a liquid temperature of 50 ° C. for 30 seconds, and then left in a circulating dryer at a temperature of 150 ° C. for 90 minutes for heat treatment.

加熱処理後はんだ濡れ製試験器(WET−3000、(株)
レスカ製)を使用して浸漬開始から表面張力による浮力
が零になるまでの時間の測定を行った。
Solder wetting tester after heat treatment (WET-3000, Co., Ltd.)
The time from the start of immersion until the buoyancy due to the surface tension becomes zero was measured using a Resca product.

なお試験片はポストフラックス〔商品名「JS−64MS−
1」(株)弘輝製〕の中に浸漬して濾紙を用いて十分に
液着れをしたのちに測定を行い、測定は浸漬深さ2mmか
ら毎秒120mmの浸漬スピードで行った結果、濡れ時間は
1.90秒であった。
The test piece is post-flux [trade name "JS-64MS-
1 "(made by Hiroki Co., Ltd.), and the liquid was thoroughly wetted with a filter paper, and then the measurement was performed. The measurement was performed at a dipping depth of 2 mm to a dipping speed of 120 mm / sec.
It was 1.90 seconds.

比較例3 2−ウンデシルイミダゾール1.5gに乳酸0.92gを加え
てイミダゾールを溶解し、さらに純水100mlを加え、よ
く撹拌してpH4.65の処理液を調製し、前記実施例4と同
様にして被膜形成、加熱処理を行ったのち、はんだ濡れ
性試験器による濡れ時間を測定したところ、その結果は
3.30秒であった。
Comparative Example 3 0.92 g of lactic acid was added to 1.5 g of 2-undecylimidazole to dissolve the imidazole, 100 ml of pure water was added, and the mixture was stirred well to prepare a treatment liquid having a pH of 4.65 and treated in the same manner as in Example 4 above. After forming the coating film and heat treatment, the wetting time was measured by the solder wettability tester.
It was 3.30 seconds.

実施例5 2−ウンデシルイミダゾール2.0gにアクリル酸1.30g
を加えてイミダゾールを溶解し、さらに純水100mlを加
え、よく撹拌して均一な溶液(pH4.31)とし、この溶液
に酢酸亜鉛2水和物1.0gを加えて撹拌溶解して処理液を
調製した。
Example 5 2.0 g of 2-undecylimidazole and 1.30 g of acrylic acid
Was added to dissolve imidazole, 100 ml of pure water was further added, and well stirred to form a uniform solution (pH 4.31). To this solution, 1.0 g of zinc acetate dihydrate was added and stirred to dissolve the treatment liquid. Prepared.

次いでポストフラックスとして〔商品名「GX−7」
(株)アサヒ化学研究所製〕を用いた以外は実施例4と
全く同様に処理し、同じような方法ではんだの濡れ性を
測定したところ、濡れ時間は0.80秒であった。
Then as post-flux [Product name "GX-7"
Asahi Kagaku Kenkyusho Co., Ltd. was used and the solder wettability was measured in the same manner as in Example 4, and the wetting time was 0.80 seconds.

比較例4 2−ウンデシルイミダゾール2.0gにアクリル酸1.30g
を加えてイミダゾールを溶解し、さらに純水100mlを加
え、よく撹拌してpH4.31の処理液を調製した。
Comparative Example 4 2.0 g of 2-undecylimidazole and 1.30 g of acrylic acid
Was added to dissolve imidazole, 100 ml of pure water was further added, and the mixture was stirred well to prepare a treatment solution having a pH of 4.31.

次いで実施例5と同様にして被膜形成、加熱処理を行
ったのち、はんだ濡れ性試験器による濡れ時間を測定し
たところ、その結果は1.52秒であった。
Next, after performing film formation and heat treatment in the same manner as in Example 5, the wetting time was measured by a solder wettability tester, and the result was 1.52 seconds.

発明の効果 本発明方法によって、銅あるいは銅合金の表面に2位
長鎖アルキルイミダゾール化合物を主成分とする耐熱性
を有する化成被膜を形成することが可能であり、特にプ
リント配線板における表面実装法の加熱工程後における
良好なはんだ付け性を改善しうるものである。
EFFECTS OF THE INVENTION According to the method of the present invention, it is possible to form a heat-resistant chemical conversion coating film containing a 2-position long-chain alkylimidazole compound as a main component on the surface of copper or a copper alloy, and in particular, a surface mounting method for a printed wiring board. The good solderability after the heating step can be improved.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2位長鎖アルキルイミダゾール化合物、有
機酸及び亜鉛化合物を含む水溶液に、銅あるいは銅合金
の表面を接触させることを特徴とする銅及び銅合金の表
面処理方法。
1. A method for surface-treating copper or a copper alloy, which comprises bringing the surface of copper or a copper alloy into contact with an aqueous solution containing a 2-position long-chain alkylimidazole compound, an organic acid and a zinc compound.
【請求項2】2位長鎖アルキルイミダゾール化合物とし
て、2−ウンデシルイミダゾールを用いる請求項(1)
に記載の銅及び銅合金の表面処理方法。
2. A 2-undecylimidazole compound is used as the 2-position long-chain alkylimidazole compound.
The method for surface treatment of copper and copper alloy according to.
【請求項3】2位長鎖アルキルイミダゾール化合物とし
て、2−ウンデシル−4−メチルイミダゾールを用いる
請求項(1)に記載の銅及び銅合金の表面処理方法。
3. The surface treatment method for copper and copper alloys according to claim 1, wherein 2-undecyl-4-methylimidazole is used as the 2-position long-chain alkylimidazole compound.
JP1148136A 1988-09-29 1989-06-09 Surface treatment method for copper and copper alloys Expired - Fee Related JP2561150B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP1148136A JP2561150B2 (en) 1989-06-09 1989-06-09 Surface treatment method for copper and copper alloys
EP89309866A EP0364132A1 (en) 1988-09-29 1989-09-28 Method for forming conversion coating on surface of copper or copper alloy
KR89013993A KR0142409B1 (en) 1988-09-29 1989-09-29 Method for forming conversion coating on surface of copper or copper alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1148136A JP2561150B2 (en) 1989-06-09 1989-06-09 Surface treatment method for copper and copper alloys

Publications (2)

Publication Number Publication Date
JPH0313584A JPH0313584A (en) 1991-01-22
JP2561150B2 true JP2561150B2 (en) 1996-12-04

Family

ID=15446074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1148136A Expired - Fee Related JP2561150B2 (en) 1988-09-29 1989-06-09 Surface treatment method for copper and copper alloys

Country Status (1)

Country Link
JP (1) JP2561150B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200907107A (en) 2007-07-20 2009-02-16 Mec Co Ltd Surface treating agent

Also Published As

Publication number Publication date
JPH0313584A (en) 1991-01-22

Similar Documents

Publication Publication Date Title
US5173130A (en) Process for surface treatment of copper and copper alloy
EP0620293B1 (en) Composition for treating copper or copper alloys
JPH08255968A (en) Manufacturing of printed-circuit board
JPH09291372A (en) Surface treating agent of copper and copper alloy
KR100668129B1 (en) Preflux composition
JPH07243054A (en) Surface treating agent for copper and copper alloy
JP2000212763A (en) Silver alloy plating bath and formation of silver alloy coating film using it
JP4647073B2 (en) Method of soldering copper and copper alloy
JPH06322551A (en) Treating agent for copper and copper alloy
JP2561150B2 (en) Surface treatment method for copper and copper alloys
JP2686168B2 (en) Surface treatment method for copper and copper alloy and surface treatment agent for soldering
JP2834885B2 (en) Copper and copper alloy surface treatment method
JP3367743B2 (en) Copper and copper alloy surface treatment agent
JP3668767B2 (en) Surface treatment method for metals such as solder, electroless solder, silver, nickel and zinc
JP2834884B2 (en) Copper and copper alloy surface treatment method
JP2972295B2 (en) Copper and copper alloy surface treatment method
JPH04183874A (en) Surface treatment of copper and copper alloy
JP3205927B2 (en) A method for forming a surface protective agent and a surface protective film for a copper-gold coexisting substrate.
JPH0779061A (en) Surface treatment agent for copper and copper alloy
JPH07330738A (en) Protecting agent for metal surface and production using the same
JP2834776B2 (en) Copper and copper alloy surface treatment method
JPH05230674A (en) Surface treatment of metal
KR100208555B1 (en) Surface treatment method for copper and copper alloys
JP3398296B2 (en) Copper and copper alloy surface treatment agent
JPH07202386A (en) Metal surface protective agent and surface treatment method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees