JP2560340B2 - Stacked heat exchanger - Google Patents

Stacked heat exchanger

Info

Publication number
JP2560340B2
JP2560340B2 JP21366387A JP21366387A JP2560340B2 JP 2560340 B2 JP2560340 B2 JP 2560340B2 JP 21366387 A JP21366387 A JP 21366387A JP 21366387 A JP21366387 A JP 21366387A JP 2560340 B2 JP2560340 B2 JP 2560340B2
Authority
JP
Japan
Prior art keywords
plate
core
refrigerant
tray
laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP21366387A
Other languages
Japanese (ja)
Other versions
JPS6457091A (en
Inventor
昌之 野々垣
敏博 山本
喜夫 宮田
正俊 首藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP21366387A priority Critical patent/JP2560340B2/en
Publication of JPS6457091A publication Critical patent/JPS6457091A/en
Application granted granted Critical
Publication of JP2560340B2 publication Critical patent/JP2560340B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、2枚のコアプレートを接合した偏平チュー
ブを多数積層してなる積層型熱交換器に関する。
TECHNICAL FIELD The present invention relates to a laminated heat exchanger formed by laminating a large number of flat tubes in which two core plates are joined.

[従来の技術] 一般に、積層型熱交換器の構成は、例えば、自動車用
空気調和装置に使用される冷媒蒸発器の場合を例示する
と、第8図に示すごとく、アルミニウム板製の浅い盆状
部を有するコアプレート100を2枚向い合せに接合して
偏平チューブ101を構成し、この偏平チューブ101を多数
積層して冷媒蒸発器のコアを作成する。
[Prior Art] Generally, for example, in the case of a refrigerant evaporator used in an air conditioner for an automobile, a laminated heat exchanger has a shallow tray shape made of an aluminum plate, as shown in FIG. A flat tube 101 is formed by joining two core plates 100 each having a portion facing each other, and a large number of the flat tubes 101 are stacked to form a core of a refrigerant evaporator.

偏平チューブ101には、冷媒タンク102と冷媒通路103
とが形成され、偏平チューブ101を積層した際に、各偏
平チューブ101の冷媒タンク102が連通するように設けら
れる。各偏平チューブ101の冷媒通路103の間には、熱交
換性を向上させるため、伝熱用のフィン104が装着され
る。特定の偏平チューブ101には、冷媒蒸発器内への冷
媒の入口通路となる冷媒流入用配管、及び冷媒蒸発器か
らの冷媒の出口通路となる冷媒流出用配管が形成され、
コアの両端部に配設された偏平チューブ101の外側に、
補強プレートとしてのサイドプレート105が配設され
る。このような構成のもとに、一体にろう付け接合して
組み立てられる。
The flat tube 101 includes a refrigerant tank 102 and a refrigerant passage 103.
Are formed, and when the flat tubes 101 are stacked, the refrigerant tanks 102 of the respective flat tubes 101 are provided so as to communicate with each other. Fins 104 for heat transfer are attached between the refrigerant passages 103 of each flat tube 101 in order to improve heat exchange performance. The specific flat tube 101 is formed with a refrigerant inflow pipe serving as a refrigerant inlet passage into the refrigerant evaporator, and a refrigerant outflow pipe serving as a refrigerant outlet passage from the refrigerant evaporator,
On the outside of the flat tubes 101 arranged at both ends of the core,
A side plate 105 as a reinforcing plate is arranged. Under such a structure, they are integrally brazed and joined together.

上述のように組み立てられた冷媒蒸発器に冷媒が流入
すると、流入冷媒圧が、偏平チューブ101を構成するコ
アプレート100同士を分離させる力となる。特に、冷媒
タンク102においては、接合部分が冷媒タンク102の周縁
部だけで、冷媒タンク102の内部に存在しないため、冷
媒タンク102の耐圧強度が他の部分として比較して低く
なる。サイドプレート105に隣接するコアプレート(以
下エンドプレート106と呼ぶ)以外のコアプレート100に
加わる力は、隣接する偏平チューブ101においても同様
にコアプレート100同志を分離させる力が作用してい
る。この結果、コアプレート100同志を分離させる力
が、隣のコアプレート100同志を分離させる力によって
相殺される。
When the refrigerant flows into the refrigerant evaporator assembled as described above, the inflowing refrigerant pressure serves as a force for separating the core plates 100 forming the flat tubes 101 from each other. Particularly, in the refrigerant tank 102, since the joint portion is only the peripheral portion of the refrigerant tank 102 and does not exist inside the refrigerant tank 102, the pressure resistance strength of the refrigerant tank 102 is lower than that of the other portions. The force applied to the core plates 100 other than the core plates (hereinafter referred to as the end plates 106) adjacent to the side plates 105 also acts on the adjacent flat tubes 101 to separate the core plates 100 from each other. As a result, the force of separating the core plates 100 from each other is offset by the force of separating the adjacent core plates 100 from each other.

ところが、エンドプレート106には、隣接する偏平チ
ューブ101が存在しないため、コアプレート100とエンド
プレート106とを分離させる力が相殺されず、エンドプ
レート106に生じる応力が他のコアプレート100に生じる
応力と比較して大きくなる。特に、第8図に示すごと
く、A部、B部において応力集中が生じる。このため、
エンドプレート106の耐圧強度を他のコアプレート100と
比較して大きくする必要がある。
However, since the end plate 106 does not have the adjacent flat tubes 101, the forces that separate the core plate 100 and the end plate 106 are not offset, and the stress generated in the end plate 106 is the stress generated in the other core plate 100. Will be larger than In particular, as shown in FIG. 8, stress concentration occurs in the parts A and B. For this reason,
It is necessary to increase the pressure resistance of the end plate 106 as compared with other core plates 100.

このようなことから従来では、例えば、エンドプレー
ト106の板厚を、他のコアプレート100の板厚の約3倍の
板厚まで厚くすることで耐圧強度を大きくしていた。
For this reason, conventionally, for example, the pressure strength is increased by increasing the plate thickness of the end plate 106 to about 3 times the plate thickness of the other core plates 100.

[発明が解決しようとする問題点] しかるに、エンドプレート106の板厚を厚くすること
から、冷媒蒸発器の重量が増加する問題点を有してい
た。
[Problems to be Solved by the Invention] However, since the plate thickness of the end plate 106 is increased, the weight of the refrigerant evaporator is increased.

本発明は、上記事情に鑑みてなされたもので、その目
的は、エンドプレートの耐圧強度を向上させる形状を見
出すことで軽量化した積層型熱交換器を提供することに
ある。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a lightweight laminated heat exchanger by finding a shape that improves the pressure resistance of an end plate.

[問題点を解決するための手段] 本発明は上記目的を達成するために、伝熱媒体用タン
クを構成する盆状部、熱交換通路を構成する板状部、前
記盆状部および前記板状部の外縁に形成される接合用フ
ランジ部を備えるコアプレートを2枚向い合せて接合し
てなる偏平チューブを多数積層したコアと、該コアの端
部に取付けられるサイドプレートと、前記熱交換通路の
各間、および前記熱交換通路と前記サイドプレートとの
間に設けられたフィンとを備える積層型熱交換器におい
て、前記サイドプレートに隣接する前記コアプレート
は、前記盆状部と前記接合用フランジ部との境界湾曲半
径R1が、前記コアプレートの形成上の最小値に設けら
れ、前記盆状部の深さhが、前記伝熱媒体用タンクの長
手方向の長さをLとした時、L/5〜L/2の間で、且つ、前
記サイドプレートに隣接する前記偏平チューブの接合面
から前記サイドプレートの内面まで距離H以下となるよ
うに設けられ、前記盆状部の湾曲面半径R2が、前記制約
内で取り得る最大値に設けられたことを技術的手段とす
る。
[Means for Solving Problems] In order to achieve the above-mentioned object, the present invention has a tray-like portion that constitutes a heat transfer medium tank, a plate-like portion that constitutes a heat exchange passage, the tray-like portion and the plate. A core having a large number of flat tubes laminated by facing and joining two core plates each having a joining flange portion formed on the outer edge of the groove, a side plate attached to an end portion of the core, and the heat exchange. In a laminated heat exchanger including fins provided between each of the passages and between the heat exchange passage and the side plate, the core plate adjacent to the side plate is joined to the tray portion and the joint. The radius of curvature R1 of the boundary with the flange for use is set to the minimum value for forming the core plate, and the depth h of the tray is the length L of the heat transfer medium tank in the longitudinal direction. Sometimes between L / 5 and L / 2, and , The distance from the joint surface of the flat tube adjacent to the side plate to the inner surface of the side plate is equal to or less than H, and the radius R2 of the curved surface of the tray is set to the maximum value that can be taken within the constraint. The provision is provided as a technical means.

[作用および発明の効果] 上記構成よりなる本発明は、サイドプレートに隣接す
るコアプレートの伝熱媒体用タンクの形状を、実験に基
づいて求めた最も望ましい範囲の値に設定したことによ
って、サイドプレートに隣接するコアプレートの伝熱媒
体用タンクにかかる伝熱媒体による応力集中を小さくす
ることができる。
[Operation and Effect of the Invention] In the present invention having the above-described configuration, the shape of the heat transfer medium tank of the core plate adjacent to the side plate is set to a value in the most desirable range obtained based on experiments, It is possible to reduce stress concentration due to the heat transfer medium applied to the heat transfer medium tank of the core plate adjacent to the plate.

その結果、サイドプレートに隣接するコアプレートの
耐圧強度が向上するため、コアプレートの板厚を薄くし
ても、従来のコアプレートを同程度の耐圧強度を得るこ
とができる。そして、コアプレートの板厚を薄くするこ
とで、積層型熱交換器を軽量化することができる。
As a result, the compressive strength of the core plate adjacent to the side plate is improved, so that even if the thickness of the core plate is reduced, it is possible to obtain the same compressive strength as that of the conventional core plate. Then, by reducing the thickness of the core plate, it is possible to reduce the weight of the laminated heat exchanger.

[実施例] 次に、本発明の積層型熱交換器としての冷媒蒸発器を
図面に示す一実施例に基づき説明する。
[Embodiment] Next, a refrigerant evaporator as a laminated heat exchanger of the present invention will be described based on an embodiment shown in the drawings.

第1図は積層型冷媒蒸発器のサイドタンク部の拡大断
面図、第2図は積層型冷媒蒸発器の正面図、第3図は積
層型冷媒蒸発器を構成する偏平チューブの断面図、第4
図は偏平チューブを構成するコアプレートの正面図を示
す。
FIG. 1 is an enlarged sectional view of a side tank portion of a laminated refrigerant evaporator, FIG. 2 is a front view of the laminated refrigerant evaporator, and FIG. 3 is a sectional view of a flat tube constituting the laminated refrigerant evaporator. Four
The figure shows a front view of a core plate constituting a flat tube.

本実施例の積層型冷媒蒸発器1は、第2図に示すごと
く、複数個の偏平チューブ2を積層状に合体して形成さ
れる。
As shown in FIG. 2, the laminated refrigerant evaporator 1 of this embodiment is formed by combining a plurality of flat tubes 2 in a laminated shape.

偏平チューブ2は、厚さ0.3〜0.8mm、材質A3003のア
ルミニウム板などの表面に、あらかじめA4004などのろ
う材をクラッドさせた素材板を、第3図に示すごとく、
浅い盆状部のコアプレート3にプレス成型し、プレス成
型された2枚のコアプレート3を、それぞれ凹側同志を
向い合せて接合することによって形成される。
The flat tube 2 has a thickness of 0.3 to 0.8 mm and a material plate in which a brazing material such as A4004 is clad in advance on the surface of an aluminum plate or the like of material A3003, as shown in FIG.
It is formed by press-molding the core plate 3 in the shallow basin portion and joining the two press-molded core plates 3 with their concave sides facing each other.

コアプレート3は、第4図に示すごとく、2か所の盆
状部3aと板状部3bとを形成し、その板状部3bの長手方向
(第4図上下方向)中央に、下端部が欠如した仕切壁4
が設けられている。これにより、2枚のコアプレート3
で偏平チューブ2を構成した際に、それぞれの板状部3b
により、本発明の熱交換通路である冷媒通路(第4図二
点鎖線の矢印で示す)5がU字形に形成される。冷媒通
路5の両末端部(第4図上側左右)に当る盆状部3aは、
本発明の伝熱媒体用タンクである冷媒タンク6として構
成され、盆状部3aの略中央に、冷媒の出入口となるポー
ト部6aが形成される。
As shown in FIG. 4, the core plate 3 forms two tray-shaped portions 3a and plate-shaped portions 3b, and the plate-shaped portion 3b has its lower end at the center in the longitudinal direction (vertical direction in FIG. 4). Partition wall 4
Is provided. As a result, the two core plates 3
When the flat tube 2 is configured with, each plate-shaped portion 3b
As a result, the refrigerant passage 5 (shown by the double-dotted chain line arrow in FIG. 4) which is the heat exchange passage of the present invention is formed in a U shape. The basin portions 3a that contact both end portions of the refrigerant passage 5 (upper left and right in FIG. 4) are
It is configured as a refrigerant tank 6 which is a heat transfer medium tank of the present invention, and a port portion 6a serving as a refrigerant inlet / outlet is formed substantially at the center of the tray 3a.

コアプレート3には、短小な突堤状をなすリブ7を同
方向に多数設け、1つの偏平チューブ2を構成する2つ
のコアプレート3のそれぞれのリブ7が互いにX字状を
なして付き合わされた状態のもとにろう付け接合され
る。
The core plate 3 is provided with a large number of ribs 7 having a short jetty shape in the same direction, and the ribs 7 of the two core plates 3 constituting one flat tube 2 are attached to each other in an X shape. It is brazed and joined under the condition.

この様な構造を採用することにより、偏平チューブ2
内を流れる冷媒の流れをジグザグ状に蛇行させることに
なり、熱交換性を大きく向上させることができるととも
に、偏平チューブ2の強度を高めることができる。
By adopting such a structure, the flat tube 2
Since the flow of the refrigerant flowing inside is zigzag, the heat exchange performance can be greatly improved and the strength of the flat tube 2 can be increased.

コアプレート3の周縁部には、偏平チューブ2を形成
する際のろう付け接合面として接合用フランジ部8が設
けられている。また、その接合用フランジ部8の下端部
は、第3図に示すごとく、コアプレート3の外側に水平
に折り曲げ、さらに、その先端部を下向きに折り曲げら
れており、隣接する偏平チューブ2との間に形成される
熱交換用の空隙9を所定巾に保つためのスペーサとして
の機能を有している。
At the peripheral edge of the core plate 3, a joining flange portion 8 is provided as a brazing joining surface when the flat tube 2 is formed. Further, as shown in FIG. 3, the lower end portion of the joining flange portion 8 is horizontally bent to the outside of the core plate 3, and the tip end portion thereof is bent downward, so that the flat tube 2 adjacent to the flat tube 2 is It has a function as a spacer for keeping the space 9 for heat exchange formed between them to have a predetermined width.

上記のように構成される偏平チューブ2を、第2図に
示すごとく、隣接する偏平チューブ2のポート部6a同志
を重ね合わせるように多数積層してコア10を形成すると
ともに、各隣接する偏平チューブ2のポート部6aと接合
用フランジ部8の下端部とで形成されるそれぞれの熱交
換用の空隙9にコルゲートフィン11が挟み込んである。
As shown in FIG. 2, a plurality of flat tubes 2 configured as described above are laminated so that the port portions 6a of adjacent flat tubes 2 are overlapped with each other to form the core 10, and each adjacent flat tube is formed. Corrugated fins 11 are sandwiched in respective heat exchange spaces 9 formed by the second port portion 6a and the lower end portion of the joining flange portion 8.

コルゲートフィン11は、冷媒の熱交換性を向上させる
ため、極く薄いアルミニウム板をピッチ巾約4.0mmの波
打ち状に屈曲加工して作成されている。
The corrugated fins 11 are formed by bending an extremely thin aluminum plate into a wavy shape with a pitch width of about 4.0 mm in order to improve the heat exchange performance of the refrigerant.

コア10の両端部には補強プレートとしてのサイドプレ
ート12が取付けられ、サイドプレート12に隣接する偏平
チューブ2の冷媒通路5との間にコルゲートフィン11が
配設される。
Side plates 12 as reinforcing plates are attached to both ends of the core 10, and corrugated fins 11 are arranged between the side plates 12 and the refrigerant passages 5 of the flat tubes 2.

なお、サイドプレート12に隣接する偏平チューブ2を
構成する2枚のコアプレート3のうち、サイドプレート
12側に配置されるコアプレート3(以下エンドプレート
13と呼ぶ)には、ポート部6aが形成されず、他のコアプ
レート3と形状を異にする。エンドプレート13の形状に
ついては後述する。
Of the two core plates 3 forming the flat tube 2 adjacent to the side plate 12, the side plate
Core plate 3 arranged on the 12 side (hereinafter referred to as end plate
13) is not formed with the port portion 6a and has a different shape from the other core plates 3. The shape of the end plate 13 will be described later.

複数個の偏平チューブ2を積層状に合体して構成され
た冷媒蒸発器1の略中央付近に、特定の偏平チューブ2
a、2bと一体に、冷媒蒸発器1内への冷媒の入口となる
冷媒流入用配管14と、冷媒蒸発器1からの冷媒の出口と
なる冷媒流出用配管15とが形成される。
A specific flat tube 2 is provided in the vicinity of the approximate center of the refrigerant evaporator 1 formed by combining a plurality of flat tubes 2 in a laminated form.
A refrigerant inflow pipe 14 serving as a refrigerant inlet into the refrigerant evaporator 1 and a refrigerant outflow pipe 15 serving as a refrigerant outlet from the refrigerant evaporator 1 are formed integrally with a and 2b.

冷媒流入用配管14および冷媒流出用配管15の自由端
は、継手部材16を介してボックス型膨脹弁17に接続され
る。
The free ends of the refrigerant inflow pipe 14 and the refrigerant outflow pipe 15 are connected to a box type expansion valve 17 via a joint member 16.

次に、エンドプレート13の形状について説明する。 Next, the shape of the end plate 13 will be described.

サイドプレート12に隣接する偏平チューブ2の冷媒タ
ンク6(以下サイドタンク18と呼ぶ)において、サイド
タンク18内に流入する冷媒圧に対して発生する応力分布
を実験により調べた結果、従来のエンドプレート106の
形状では、第8図に示すごとく、A部、およびB部に応
力集中が生じる。
In the refrigerant tank 6 of the flat tube 2 adjacent to the side plate 12 (hereinafter referred to as the side tank 18), the stress distribution generated with respect to the refrigerant pressure flowing into the side tank 18 was examined by an experiment, and as a result, the conventional end plate In the shape of 106, as shown in FIG. 8, stress concentration occurs in the portions A and B.

このことから、エンドプレート13の後述する各寸法と
発生応力との関係を実験に基づいて求め、エンドプレー
ト13の形状を決定する。
From this, the relationship between each dimension of the end plate 13 which will be described later and the generated stress is found experimentally, and the shape of the end plate 13 is determined.

まず、第1図に示すごとく、エンドプレート13の長手
方向の断面において、エンドプレート13の盆状部3aと接
合用フランジ部8との境界湾曲半径をR1、盆状部3aの湾
曲面半径をR2、盆状部3aの深さをhとした場合に、各寸
法R1、R2、hの値の変化とそれに対するA部、およびB
部の発生応力の大きさを第5図、第6図、および第7図
のグラフに示す。
First, as shown in FIG. 1, in the longitudinal cross section of the end plate 13, the boundary curvature radius between the tray portion 3a of the end plate 13 and the joining flange portion 8 is R1, the curvature surface radius of the tray portion 3a is When the depth of R2 and the basin 3a is h, the change in the value of each dimension R1, R2, h and the corresponding part A and B
The magnitude of the stress generated in the part is shown in the graphs of FIGS. 5, 6, and 7.

第5図に示したR1寸法と発生応力との関係では、R1寸
法が小さくなるに従って発生応力も小さくなる。第6図
に示したR2寸法と発生応力との関係では、R2寸法が大き
くなるに従って発生応力が小さくなる。第7図に示した
h寸法と発生応力との関係では、サイドタンク18の長手
方向の長さをLとした時に、L/5〜L/2の間で発生応力が
小さくなる。h寸法がL/2の時には、エンドプレート13
の盆状部3aが半球状となり、発生応力は最小値を示す。
In the relationship between the R1 dimension and the generated stress shown in FIG. 5, the generated stress also decreases as the R1 dimension decreases. In the relationship between the R2 dimension and the generated stress shown in FIG. 6, the generated stress decreases as the R2 dimension increases. In the relationship between the h dimension and the generated stress shown in FIG. 7, when the length of the side tank 18 in the longitudinal direction is L, the generated stress is small between L / 5 and L / 2. End plate 13 when h dimension is L / 2
The basin 3a has a hemispherical shape, and the generated stress shows the minimum value.

なお、サイドプレート12に隣接する偏平チューブ2の
接合面からサイドプレート12の内面までの距離をHとし
た場合に、盆状部3aの深さhがH寸法より大きくなる
と、サイドタンク18が最も外側に配設されたコルゲート
フィン11より飛び出してしまうため、冷媒蒸発器1のろ
う付け組み立ての際に、治具による仮組み立てが困難に
なる。また、コルゲートフィン11より飛び出してしまう
ことから、外部圧力を受け易くなる。これらのことか
ら、h寸法はH寸法以下であるとする。
If the distance h from the joint surface of the flat tube 2 adjacent to the side plate 12 to the inner surface of the side plate 12 is H, and the depth h of the tray 3a becomes larger than the H dimension, the side tank 18 is most likely to move. Since it protrudes from the corrugated fins 11 arranged on the outside, it becomes difficult to temporarily assemble the refrigerant evaporator 1 with a jig during brazing and assembling. Further, since it jumps out from the corrugated fin 11, it becomes easy to receive external pressure. From these things, h dimension is assumed to be H dimension or less.

上記の実験結果に基づき、R1寸法をエンドプレート13
の形成上の最小値に設け、h寸法をL/5〜L/2の間で、且
つ、H寸法以下となるように設け、R2寸法をR1寸法とh
寸法の制約内で取り得る最大値に設けてエンドプレート
13の形状を決定する。
Based on the above experimental results, the R1
Is set to the minimum value for forming, h dimension is set between L / 5 and L / 2 and less than H dimension, and R2 dimension is set to R1 dimension and h
Set to the maximum value that can be taken within the dimensional constraints End plate
Determine the shape of 13.

上記のごとく構造を備えた積層型冷媒蒸発器1の組み
立て方法は、各コアプレート3の両表面、およびサイド
プレート12にあらかじめろう材をクラッドさせておき、
コルゲートフィン11、継手部材16も含めて、第2図に示
した状態に積層状に重ね合わせ、または嵌め合わせて冷
媒蒸発器1の仮組み立てを行う。この状態を治具を用い
て締結固定させたうえ、ろう付け炉内にて、ろう材の溶
融温度にまで加熱することによってろう付け組み立てが
完了する。
The method for assembling the laminated refrigerant evaporator 1 having the structure as described above is such that both surfaces of each core plate 3 and the side plates 12 are clad with a brazing material in advance,
The corrugated fins 11 and the joint member 16 are superposed or fitted in a laminated state in the state shown in FIG. 2 to temporarily assemble the refrigerant evaporator 1. This state is fastened and fixed using a jig and then heated to the melting temperature of the brazing material in the brazing furnace to complete the brazing assembly.

上述したごとく、エンドプレート13の各寸法を実験に
基づいて求めた最も望ましい範囲の値に設定してエンド
プレート13の形状を決定したことにより、エンドプレー
ト13にかかる冷媒の荷重を小さくすることができる。そ
の結果、冷媒の荷重に対して、サイドタンク18のA部、
およびB部に発生する応力の大きさを小さくすることが
できる。
As described above, by setting each dimension of the end plate 13 to a value in the most desirable range obtained based on the experiment and determining the shape of the end plate 13, it is possible to reduce the refrigerant load applied to the end plate 13. it can. As a result, with respect to the load of the refrigerant, the A portion of the side tank 18,
It is possible to reduce the magnitude of the stress generated in the section B and the section B.

この様なことから、エンドプレート13の耐圧強度を向
上させ、エンドプレート13の板厚を薄くしても、従来の
エンドプレート13と同程度の耐圧強度を得ることができ
る(実験によると板厚を約25%に薄くしても、同程度の
耐圧強度を得ることができる)。そして、エンドプレー
ト13の板厚を薄くすることで、積層型熱交換器1を軽量
化することができる。
Therefore, even if the pressure strength of the end plate 13 is improved and the plate thickness of the end plate 13 is reduced, the same pressure resistance strength as the conventional end plate 13 can be obtained (according to the experiment, Even if it is thinned to about 25%, the same compressive strength can be obtained). Then, by making the plate thickness of the end plate 13 thin, it is possible to reduce the weight of the laminated heat exchanger 1.

なお、サイドプレート12の形状は、第1図に示すごと
く、エンドプレート13に沿った形状(図示一点鎖線)で
も、直線的な形状(図示実線)でも良い。
The side plate 12 may have a shape along the end plate 13 (one-dot chain line in the drawing) or a linear shape (solid line in the drawing) as shown in FIG.

本実施例では、冷媒流入用配管14と冷媒流出用配管15
とを冷媒蒸発器1の略中央に配設した場合を例示した
が、コア10のどちらか一方の端部に配設し、他方の端部
に本実施例のエンドプレート13を形成しても良い。
In this embodiment, the refrigerant inflow pipe 14 and the refrigerant outflow pipe 15
Although the case of arranging and at approximately the center of the refrigerant evaporator 1 is illustrated, it is also possible to dispose at and at one end of the core 10 and form the end plate 13 of this embodiment at the other end. good.

また、偏平チューブ2に構成される冷媒タンク6を、
冷媒蒸発器1の上部側(第2図上側)に隣接して配設さ
れる場合を例示したが、冷媒蒸発器1の上部側と下部側
とに分けて配設しても良い。
In addition, the refrigerant tank 6 formed in the flat tube 2 is
Although the case where it is arranged adjacent to the upper side (upper side in FIG. 2) of the refrigerant evaporator 1 is illustrated, it may be arranged separately on the upper side and the lower side of the refrigerant evaporator 1.

本発明の積層型熱交換器を冷媒蒸発器として説明した
が、空気調和装置の冷媒凝縮器、温水式のヒータコア、
あるいはラジエター等に用いてもよい。
Although the laminated heat exchanger of the present invention has been described as a refrigerant evaporator, a refrigerant condenser of an air conditioner, a hot water heater core,
Alternatively, it may be used for a radiator or the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の積層型冷媒蒸発器のサイドタンク部の
拡大断面図、第2図は積層型冷媒蒸発器の正面図、第3
図は積層型冷媒蒸発器を構成する偏平チューブの断面
図、第4図は偏平チューブを構成するコアプレートの正
面図、第5図はR1寸法と発生応力との関係を示したグラ
フ、第6図はR2寸法と発生応力との関係を示したグラ
フ、第7図はh寸法と発生応力との関係を示したグラ
フ、第8図は従来の積層型冷媒蒸発器の要部断面図であ
る。 図中 1……積層型冷媒蒸発器、2……偏平チューブ、
3……コアプレート、3a……盆状部、3b……板状部、5
……冷媒通路(熱交換通路)、6……冷媒タンク(伝熱
媒体用タンク)、8……接合用フランジ部、10……コ
ア、11……コルゲートフィン、12……サイドプレート、
13……エンドプレート、18……サイドタンク
FIG. 1 is an enlarged sectional view of a side tank portion of the laminated refrigerant evaporator of the present invention, FIG. 2 is a front view of the laminated refrigerant evaporator, and FIG.
The figure is a cross-sectional view of a flat tube that constitutes the laminated refrigerant evaporator, Fig. 4 is a front view of the core plate that constitutes the flat tube, and Fig. 5 is a graph showing the relationship between the R1 dimension and the generated stress. FIG. 7 is a graph showing the relationship between the R2 dimension and the generated stress, FIG. 7 is a graph showing the relationship between the h dimension and the generated stress, and FIG. 8 is a cross-sectional view of the main parts of a conventional laminated refrigerant evaporator. . In the figure, 1 ... Laminated refrigerant evaporator, 2 ... Flat tube,
3 ... core plate, 3a ... tray-like part, 3b ... plate-like part, 5
…… Refrigerant passage (heat exchange passage), 6 …… Refrigerant tank (heat transfer medium tank), 8 …… Joint flange, 10 …… Core, 11 …… Corrugated fin, 12 …… Side plate,
13 …… End plate, 18 …… Side tank

───────────────────────────────────────────────────── フロントページの続き (72)発明者 首藤 正俊 愛知県刈谷市昭和町1丁目1番地 日本 電装株式会社内 (56)参考文献 特開 昭61−184394(JP,A) 特開 昭61−173097(JP,A) 実開 昭64−31371(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masatoshi Suto 1-1, Showa-cho, Kariya city, Aichi Japan Denso Co., Ltd. (56) References JP 61-184394 (JP, A) JP 61- 173097 (JP, A) Actually opened 64-31371 (JP, U)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】伝熱媒体用タンクを構成する盆状部、熱交
換通路を構成する板状部、前記盆状部および前記板状部
の外縁に形成される接合用フランジ部を備えるコアプレ
ートを2枚向い合せて接合してなる偏平チューブを多数
積層したコアと、 該コアの端部に取付けられるサイドプレートと、 前記熱交換通路の各間、および前記熱交換通路と前記サ
イドプレートとの間に設けられたフィンとを備える積層
型熱交換器において、 前記サイドプレートに隣接する前記コアプレートは、 前記盆状部と前記接合用フランジ部との境界湾曲半径R1
が、前記コアプレートの形成上の最小値に設けられ、 前記盆状部の深さhが、前記伝熱媒体用タンクの長手方
向の長さをLとした時、L/5〜L/2の間で、且つ、前記サ
イドプレートに隣接する前記偏平チューブの接合面から
前記サイドプレートの内面まで距離H以下となるように
設けられ、 前記盆状部の湾曲面半径R2が、前記制約内で取り得る最
大値に設けられたことを特徴とする積層型熱交換器。
1. A core plate comprising a tray-like portion constituting a heat transfer medium tank, a plate-like portion constituting a heat exchange passage, and a joining flange portion formed on an outer edge of the tray-like portion and the plate-like portion. A core having a large number of flat tubes laminated by facing each other, a side plate attached to an end of the core, a space between each of the heat exchange passages, and the heat exchange passage and the side plate. In the laminated heat exchanger including a fin provided therebetween, the core plate adjacent to the side plate has a boundary curvature radius R1 between the tray-shaped portion and the joining flange portion.
Is set to the minimum value for forming the core plate, and the depth h of the tray is L / 5 to L / 2, where L is the length in the longitudinal direction of the heat transfer medium tank. Between the flat plate adjacent to the side plate and the inner surface of the side plate to a distance H or less, and the radius R2 of the curved surface of the tray is within the constraint. A laminated heat exchanger having a maximum possible value.
JP21366387A 1987-08-27 1987-08-27 Stacked heat exchanger Expired - Lifetime JP2560340B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21366387A JP2560340B2 (en) 1987-08-27 1987-08-27 Stacked heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21366387A JP2560340B2 (en) 1987-08-27 1987-08-27 Stacked heat exchanger

Publications (2)

Publication Number Publication Date
JPS6457091A JPS6457091A (en) 1989-03-03
JP2560340B2 true JP2560340B2 (en) 1996-12-04

Family

ID=16642897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21366387A Expired - Lifetime JP2560340B2 (en) 1987-08-27 1987-08-27 Stacked heat exchanger

Country Status (1)

Country Link
JP (1) JP2560340B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2788116B1 (en) * 1998-12-30 2001-05-18 Valeo Climatisation HEATING, VENTILATION AND / OR AIR CONDITIONING DEVICE COMPRISING A THERMAL LOOP EQUIPPED WITH AN EVAPORATOR
EP1191302B1 (en) * 2000-09-22 2005-12-07 Mitsubishi Heavy Industries, Ltd. Heat exchanger
JP2005337573A (en) * 2004-05-26 2005-12-08 Sanden Corp Heat exchanger

Also Published As

Publication number Publication date
JPS6457091A (en) 1989-03-03

Similar Documents

Publication Publication Date Title
US4971145A (en) Heat exchanger header
JP3814917B2 (en) Stacked evaporator
JP4122578B2 (en) Heat exchanger
US5411079A (en) Heat exchanger and method for manufacturing the same
JP2792405B2 (en) Heat exchanger
JPS6227353B2 (en)
US9593889B2 (en) Heat exchanger construction
JP3812487B2 (en) Heat exchanger
JPH0571876B2 (en)
US5373895A (en) Heat exchanger
JP4682494B2 (en) Heat exchanger
JP2560340B2 (en) Stacked heat exchanger
JP2003106790A (en) Exhaust heat exchanger
JPH10281693A (en) Duplx type integral heat-exchanger
JP3403544B2 (en) Heat exchanger
JP2003097890A (en) Oil cooler
JPH09138084A (en) Heat exchanger
JP2536294B2 (en) Stacked heat exchanger
JPS59173693A (en) Heat exchanger
EP1331462A2 (en) Automotive heat exchanger
JPH09280778A (en) Laminated type heat exchanger
JP2002181480A (en) Heat exchanger
JPH02247498A (en) Heat exchanger
JPH11337292A (en) Heat exchanger
JP2540836B2 (en) Stacked heat exchanger

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term