JP2560312Y2 - Electric vehicle traveling control device - Google Patents

Electric vehicle traveling control device

Info

Publication number
JP2560312Y2
JP2560312Y2 JP1992041164U JP4116492U JP2560312Y2 JP 2560312 Y2 JP2560312 Y2 JP 2560312Y2 JP 1992041164 U JP1992041164 U JP 1992041164U JP 4116492 U JP4116492 U JP 4116492U JP 2560312 Y2 JP2560312 Y2 JP 2560312Y2
Authority
JP
Japan
Prior art keywords
contactor
field
current
power supply
shunt coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1992041164U
Other languages
Japanese (ja)
Other versions
JPH0739201U (en
Inventor
芳男 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP1992041164U priority Critical patent/JP2560312Y2/en
Publication of JPH0739201U publication Critical patent/JPH0739201U/en
Application granted granted Critical
Publication of JP2560312Y2 publication Critical patent/JP2560312Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Description

【考案の詳細な説明】 【0001】 【産業上の利用分野】本考案は電気車走行制御装置の改
良に関するものである。 【0002】 【従来の技術】従来の技術は直流または脈流電動機の界
磁巻線に直列に、界磁電流を可変するための電源を挿入
し、その界磁巻線と電源の直列接続部に対して、誘導コ
イルと接触器とを直列接続したものを並列接続した回路
となっている。図2はその従来の電気車走行制御装置の
主回路の一例を示す簡略接続図で、1はパンタグラフ、
2は主電動機電機子、3は主電動機界磁、4は誘導 分
路コイル、5は接触器、6は界磁電流調整用電源、7は
ダイオードである。図2において、主電動機界磁3と界
磁電流調整用電源6との直列接続部に、誘導分路コイル
4と接触器5との直列接続回路が並列に接続されてい
る。かかる図2において、力行時、弱界磁運転の場合
は、図3のように、接触器5を投入し、誘導分路コイル
4に流れる電流Ish と逆に界磁電流調整用電源6から制
御電流Ioを流して、主電動機界磁3の界磁電流Ifと主電
動機電機子2 に流れている電機子電流Iaの比を連続的に
制御できる。また回生時には、主電動機はほぼ他励特性
になり、図4のように、誘導分路コイル4には、回生電
流IBに主電動機界磁3 を励磁するための電流Ioを加えた
電流が流れる。 【0003】 【考案が解決しようとする課題】ところで、このような
従来の制御装置にあっては、回生時には回生電流と主電
動機界磁3の励磁電流の和が誘導分路コイル4に流れる
ため、誘導分路コイル4の熱容量が大きくなり、また誘
導分路コイル4に鉄心を用いている場合、回生時の大電
流により鉄心が磁気飽和するのでインダクタンスの低下
や、もれ磁束により、信号・保安設備等に誘導障害を起
すことがあるので、なるべく誘導分路コイル鉄心の磁気
未飽和領域を使用しようとすると、鉄心が大型化し、そ
の結果、誘導分路コイル4が大型で重たくなるという欠
点があった。本考案は、上述したような点を改善するた
めになされたもので、その目的とするところは、誘導分
路コイルを小型・軽量化し得る電気車走行制御装置を提
供せんとするものである。 【0004】 【課題を解決するための手段】つまり、その目的を達成
するための手段は、界磁電流可変電源部(X)と、第1
の接触器(5)と、誘導分路コイル(4)と、第2の接
触器(10)と、第3の接触器(11)とを有する電気
車走行制御装置であって、界磁電流可変電源部(X)
は、ダイオード(7)が界磁調整用電源(6)に並列接
続され、直列接続された力行時に投入される第3の接触
器(11)と主電動機界磁巻線(3)と界磁電流可変電
源部(X)に対し、直列接続された誘導分路コイル
(4)と第1の接触器(5)とが並列接続され、回生時
に投入される第2の接触器(10)が第3の接触器(1
1)と主電動機界磁巻線 (3)の接続点と誘導分路コ
イル(4)と第1の接触器(5)の接続点間に接続され
たものである。 【作用】その作用は、次に述べる実施例と併せて説明す
る。 【0005】 【実施例】以下、本考案の一実施例を、図面にもとづい
て説明する。図1は本考案の一実施例を示す簡略接続図
で、図中、図2と同一符号のものは同一または相当部分
を示す。図1において、界磁電流可変電源部(X)と、
第1の接触器(5)と、誘導分路コイル(4)と、第2
の接触器(10)と、第3の接触器(11)とを有する
電気車走行制御装置であって、界磁電流可変電源部
(X)は、ダイオード(7)が界磁調整用電源(6)に
並列接続され、直列接続された第3の接触器(11)と
主電動機界磁巻線(3)と界磁電流可変電源部(X)に
対し、直列接続された誘導分路コイル(4)と第1の接
触器(5)とが並列接続され、第2の接触器(10)が
第3の接触器(11)と主電動機界磁巻線(3)の接続
点と誘導分路コイル(4)と第1の接触器(5)の接続
点間に接続されている。力行弱界磁制御時では、接触器
5と接触器11が投入され、パンタグラフ1からの入力
電流Iaは、界磁電流調整用電流6からの制御電流Io=O
の場合、主電動機界磁3と誘導分路コイル4の抵抗比に
より、主電動機界磁3に流れる電流IMfと誘導分路コイ
ル4に流れる電流Ish が決定される。(Ia=IMf +Ish
)したがって、界磁電流調整用電源6からの制御電流I
oを調整することにより、弱界磁率を従来通り連続的に
制御できる。一方、誘導分路コイル4には前記の電流Is
h が流れる。回生時は、図5において、力行弱界磁制御
時と同様に接触器5は投入されており、更に接触器10
も投入される。主電動機はほぼ他励特性となり、主電動
機界磁3を励磁するための界磁電流調整用電源6からの
制御電流Ioは、接触器10を介して主電動機界磁3にのみ
に流れ、誘導分路コイル4には回生電流IBだけが流れ
る。また回生中に架線電圧の急変等でも誘導分路コイル
4のインダクタンスにより回生電流IBの急変が抑制で
き、主電動機の整流悪化を防止できる。 【0006】 【考案の効果】以上説明したように本考案によれば、回
生時に誘導分路コイルに流れる電流が回生電流のみとな
るので、誘導分路コイルを従来より小型・軽量化でき
る。また界磁電流調整用電源の制御電流が脈動している
場合は、この制御電流を誘導分路コイルに流さないこと
で、誘導分路コイルからの信号・保安設備への誘導障害
を軽減することができる。 【0007】
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in an electric vehicle traveling control device. 2. Description of the Related Art In the prior art, a power supply for varying a field current is inserted in series with a field winding of a DC or pulsating motor, and a series connection between the field winding and the power supply is provided. In contrast, a circuit in which an induction coil and a contactor are connected in series is connected in parallel. FIG. 2 is a simplified connection diagram showing an example of a main circuit of the conventional electric vehicle traveling control device, where 1 is a pantograph,
2 is a main motor armature, 3 is a main motor field, 4 is an induction shunt coil, 5 is a contactor, 6 is a field current adjusting power supply, and 7 is a diode. In FIG. 2, a series connection circuit of an induction shunt coil 4 and a contactor 5 is connected in parallel to a series connection of a main motor field 3 and a field current adjusting power supply 6. 2, in the case of power running and weak field operation, as shown in FIG. 3, the contactor 5 is turned on, and the current Ish flowing through the induction shunt coil 4 is controlled by the field current adjusting power source 6 in reverse. By flowing the current Io, the ratio between the field current If of the main motor field 3 and the armature current Ia flowing through the main motor armature 2 can be continuously controlled. Further, at the time of regeneration, the main motor has substantially the separately excited characteristics, and a current obtained by adding a current Io for exciting the main motor field 3 to the regenerative current IB flows through the induction shunt coil 4 as shown in FIG. . In such a conventional control device, the sum of the regenerative current and the exciting current of the main motor field 3 flows through the induction shunt coil 4 during regeneration. In addition, when the heat capacity of the induction shunt coil 4 is large and an iron core is used for the induction shunt coil 4, the iron core is magnetically saturated by a large current at the time of regeneration. Since the induction failure may occur in the security equipment, etc., if it is attempted to use the magnetically unsaturated region of the induction shunt coil core as much as possible, the core becomes large, and as a result, the induction shunt coil 4 becomes large and heavy. was there. The present invention has been made in order to improve the above-mentioned points, and an object of the present invention is to provide an electric vehicle traveling control device capable of reducing the size and weight of an induction shunt coil. [0004] In other words, means for achieving the object are a field current variable power supply (X) and a first
A contactor (5), an induction shunt coil (4), a second contactor (10), and a third contactor (11). Variable power supply (X)
A third contactor (11), a main motor field winding (3), and a field motor (3), which are connected in series during power running, in which a diode (7) is connected in parallel to a field adjustment power source (6); An inductive shunt coil (4) and a first contactor (5) connected in series are connected in parallel to the current variable power supply (X), and a second contactor (10) to be turned on during regeneration is provided. The third contactor (1
1) and a connection point between the main motor field winding (3) and a connection point between the induction shunt coil (4) and the first contactor (5). The operation will be described in conjunction with the embodiment described below. An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a simplified connection diagram showing an embodiment of the present invention, in which the same reference numerals as in FIG. 2 denote the same or corresponding parts. In FIG. 1, a field current variable power supply unit (X);
A first contactor (5), an inductive shunt coil (4) and a second
An electric vehicle traveling control device having a contactor (10) and a third contactor (11), wherein the field current variable power supply unit (X) includes a diode (7) having a field adjustment power supply (X). 6) The inductive shunt coil connected in series to the third contactor (11), the main motor field winding (3), and the field current variable power supply (X) connected in series and connected in series. (4) and the first contactor (5) are connected in parallel, and the second contactor (10) is connected to the junction between the third contactor (11) and the main motor field winding (3) and to the induction. It is connected between the connection points of the shunt coil (4) and the first contactor (5). During powering weak field control, the contactor 5 and the contactor 11 are turned on, and the input current Ia from the pantograph 1 becomes the control current Io = O from the field current adjusting current 6.
In this case, the current IMf flowing through the main motor field 3 and the current Ish flowing through the induction shunt coil 4 are determined by the resistance ratio between the main motor field 3 and the induction shunt coil 4. (Ia = IMf + Ish
Therefore, the control current I from the field current adjusting power supply 6
By adjusting o, the low field susceptibility can be continuously controlled as before. On the other hand, the current Is
h flows. At the time of regeneration, the contactor 5 is turned on in the same manner as in the powering weak field control in FIG.
Is also introduced. The main motor has almost the separately excited characteristics, and the control current Io from the field current adjusting power supply 6 for exciting the main motor field 3 flows only to the main motor field 3 through the contactor 10 and is induced. Only the regenerative current IB flows through the shunt coil 4. In addition, even if the overhead line voltage suddenly changes during regeneration or the like, the sudden change in the regenerative current IB can be suppressed by the inductance of the induction shunt coil 4, and the rectification of the main motor can be prevented from becoming worse. As described above, according to the present invention, since the current flowing through the induction shunt coil during regeneration is only the regenerative current, the size and weight of the induction shunt coil can be reduced as compared with the prior art. Also, if the control current of the field current adjustment power supply is pulsating, this control current should not be passed through the induction shunt coil to reduce the induction failure from the induction shunt coil to the signal / security equipment. Can be. [0007]

【図面の簡単な説明】 【図1】図1は本考案の一実施例を示す簡略接続図であ
る。 【図2】図2は従来の主回路を示す簡略接続図である。 【図3】図3は図2の従来回路での力行弱界磁制御時の
各電流の流れ図である。 【図4】図4は回生制御時の各電流の流れ図である。 【図5】図5は回生制御時の各電流の流れ図である。 【0008】 【符号の説明】 1 パンタグラフ 2 主電動機電機子 3 主電動機界磁巻線 4 誘導分路コイル 5 接触器 10 接触器 11 接触器 6 界磁電流調整用電源 7 ダイオード。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a simplified connection diagram showing one embodiment of the present invention. FIG. 2 is a simplified connection diagram showing a conventional main circuit. FIG. 3 is a flow chart of respective currents at the time of powering weak field control in the conventional circuit of FIG. 2; FIG. 4 is a flow chart of each current during regenerative control. FIG. 5 is a flow chart of each current during regenerative control. DESCRIPTION OF SYMBOLS 1 Pantograph 2 Main motor armature 3 Main motor field winding 4 Induction shunt coil 5 Contactor 10 Contactor 11 Contactor 6 Power supply for field current adjustment 7 Diode.

Claims (1)

(57)【実用新案登録請求の範囲】 1.界磁電流可変電源部(X)と、第1の接触器(5)
と、誘導分路コイル(4)と、第2の接触器(10)
と、第3の接触器(11)とを有する電気車走行制御装
置であって、 界磁電流可変電源部(X)は、ダイオード(7)が界磁
調整用電源(6)に並列接続され、 直列接続された力行時に投入される第3の接触器(1
1)と主電動機界磁巻線(3)と界磁電流可変電源部
(X)に対し、直列接続された誘導分路コイル(4)と
第1の接触器 (5)とが並列接続され、 回生時に投入される第2の接触器(10)が第3の接触
器(11)と主電動機界磁巻線(3)の接続点と誘導分
路コイル(4)と第1の接触器(5)の接続点間に接続
されたものである電気車走行制御装置。
(57) [Rules for requesting registration of utility model] Field current variable power supply unit (X) and first contactor (5)
An induction shunt coil (4) and a second contactor (10).
And a third contactor (11), wherein the field current variable power supply (X) has a diode (7) connected in parallel to the field adjustment power supply (6). , A third contactor (1
An induction shunt coil (4) and a first contactor (5) connected in series are connected in parallel to 1), the main motor field winding (3) and the field current variable power supply (X). The second contactor (10) to be turned on at the time of regeneration is a connection point between the third contactor (11) and the main motor field winding (3), the induction shunt coil (4), and the first contactor. An electric vehicle running control device connected between the connection points of (5).
JP1992041164U 1992-05-22 1992-05-22 Electric vehicle traveling control device Expired - Lifetime JP2560312Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1992041164U JP2560312Y2 (en) 1992-05-22 1992-05-22 Electric vehicle traveling control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1992041164U JP2560312Y2 (en) 1992-05-22 1992-05-22 Electric vehicle traveling control device

Publications (2)

Publication Number Publication Date
JPH0739201U JPH0739201U (en) 1995-07-14
JP2560312Y2 true JP2560312Y2 (en) 1998-01-21

Family

ID=12600787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1992041164U Expired - Lifetime JP2560312Y2 (en) 1992-05-22 1992-05-22 Electric vehicle traveling control device

Country Status (1)

Country Link
JP (1) JP2560312Y2 (en)

Also Published As

Publication number Publication date
JPH0739201U (en) 1995-07-14

Similar Documents

Publication Publication Date Title
US5363035A (en) Phase controlled transformer
JPH05252747A (en) Voltage regulator
US5672963A (en) Variable induction control led transformer
JP2560312Y2 (en) Electric vehicle traveling control device
US3588664A (en) Multiphase dc chopper circuit
JPH0453124Y2 (en)
JPH0551163B2 (en)
JP2794387B2 (en) Single-phase induction motor with control device
EP1170854A1 (en) Inverter circuit with three-phase wye-connected load
JP2817904B2 (en) DC machine rectifier
Byrne et al. Compatible controller-motor system for battery-electric vehicle
JPH062404Y2 (en) Electric vehicle running control device
JPH07222450A (en) Dc link parallel resonance-type inverter
JPS61139297A (en) Drive circuit for pulse motor
SU1253853A1 (en) Apparatus for excitation of synchronous generator of diesel locomotive
JPS6155321B2 (en)
JP2637945B2 (en) Electric vehicle regenerative brake control device
JPH0248899Y2 (en)
RU2185701C1 (en) Valve-type motor with permanent magnets on rotor for electrified transport
JPS6332028B2 (en)
JP2817903B2 (en) DC machine rectifier
JPH0628882Y2 (en) Vehicle retarder
JPH01133310A (en) Transformer for vehicle
JPS6198101A (en) Controller for electric railcar
JPH0759400A (en) Method and device for highly efficiently controlling induction motor