JP2557758B2 - Exhaust gas treatment method using microalgae - Google Patents

Exhaust gas treatment method using microalgae

Info

Publication number
JP2557758B2
JP2557758B2 JP3206198A JP20619891A JP2557758B2 JP 2557758 B2 JP2557758 B2 JP 2557758B2 JP 3206198 A JP3206198 A JP 3206198A JP 20619891 A JP20619891 A JP 20619891A JP 2557758 B2 JP2557758 B2 JP 2557758B2
Authority
JP
Japan
Prior art keywords
exhaust gas
microalgae
sox
treatment method
gas treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3206198A
Other languages
Japanese (ja)
Other versions
JPH0523541A (en
Inventor
秀高 立澤
正 足立
悦子 滝沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Ebara Research Co Ltd
Original Assignee
Ebara Corp
Ebara Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Ebara Research Co Ltd filed Critical Ebara Corp
Priority to JP3206198A priority Critical patent/JP2557758B2/en
Publication of JPH0523541A publication Critical patent/JPH0523541A/en
Application granted granted Critical
Publication of JP2557758B2 publication Critical patent/JP2557758B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微細藻類による排ガス
処理方法に係り、特に燃焼排ガス等の中の炭酸ガス及び
窒素酸化物を微細藻類を用いて固定化する処理方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating exhaust gas with microalgae, and more particularly to a method for immobilizing carbon dioxide and nitrogen oxides in combustion exhaust gas using microalgae.

【0002】[0002]

【従来の技術】地球温暖化の原因とされる温室効果ガス
の中で、COは最も寄与率が高いと言われている。C
除去技術の一つとして微細藻類等の光合成を利用し
たCOの固定化が提唱され、従来から良く知られたク
ロレラ等の適用が進められている。また、反応器として
種々の培養装置が製作されており、常に最適培養条件を
整えられるような通気流動式光反応槽も試作されてい
る。
2. Description of the Related Art It is said that CO 2 has the highest contribution rate among the greenhouse gases that cause global warming. C
Immobilization of CO 2 using photosynthesis of microalgae has been proposed as one of O 2 removal technologies, and the application of chlorella, which is well known in the past, has been promoted. In addition, various culturing devices have been manufactured as reactors, and an aeration flow type photoreaction tank that can always adjust the optimum culturing conditions has been prototyped.

【0003】[0003]

【発明が解決しようとする課題】プラントの排ガス処理
においては、脱硝、脱硫や熱回収等が行なわれている。
しかしながら、排ガスの温度は白煙防止の目的等から通
常百数十度以上の高温である。また、水蒸気分圧等の関
係から、排ガス温度を40〜50℃以下に下げるために
は多大なエネルギーを要することになり、この場合熱回
収の効果も期待できない。従って、実用上可能な最終排
ガス温度は40〜50℃が下限と推定される。これに対
し、従来のクロレラ等を利用する場合、反応温度を20
〜25℃に調整する必要があり、流入排ガス又は反応器
の冷却温度管理に困難があった。
In the treatment of exhaust gas from plants, denitration, desulfurization and heat recovery are carried out.
However, the temperature of the exhaust gas is usually a high temperature of hundreds of tens or more for the purpose of preventing white smoke. Further, due to the water vapor partial pressure and the like, a large amount of energy is required to reduce the exhaust gas temperature to 40 to 50 ° C. or less, and in this case, the effect of heat recovery cannot be expected. Therefore, the lower limit of the practically feasible final exhaust gas temperature is estimated to be 40 to 50 ° C. On the other hand, when using conventional chlorella or the like, the reaction temperature is 20
It was necessary to adjust the temperature to -25 ° C, and it was difficult to control the inflowing exhaust gas or the cooling temperature of the reactor.

【0004】さらに、燃焼排ガス中のNOx、SOx等
により、反応槽中のpHが低下するが、クロレラ等の生
育適正pHは中性域にあり、強酸性域では活性が著しく
低下する。このpH調整のための設備が必要となる。こ
の様に、処理環境の調整に問題があることが、微細藻類
を用いたCO固定技術の実用化を困難ならしめる原因
の1つであった。本発明は、上記問題点に鑑み、SOx
及び/又はNOxを含む燃焼排ガスを通気することで発
生する高温や強酸性の条件下でも安定して炭酸ガスや窒
素酸化物を除去することのできる微細藻類を利用した排
ガス処理方法を提供することを課題とするものである。
Further, the pH in the reaction tank is lowered by NOx, SOx, etc. in the combustion exhaust gas, but the proper growth pH of chlorella etc. is in the neutral range, and the activity is remarkably lowered in the strongly acidic range. Equipment for adjusting the pH is required. Thus, there is a problem in adjusting the treatment environment, which is one of the causes that make it difficult to put the CO 2 fixing technique using microalgae into practical use. In view of the above problems, the present invention provides SOx
And / or an exhaust gas treatment method using microalgae capable of stably removing carbon dioxide and nitrogen oxides even under high temperature and strongly acidic conditions generated by aeration of combustion exhaust gas containing NOx. Is an issue.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するため
に、本発明では、液体培地と微細藻類としての好酸性微
細藻類の単一種又は複数種とを共存させた培養液に、光
の供給下、常温に維持しながらSOx及び/又はNOx
を含む燃焼排ガスを通気して、少なくとも排ガス中の
炭酸ガスを除去する排ガス処理方法としたものである。
また、本発明では、液体培地と微細藻類としての好酸好
高温性微細藻類の単一種又は複数種とを共存させた培養
液に、光の供給下、高温に維持しながらSOx及び/又
はNOxを含む燃焼排ガスを通気して、少なくとも
ガス中の炭酸ガスを除去する排ガス処理方法としたもの
である。
In order to solve the above problems SUMMARY OF THE INVENTION In the present invention, the culture allowed to coexist with a single species or more acidophilic microalgae as liquids medium and microalgae, light Supplying SOx and / or NOx while maintaining room temperature
By venting the combustion exhaust gas containing, in which the exhaust gas treatment method for removing carbon dioxide of at least the exhaust gas.
Further , in the present invention, SOx and / or SOx and / or while maintaining a high temperature under the supply of light to a culture medium in which a liquid medium and a single species or a plurality of species of acidophilic thermophilic microalgae as microalgae coexist
Is vented combustion exhaust gas containing NOx, it is obtained by the exhaust gas treatment method for removing carbon dioxide of at least the exhaust <br/> gas.

【0006】上記のように、本発明は、排ガスに想定さ
れるつの状況に対し、夫々特定の生理的特性を有する
微細藻類群を適用するものである。 排ガス中に存在するNOx、SOx等により、培養
液が強酸性となる場合で、反応槽温度が常温に維持され
る場合、好酸性微細藻類の単一種は複数種を、該排ガ
ス通気下で維持し、該排ガス中のCOを藻体に固定し
除去する。例えば、シアニディウム・カルダリウム(C
yanidium caldarium)は、pH1.
5〜3で良好な生育即ちCO固定を示す。同種の他、
好酸性微細藻類は緑藻類、紅藻類、珪藻類等種々の分類
群に知られている(文献、極限環境微生物ハンドブッ
ク 大島泰郎 91(株)サイエンスフォーラム)。例
として、ニッチア・パレア(Nitzschia pa
lea)等があげられる。これら藻類は水中のNO
をその生長に利用することが知られており(上記文献
)、該排ガス中のNOxが培養液中に溶解し生じるN
を藻体に固定させることで、COと同時に窒素
酸化物の除去が可能である。図2は、上記シアニディウ
ム・カルダリウム(Cyanidium caldar
ium)がNH と同様にNO も吸収することを
示すグラフである。
As mentioned above, the present invention is intended for exhaust gas.
Be2Have specific physiological characteristics for each of the two situations
It applies a group of microalgae.  Culture with NOx, SOx, etc. existing in the exhaust gas
When the liquid becomes strongly acidic, the temperature of the reaction tank is maintained at room temperature.
A single species of eosinophilic microalgaeorIs a multiple species
CO in the exhaust gas maintained under aeration2Fixed to the algal body
Remove. For example, cyanidal caldarium (C
yanidium caldarium) has a pH of 1.
Good growth or CO in 5 to 32Indicates fixed. Other than the same kind,
Acidophilic microalgae are classified into various groups such as green algae, red algae, and diatoms.
Known to the group (literature1, Extreme environmental microorganism handbook
Ku Yasuo Oshima 91 Science Forum Co., Ltd. An example
As Nichia Palea (Nitzschia pa
lea) and the like. These algae are NO in water3
Are known to be used for their growth (see above document
1), N generated in the exhaust gas is dissolved in the culture solution to generate N
O3 Is fixed to the alga body, CO2At the same time nitrogen
It is possible to remove oxides. Figure 2 shows the above cyanidiu
Mu Caldarium (Cyanidium caldar)
ium) is NH4 +Same as NO3 To also absorb
It is a graph shown.

【0007】 排ガス中に存在するNOx、SOx等
により、培養液が強酸性となる場合、好酸好高温性微細
藻類の単一種は複数種を該排ガス通気化で高温(好ま
しくは、40〜80℃)に維持し、該排ガス中のCO
を藻体に固定し除去する。前述のシアニディウム・カル
ダリウム(Cyanidium caldarium)
は30〜35℃の温度条件で良好な増殖を示すが、55
〜60℃の高温条件下でも生育する。図3は生育状態
を示すグラフである。この様な好酸好高温性微細藻類に
他に例としてクロオコシディオプシスsp.(Ch
roococcidiopsis sp.)等が挙げら
れる。
[0007]  NOx, SOx, etc. existing in exhaust gas
When the culture solution becomes strongly acidic due to
Single species of algaeorIs a high temperature (preferably
The temperature of the exhaust gas is kept at 40 to 80 ° C.2
Is fixed to the alga body and removed. Cyanideum Cal mentioned above
Dalium (Cyanidium caldarium)
Shows good growth under the temperature condition of 30 to 35 ° C.,
It grows even under high temperature conditions of ~ 60 ° C. Figure 3,Growing condition
It is a graph which shows. For such acid- and thermophilic microalgae
Is,Other examples include Clococci diopsis sp. (Ch
roococcidiopsis sp. ) Etc.
Be done.

【0008】なお、これらの微細藻類は、付着性、浮遊
性いずれの生活様態のものも利用できるが、近年通気流
動層式の効率的な光反応槽が試作され、その利用が提唱
されていることから光利用性の良い浮遊性藻類の利用が
好ましい。また、反応槽の設定にあたっては、反応槽内
の培地に該藻類を接種し内部で増殖させる方法、別途大
量培養した緑藻類と培地を反応槽に供給する方法、のい
ずれによっても良い。また、培地は該藻類の増殖に必要
な成分を適宜供給できれば良く、さらに排ガス、排液等
により供給される成分を利用することが好ましく、例え
ば窒素源は排ガス中のNOxを利用でき、別途添加を必
要としない。
It should be noted that these microalgae can be used in any form of life such as adherence and floating, but in recent years, an aerated fluidized bed type efficient photoreaction tank has been prototyped and its use has been proposed. Therefore, it is preferable to use planktonic algae that have good light utilization. Further, in setting the reaction tank, any of a method of inoculating the medium in the reaction tank with the alga and growing it inside, or a method of separately supplying a large amount of green algae and the medium to the reaction tank may be used. In addition, it is sufficient for the medium to appropriately supply the components necessary for the growth of the algae, and it is preferable to use the components supplied by the exhaust gas, the waste liquid, etc. Does not need

【0009】[0009]

【作用】微細藻類を含む植物は光合成を営み、CO
藻体及び生産物へ固定し、窒素、リン等の化合物を吸収
することで藻体を構築していることは公知である。ま
た、海洋中の動植物プランクトンと栄養塩の間には、お
おむね次の関係が見出されている。 この関係はほとんどすべての海域で成立しており、植物
プランクトンという生物体と栄養塩という化学成分の間
を元素の流れでみる場合、極めて便利であることも知ら
れている。
It is known that plants containing microalgae perform photosynthesis, immobilize CO 2 on algae and products, and absorb compounds such as nitrogen and phosphorus to construct algae. In addition, the following relationships are generally found between flora and phytoplankton and nutrients in the ocean. This relationship holds in almost all sea areas, and it is also known that it is extremely convenient when looking at the flow of elements between the organisms called phytoplankton and the chemical components called nutrients.

【0010】排ガス中のNOxは水中に溶けると次の様
にNOを生じる。 微細藻類はこのNO 態窒素を利用し、これを窒素源
として増殖が可能である。また、通常の微細藻類は、常
温付近、pHもほぼ中性付近で良好な生長を示すが、特
殊環境下で良好な生長を示す微細藻類群が知られてお
り、本発明で利用する好酸性、好酸好高温性の微細藻類
もその1つである。これらは排ガスの通気により生じる
高温、強酸性の条件下でも機能を維持するため、温度、
pH調整の負担を軽減できる。なお、これらの藻類の余
剰藻体及び代謝産物は処理装置から分離され、有用物質
の回収、肥料化等資源として利用することができる。
When NOx in the exhaust gas dissolves in water, NO 3 is produced as follows. Microalgae The NO 3 - using nitrogen, which is capable of growing as a nitrogen source. Further, the conventional microalgae, around room temperature, pH also show good growth in the vicinity of almost neutral, are known microalgae group shown good growth in special environments, we use in the present invention good Microalgae that are acidic and acidophilic and thermophilic are also one of them. Since these maintain their function even under high temperature and strongly acidic conditions caused by ventilation of exhaust gas,
The burden of pH adjustment can be reduced. The surplus algal bodies and metabolites of these algae can be separated from the processing device and used as resources such as recovery of useful substances and fertilization.

【0011】[0011]

【実施例】以下、本発明を実施例により具体的に説明す
るが、本発明はこれらに限定されない。 実施例 二酸化炭素の除去に関する実験を、好酸性微細藻類であ
るニィッチェア パレア(Nitzschia pal
ea)を用いて行ない、一般的な藻類であるクロレラ
ピレノイドーサ(Chlorella pyrenoi
dosa)を対照区として、pH2.0、温度25℃で
培養した。培地はCsi改変培地を用いた。以下に組成
を示す。 Ca(NO ・4HO 150 mg KNO 100 mg β−Naグリセロホスフェート 50 mg MgSO ・7HO 40 mg ビタミン B12 0.1μg ビオチン 0.1μg チアミン HCl 10 μg PIV メタル 3 ml 1,2,3,4−シクロペンタン テトラカルボン酸 500 mg NaSiO ・9HO 100 mg 蒸留水 1 リットル
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited thereto. Example 1 An experiment relating to the removal of carbon dioxide was carried out by using Nitzschia pal, which is an acidophilic microalgae.
Chlorella which is a common algae
Pyrenoidosa (Chlorella pyrenoi)
dosa) was used as a control, and the cells were cultured at pH 2.0 and a temperature of 25 ° C. The medium used was a Csi modified medium. The composition is shown below. Ca (NO 3) 2 · 4H 2 O 150 mg KNO 3 100 mg β-Na 2 glycerophosphate 50 mg MgSO 4 · 7H 2 O 40 mg Vitamin B12 0.1 [mu] g biotin 0.1 [mu] g Thiamine HCl 10 [mu] g PIV metal 3 ml 1 , 2,3,4-cyclopentane tetracarboxylic acid 500 mg Na 2 SiO 3 · 9H 2 O 100 mg 1 liter of distilled water

【0012】図1に実験装置のフロー工程図を示す。図
1において、CO1と空気2は、ガス混合槽3で混合
されて光反応槽5の培養液6中に導入され、培養液6中
にCOが固定されて処理ガスは7から排出される。培
養液は、8から抜き出され固液分離して、分離液は10
から抜き取られ、余剰藻体は11から引き抜かれ、藻体
は13から反応槽に返送される。新しい培地は12から
供給され、槽内藻体濃度を一定に保っている。14は処
理ガス中のCO及び/又はNOx等のガス測定器であ
る。
FIG. 1 shows a flow chart of the experimental apparatus. In FIG. 1, CO 2 1 and air 2 are mixed in a gas mixing tank 3 and introduced into a culture solution 6 in a photoreaction tank 5, CO 2 is fixed in the culture solution 6 and a treated gas is discharged from 7. To be done. The culture solution was extracted from 8 and solid-liquid separated, and the separated solution was 10
The surplus algal bodies are extracted from 11, and the algal bodies are returned from 13 to the reaction tank. Fresh medium is supplied from 12, and the concentration of algal cells in the tank is kept constant. Reference numeral 14 is a gas measuring device for CO 2 and / or NOx in the processing gas.

【0013】実験は連続系で行ない、空気にCOを5
%混合したものを200ml/l・min通気した。固
液分離により分離液を引き抜き、新しい培地を同量添加
して槽内培養液量を1リットルに保った。槽内藻体濃度
は5g/lに一定とするため、余剰藻体は引き抜いた。
結果を表に示す。
The experiment was conducted in a continuous system, and CO 2 was added to the air at 5
% Mixture was aerated with 200 ml / l.min. The separated liquid was drawn out by solid-liquid separation, and the same amount of new medium was added to maintain the tank culture liquid amount at 1 liter. Since the algal cell concentration in the tank was kept constant at 5 g / l, the surplus algal cells were extracted.
The results are shown in Table 1 .

【表1】 [Table 1]

【0014】実施例 二酸化炭素の除去に関する実験を、好酸好高温性微細藻
類であるシアニディウム カルダリウム(Cyanid
ium caldarium)を用いて行ない、一般的
な藻類であるクロレラ ピレノイドーサ(Chlore
lla pyrenoidosa)を対照区として、p
H2.0、温度55℃で培養した。培地は(CC)培地
を用いた。以下に組成を示す。 Ca(NO ・4HO 150 mg KNO 100 mg MgSO ・7HO 40 mg β−Na2グリセロホスフェート 50 mg チアミン HCl 10 μg ビタミン B12 0.1μg ビオチン 0.1μg シクロペンタン テトラカルボン酸 500 mg PIV メタル 3 ml 蒸留水 1 リットル
Example 2 An experiment relating to the removal of carbon dioxide was carried out by using cyanidium cardarium (Cyanid)
chlorella pyrenoidosa (Chlore), which is a common algae.
lla pyrenoidosa) as a control, p
Culture was performed at H2.0 and a temperature of 55 ° C. (CC) medium was used as the medium. The composition is shown below. Ca (NO 3) 2 · 4H 2 O 150 mg KNO 3 100 mg MgSO 4 · 7H 2 O 40 mg β-Na2 -glycerophosphate 50 mg Thiamine HCl 10 [mu] g vitamin B12 0.1 [mu] g biotin 0.1 [mu] g cyclopentanetetracarboxylic acid 500 mg PIV Metal 3 ml Distilled water 1 liter

【0015】培養方法は実施例1に準ずる。結果を表
に示す。
The culturing method is in accordance with Example 1. The results are shown in Table 2.
Shown in

【表2】 [Table 2]

【0016】上記の各実施例において、対象としたクロ
レラ ピレノイドーサ(Chlorellapyren
oidosa)は全ての実験区において増殖せずに死滅
してしまった。好酸性微細藻類であるニッチェア パレ
ア(Nitzschia palea)、好酸好高温性
微細藻類であるシアニディウム カルダリウム(Cya
nidium caldarium)は各々苛酷な条件
下でも極めて良好な増殖を示した。また好酸性及び好酸
好高温性微細藻類培養時、CO のほかにNOを0.1
%の濃度になるように空気に混合し実施例1〜と同様
な条件で処理した場合、処理空気にNOは検出されず、
100%の除去率となった。この結果より、廃ガス中に
おける窒素酸化物を藻類のN源として利用することも可
能である。廃ガス中の窒素酸化物量が藻類の必要とする
N量に不足する場合には、N源として廃水などを利用す
ることもできる。
In each of the above examples, the target chlorella pyrenoidosa (Chlorellapyren)
Oidosa) did not grow and died in all experimental plots . Is acidophilic microalgae Nitchea Palea (Nitzschia palea), a good eosinophilic thermophilic microalgae Shianidiumu caldarium (Cya
Nidium caldarium) each showed extremely good growth even under severe conditions. In addition to CO 2 , NO of 0.1
When mixed with air to have a concentration of 10% and treated under the same conditions as in Examples 1 and 2 , NO was not detected in the treated air,
The removal rate was 100%. From this result, it is also possible to utilize nitrogen oxides in the waste gas as the N source of algae. When the amount of nitrogen oxides in the waste gas is insufficient for the amount of N required by algae, waste water or the like can be used as the N source.

【0017】[0017]

【発明の効果】本発明には次のようなつの効果があ
る。 ()排ガス処理工程中の窒素酸化物処理工程の縮小。
好酸性微細藻類を用いることにより、窒素酸化物を含有
した排ガスを直接リアクター内に導入して培養液のpH
が低下しても運転が可能となる。また、これらの藻類は
窒素源として硝酸態窒素を利用できるため、二酸化炭素
と窒素酸化物の同時除去が可能となる。 ()排ガスの冷却エネルギーの節約び排ガス処理工
程中の窒素酸化物処理工程の縮小。好酸好高温性微細藻
類を用いることにより、最高55〜60℃の温度下で二
酸化炭素と窒素酸化物の同時除去が可能となる。
The present invention according to the present invention has two effects as follows. ( 1 ) Reduction of nitrogen oxide treatment process in exhaust gas treatment process.
By using eosinophilic microalgae, the exhaust gas containing nitrogen oxides is directly introduced into the reactor to adjust the pH of the culture solution.
It becomes possible to operate even if the value decreases. Further, since these algae can use nitrate nitrogen as a nitrogen source, it is possible to remove carbon dioxide and nitrogen oxides at the same time. (2) reduction of savings beauty nitrogen oxides in the exhaust gas treatment process step of cooling energy of the exhaust gas. By using the acid-philic thermophilic microalgae, carbon dioxide and nitrogen oxides can be simultaneously removed at a temperature of 55 to 60 ° C at the maximum.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施する実験装置のフロー工程
図である。
FIG. 1 is a flow process diagram of an experimental apparatus for carrying out the method of the present invention.

【図2】シアニディウム・カルダリウムの窒素化合物の
吸収を示すグラフである。
FIG. 2 is a graph showing absorption of nitrogen compounds of cyanidin-cardarium.

【図3】シアニディウム・カルダリウムの温度による生
育状態を示すグラフである。
FIG. 3 is a graph showing the growth state of cyanidium cardarium depending on the temperature.

【符号の説明】[Explanation of symbols]

1:CO、2:空気、3:ガス混合槽、4:ガス導入
管、5:光反応槽、6:培養液、7:ガス排出管、8:
培養液引抜管、9:固液分離器、10:液引抜管、1
1:藻体引抜管、12:培地供給管、14:ガス測定器
1: CO 2 , 2: Air, 3: Gas mixing tank, 4: Gas introduction tube, 5: Photoreaction tank, 6: Culture solution, 7: Gas exhaust tube, 8:
Culture liquid drawing tube, 9: Solid-liquid separator, 10: Liquid drawing tube, 1
1: alga body extraction tube, 12: culture medium supply tube, 14: gas measuring instrument

フロントページの続き (72)発明者 滝沢 悦子 神奈川県藤沢市本藤沢4丁目2番1号 株式会社 荏原総合研究所内 (56)参考文献 特開 昭57−112870(JP,A) 特開 平3−154616(JP,A)Front Page Continuation (72) Inventor Etsuko Takizawa 4-2-1 Honfujisawa, Fujisawa City, Kanagawa Prefecture Ebara Research Institute, Ltd. (56) Reference JP-A-57-112870 (JP, A) JP-A-3- 154616 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 液体培地と微細藻類としての好酸性微細
藻類の単一種又は複数種とを共存させた培養液に、光の
供給下、常温に維持しながらSOx及び/又はNOxを
含む燃焼排ガスを通気して、少なくとも排ガス中の炭
酸ガスを除去する排ガス処理方法。
1. SOx and / or NOx is supplied to a culture solution in which a liquid medium and a single species or plural species of acidophilic microalgae as microalgae coexist, while being kept at room temperature under the supply of light.
The combustion exhaust gas containing vented exhaust gas treatment method for removing carbon dioxide of at least the exhaust gas.
【請求項2】 液体培地と微細藻類としての好酸好高温
性微細藻類の単一種又は複数種とを共存させた培養液
に、光の供給下、高温に維持しながらSOx及び/又は
NOxを含む燃焼排ガスを通気して、少なくとも排ガ
ス中の炭酸ガスを除去する排ガス処理方法。
2. SOx and / or SOx and / or while maintaining a high temperature under the supply of light in a culture medium in which a liquid medium and a single species or a plurality of species of acidophilic thermophilic microalgae as microalgae coexist.
By venting the combustion exhaust gas containing NOx, exhaust gas treatment method for removing carbon dioxide of at least the waste gas <br/> during scan.
JP3206198A 1991-07-24 1991-07-24 Exhaust gas treatment method using microalgae Expired - Fee Related JP2557758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3206198A JP2557758B2 (en) 1991-07-24 1991-07-24 Exhaust gas treatment method using microalgae

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3206198A JP2557758B2 (en) 1991-07-24 1991-07-24 Exhaust gas treatment method using microalgae

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP8108690A Division JP2827106B2 (en) 1996-04-05 1996-04-05 Exhaust gas treatment method using microalgae

Publications (2)

Publication Number Publication Date
JPH0523541A JPH0523541A (en) 1993-02-02
JP2557758B2 true JP2557758B2 (en) 1996-11-27

Family

ID=16519420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3206198A Expired - Fee Related JP2557758B2 (en) 1991-07-24 1991-07-24 Exhaust gas treatment method using microalgae

Country Status (1)

Country Link
JP (1) JP2557758B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109876642A (en) * 2017-12-06 2019-06-14 中国石油化工股份有限公司 A kind of method and device handling nitrogen-containing oxide flue gas

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277450A (en) * 1993-03-29 1994-10-04 Toda Constr Co Ltd Air purifying method and apparatus
WO1998022201A1 (en) * 1996-11-20 1998-05-28 Hitachi, Ltd. Method of and apparatus for purifying nitrogen oxide-containing air
DE19752542A1 (en) * 1997-11-27 1999-07-01 Umweltschutz Nord Gmbh & Co Process for reducing the concentration of ingredients in a gas and in a liquid and device for carrying out this process
JPH11226351A (en) * 1998-02-12 1999-08-24 Spirulina Kenkyusho:Kk Production of cleaned air and apparatus for cleaning air

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112870A (en) * 1980-12-31 1982-07-14 Takashi Mori Air purifier
JPH03154616A (en) * 1989-11-10 1991-07-02 Mitsubishi Heavy Ind Ltd Recovery and fixation of carbon dioxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109876642A (en) * 2017-12-06 2019-06-14 中国石油化工股份有限公司 A kind of method and device handling nitrogen-containing oxide flue gas

Also Published As

Publication number Publication date
JPH0523541A (en) 1993-02-02

Similar Documents

Publication Publication Date Title
JP6698624B2 (en) Method for comprehensively culturing microalgae and denitration of industrial exhaust gas and system using the same
CN101302058B (en) Method for removing sulphur and nitrogen in inorganic waste water synchronously
Yun et al. Enhancement of CO 2 tolerance of Chlorella vulgaris by gradual increase of CO 2 concentration
JPH03501099A (en) Anoxic oxidation of ammonia
JPH10513110A (en) Aerobic treatment of wastewater
CN103937712B (en) A kind of Bacillus licheniformis and application thereof
EP0530226B1 (en) Method for removing nitrogen from an aqueous solution
Claus et al. Denitrification of nitrate and nitric acid with methanol as carbon source
EP0073675A1 (en) Continuous fermentation apparatus and process
CN1424985A (en) Removal of sulfur compounds from wastewater
CN108546648A (en) A kind of environment-friendly type microalgae culture method
JP2557758B2 (en) Exhaust gas treatment method using microalgae
Azov et al. The effect of pH on the performance of high-rate oxidation ponds
JP2827106B2 (en) Exhaust gas treatment method using microalgae
CN103693759B (en) Method for synchronously removing carbon, nitrogen and sulfur in wastewater
CN105441359B (en) One bacillus licheniformis and its application
CN109569271A (en) Method that is a kind of while removing SO 2 in waste gas and nitrogen oxides
CN109939548B (en) Flue gas desulfurization and denitrification method and device
JP2009240869A (en) Aeration type deodorizing apparatus by alcaligenes bacterium, used together with contact tank
JPS5860992A (en) Preparation of hydrogen from green alga utilizing light and darkness cycle
JPH0856648A (en) New strain of fine alga and method for immobilizing co2 using the same
SU524777A1 (en) The method of biological wastewater treatment from organic compounds
CN113321312B (en) High concentration of CO 2 Method for atmosphere domestication of microalgae high ammonia nitrogen resistant biogas slurry
JPS58101685A (en) Method for proliferating diatomaceae
CN109876603B (en) Method and device for treating sulfur-containing flue gas

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees