JP2557040B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JP2557040B2
JP2557040B2 JP20930284A JP20930284A JP2557040B2 JP 2557040 B2 JP2557040 B2 JP 2557040B2 JP 20930284 A JP20930284 A JP 20930284A JP 20930284 A JP20930284 A JP 20930284A JP 2557040 B2 JP2557040 B2 JP 2557040B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting device
semiconductor light
semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20930284A
Other languages
Japanese (ja)
Other versions
JPS6188573A (en
Inventor
晃 石橋
芳文 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP20930284A priority Critical patent/JP2557040B2/en
Publication of JPS6188573A publication Critical patent/JPS6188573A/en
Application granted granted Critical
Publication of JP2557040B2 publication Critical patent/JP2557040B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、直接遷移による発光機構に基く発光素子
(LED)、ダイオードレーザー等の半導体発光装置に係
わる。
The present invention relates to a semiconductor light emitting device such as a light emitting element (LED) or a diode laser based on a light emitting mechanism by direct transition.

〔従来の技術〕[Conventional technology]

半導体レーザーダイオード、或いはLED等の半導体発
光装置において、量子効率がより高く発光効率のより高
い発光装置を得るための半導体物質の開発が要求されて
いる。
In a semiconductor light emitting device such as a semiconductor laser diode or an LED, development of a semiconductor material for obtaining a light emitting device having higher quantum efficiency and higher light emission efficiency is required.

一方、この種の半導体発光装置の製造に当っては、例
えば工業的に汎用されているGaAs基板上にエピタキシャ
ル成長させることのできる半導体材料が望まれるとか、
或いはその発光波長が短波長であるものを得る場合にあ
っては、エネルギーバンドギャップの大きい材料である
ことが望まれるなど、多くの条件が同時に要求され、し
かも化学的、物理的に安定であることが要求されるもの
である。
On the other hand, in manufacturing a semiconductor light emitting device of this kind, for example, a semiconductor material that can be epitaxially grown on a GaAs substrate that is industrially widely used is desired,
Alternatively, when obtaining a material having a short emission wavelength, many conditions are required at the same time, such as a material having a large energy band gap, and it is chemically and physically stable. Is required.

一般に2元化合物半導体は、バンドギャップ、格子定
数等の物理定数に関して夫々固有の値を持っている。し
たがって上述した諸条件を満たすために複数種の2元化
合物半導体の混晶化によって各2元化合物半導体の中間
的値の物理定数を得る多元化合物半導体例えばIII−V
族化合物半導体の液晶、例えば(AlGa)Asなどが用いら
れている。
Generally, a binary compound semiconductor has its own specific values with respect to physical constants such as band gap and lattice constant. Therefore, in order to satisfy the above-mentioned conditions, a multi-element compound semiconductor, for example, III-V, which obtains an intermediate value physical constant of each binary compound semiconductor by crystallization of a plurality of kinds of binary compound semiconductors
Liquid crystals of group compound semiconductors such as (AlGa) As are used.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上述したように半導体発光装置においては、例えばII
I−V族化合物半導体による混晶の利用が盛んである
が、この場合、完全な混晶を得るには、各アニオン、カ
チオンが空間的に一様に分散していることが必要であ
る。ところが実際にはその分布は不均一となり、またそ
の混合比の制御も確実に所望の値に設定することが比較
的困難で、バンドギャップ等の物理定数も必ずしも要求
通りに設定できないという問題がある。
As described above, in the semiconductor light emitting device, for example, II
Mixed crystals of IV group compound semiconductors are widely used, but in this case, in order to obtain a complete mixed crystal, it is necessary that each anion and cation be spatially uniformly dispersed. However, in reality, the distribution becomes non-uniform, and it is relatively difficult to reliably control the mixing ratio to a desired value, and physical constants such as band gap cannot always be set as required. .

本発明は、上述した問題点を解消することができ、量
子効率が高く、短波長を含めて発光波長の選定の自由度
が大で且つ、工業的製造上の有利性にすぐれた半導体発
光装置を得んとするものである。
INDUSTRIAL APPLICABILITY The present invention is capable of solving the above-mentioned problems, has high quantum efficiency, has a high degree of freedom in selection of emission wavelengths including short wavelengths, and has excellent industrial manufacturing advantages. It is what you get.

〔問題点を解決するための手段〕[Means for solving problems]

本発明においては、ダブルヘテロ接合型、すなわち活
性層の両側をクラッド層ではさんだ半導体発光装置にお
いて、その活性層は、夫々分数を含む2原子層以上8原
子層以下の単体物質、或いは2元化合物半導体物質より
成る互いに異なる複数主の物質が交互にエピタキシャル
成長されて成り、その活性層で直接遷移発光するが、上
記複数種の物質の平均組成の混晶材料はバンド構造が間
接遷移である構成とする。
In the present invention, in a double heterojunction type, that is, in a semiconductor light emitting device in which both sides of an active layer are sandwiched by clad layers, the active layer is a simple substance of 2 atomic layers or more and 8 atomic layers or less including a fraction, or a binary compound. A plurality of different main substances made of semiconductor substances are alternately epitaxially grown, and direct transition light emission occurs in the active layer. However, the mixed crystal material having the average composition of the plurality of types of substances has an indirect transition band structure. To do.

すなわち、第1図に示すように、例えばGaAs単結晶基
板(10)上に、夫々8原子層以下望ましくは1〜8原子
(分数も含む)の層から成る互いに異なる複数種(N数
種)の物質層L1、L2、L3…Lnを繰返し複数周期(M周
期)をもって順次MOCVD(Metalorganic Chemical Vapou
r Deposition)法、或いはMBE(Molecular Beam Epitax
y)法によってエピタキシャル成長した超格子構造によ
る半導体層によって半導体発光装置の発光領域(11)を
構成する。
That is, as shown in FIG. 1, for example, on a GaAs single crystal substrate (10), a plurality of different species (several N species) each consisting of 8 atomic layers or less, preferably 1 to 8 atomic layers (including fractions) are used. The material layers L 1 , L 2 , L 3 ... L n are repeatedly formed with a plurality of cycles (M cycles) and sequentially MOCVD (Metalorganic Chemical Vapou
r Deposition) method or MBE (Molecular Beam Epitax)
A light emitting region (11) of a semiconductor light emitting device is constituted by a semiconductor layer having a superlattice structure epitaxially grown by the y) method.

〔作用〕[Action]

上述したように、その発光領域を、単原子ないしは数
原子層による薄い物質層の堆積によって構成したことに
よって、各物質が全域に亘って空間的に一様にアニオ
ン、カチオンの配列が生じ安定した発光特性を得ること
ができる。また、その全体としての組成比、すなわち平
均的組成比の選定は、各物質層の原子層比、積層比によ
って離散的に定まるので、完全な制御を行うことができ
る。更にまた、単原子ないしは数原子層による物理的に
短周期性を有する構成であるので、各層の構成物質の性
質と相違する性状を示すことはもとより、冒頭に述べた
混晶とも異なる性状を示し、混晶で間接遷移であった領
域において直接遷移のバンド構造とすることができ、ひ
いては構成材料の選定の自由度、したがって発光波長範
囲の選定の自由度が大となる。更に超格子構造をとるこ
とによって、基板との格子定数との不一致の許容範囲が
大となり、より材料の選定の自由度が大となる。
As described above, since the light emitting region is formed by depositing a thin material layer of a monoatomic layer or a few atomic layers, each substance has a spatially uniform arrangement of anions and cations and is stable. It is possible to obtain light emission characteristics. Further, the selection of the composition ratio as a whole, that is, the average composition ratio is discretely determined by the atomic layer ratio and the stacking ratio of each material layer, and therefore complete control can be performed. Furthermore, since it is a constitution having a physically short periodicity due to a monoatomic layer or several atomic layers, it exhibits properties different from the properties of the constituent materials of each layer, as well as properties different from the mixed crystal described at the beginning. In addition, a band structure of direct transition can be formed in the region of indirect transition in mixed crystal, and thus, the degree of freedom in selection of constituent materials, and thus the degree of freedom in selection of emission wavelength range becomes large. Further, by adopting a superlattice structure, the allowable range of mismatch with the lattice constant with the substrate becomes large, and the degree of freedom in selecting the material becomes greater.

〔実施例〕〔Example〕

クロムCrがドープされた半絶縁性のGaAs単結晶基板の
(100)結晶面より成る一主面上に、トリメチルガリウ
ム、トリメチルアルミニウム、アルシンを原材料ガスと
してMOCVDによって(AlAs)n(GaAs)mの超格子構造
のエピタキシャル層による半導体層を形成した。この場
合、各AlAs層と、GaAs層は、その繰返し周期数Mは数十
〜数百に選定し、超格子構造による半導体層全体の厚さ
を3400Åとした。各AlAs層とGaAs層の各原子層数は同一
数すなわちn=mとした。
A semi-insulating GaAs single crystal substrate doped with chromium (Cr) was formed on one main surface consisting of (100) crystal faces by MOCVD using trimethylgallium, trimethylaluminum, and arsine as source gases (AlAs) n (GaAs) m. A semiconductor layer was formed of an epitaxial layer having a superlattice structure. In this case, each AlAs layer and the GaAs layer are selected to have a repetition period number M of several tens to several hundreds, and the total thickness of the semiconductor layer having the superlattice structure is set to 3400Å. The number of atomic layers of each AlAs layer and GaAs layer was the same, that is, n = m.

この構成によれば、エピタキシャル半導体層の平均の
組成は、Al0.5Ga0.5Asとなるものであるが、この組成に
おいてn(=m)=2としたときのこの構成による光ル
ミネッセンスの室温での発光スペクトルは、第2図に示
すように測定され、620nm程度の短波長発光が得られて
いる。因みにこのAl0.5Ga0.5Asの組成において混晶とす
るときは、直接遷移による発光は生じない。
According to this structure, the average composition of the epitaxial semiconductor layer is Al 0.5 Ga 0.5 As. However, in this composition, when n (= m) = 2, the photoluminescence of this structure at room temperature is The emission spectrum was measured as shown in FIG. 2, and short wavelength light emission of about 620 nm was obtained. Incidentally, when a mixed crystal is formed in this Al 0.5 Ga 0.5 As composition, light emission due to direct transition does not occur.

また、上述の構成においてn(=m)の値を変化させ
た場合の各試料の量子効率の測定結果を、第3図におい
て、黒丸印をもって示した。同図において破線曲線は、
クローニッヒ−ペニー(Kronig−Pennney)の理論によ
る計算、いわば従来の化合物半導体、つまり、AlAs及び
GaAsの各化合物半導体のバンドキャップに基づいて算出
した値を示すものであり、これによれば8原子層以下で
は低い量子効率を示し、直接遷移が生じないと考えられ
ていたものである。ところが本発明構成では、この曲線
と比較することによって明らかなように従来低い量子効
率を示し、間接遷移を示した領域のn8で、特に第3
図から明らかなように、n=2以上、したがって2≦n
≦8で高い量子効率を示し、直接遷移を呈するという全
く新しい性状を示している。
In addition, the measurement results of the quantum efficiency of each sample when the value of n (= m) is changed in the above-described configuration are shown by black circles in FIG. In the figure, the broken line curve is
Calculation based on the Kronig-Pennney theory, so to speak, conventional compound semiconductors, that is, AlAs and
It shows the value calculated based on the band cap of each compound semiconductor of GaAs. According to this, it is considered that low quantum efficiency is shown in 8 atomic layers or less, and direct transition does not occur. However, in the configuration of the present invention, as is apparent from comparison with this curve, conventionally low quantum efficiency is shown, and in the region of indirect transition, n8, particularly the third
As is apparent from the figure, n = 2 or more, and therefore 2 ≦ n
When ≦ 8, high quantum efficiency is exhibited, and a completely new property of exhibiting a direct transition is exhibited.

尚、MOCVDによれば、その原料ガスの切換えにより、
各層が任意の原子数層をもって各層が結晶学的に極めて
すぐれた層として成長させることができることは確認さ
れているところである。
According to MOCVD, by switching the source gas,
It has been confirmed that each layer can be grown as a crystallographically excellent layer with an arbitrary number of atomic layers.

尚、上述した例においては、AlAsとGaAsとの組合せの
化合物半導体による場合であるが、他の同様のIII−V
族、そのほかの化合物半導体の組合せ、或いは各単体物
質例えばSi,Geの2〜8原子層の繰返し積層による超格
子構造をとることもできる。また、上述した例は光ルミ
ネセンスについて説明したが、ダブルヘテロ接合型を始
めとする各種半導体レーザー、LEDの活性層ないしは発
光領域において、第1図で説明した発光領域(11)の構
成をとって、短波長発光を含む広範囲の発光波長の選定
を可能にするものである。
In the above example, the compound semiconductor is a combination of AlAs and GaAs, but other similar III-V
A superlattice structure can also be taken by combining groups, other compound semiconductors, or by repeatedly stacking each simple substance such as 2 to 8 atomic layers of Si and Ge. In addition, although the above-described example has been described with respect to photoluminescence, various semiconductor lasers such as a double heterojunction type, the active layer or the light emitting region of the LED have the structure of the light emitting region (11) described in FIG. Thus, a wide range of emission wavelengths including short wavelength emission can be selected.

〔発明の効果〕〔The invention's effect〕

上述したように本発明によれば、各種半導体発光装置
において、その発光領域を2〜8原子層の薄い物質層の
繰返し堆積によるエピタキシャル層によって構成した超
格子構造を採ったことによって直接遷移による量子効率
が高い半導体層を得ることができ、このことと超格子構
造をとることによる基板との格子定数の不一致の許容度
の増大とによって、材料、組成の選定の自由度が大とな
り、これに伴って短波長発光を始めとする発光波長の選
定範囲が広がり、また、アニオン、カチオンの一様性等
によって安定した設計通りの発光装置を再現性良く得る
ことができるなど、その工業的利益は大である。
As described above, according to the present invention, in various semiconductor light-emitting devices, the light-emitting region has a superlattice structure formed by an epitaxial layer formed by repeatedly depositing a thin material layer of 2 to 8 atomic layers. It is possible to obtain a highly efficient semiconductor layer, and this and the increase in the tolerance of the mismatch of the lattice constant with the substrate due to the superlattice structure increase the degree of freedom in selection of materials and compositions. Along with this, the selection range of emission wavelengths including short-wavelength emission has expanded, and a stable light-emitting device as designed can be obtained with good reproducibility due to the uniformity of anions and cations. Is large.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明による半導体発光装置の一例の基本的構
成を示す図、第2図は本発明による発光装置の一例の発
光スペクトル図、第3図は本発明の説明に供する原子層
数と量子効率との関係を示す図である。 (10)……基板、(11)……発光領域、L1〜Lnは各物質
層である。
FIG. 1 is a diagram showing a basic configuration of an example of a semiconductor light emitting device according to the present invention, FIG. 2 is an emission spectrum diagram of an example of a light emitting device according to the present invention, and FIG. It is a figure which shows the relationship with quantum efficiency. (10) ... Substrate, (11) ... Emission region, L 1 to Ln are material layers.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 Applied Physics L etters 29[6]1976−9−15 PP.323〜325 JAPANSE JOURNAL O F APPLIED PHYSICS Vol.23,No.9(1984−9)P P.L657〜659 ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References Applied Physics Letters 29 [6] 1976-9-15 PP. 323 to 325 JAPANESE JOURNAL OF APPLIED PHYSICS Vol. 23, No. 9 (1984-9) PP. L657 ~ 659

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】活性層の両側をクラッド層ではさんだダブ
ルヘテロ構造の半導体発光装置において、 上記活性層は、夫々分数を含む2原子層以上8原子層以
下の単体物質、或いは2元化合物半導体物質より成る互
いに異なる複数種の物質が交互にエピタキシャル成長さ
れて成り、 上記活性層は直接遷移発光し、上記複数種の物質の平均
組成の混晶材料はバンド構造が間接遷移であることを特
徴とする半導体発光装置。
1. A semiconductor light emitting device having a double hetero structure in which both sides of an active layer are sandwiched by cladding layers, wherein the active layer is a simple substance of 2 atomic layers to 8 atomic layers including a fraction, or a binary compound semiconductor material. Characterized in that a plurality of different types of substances each of which is different from each other are epitaxially grown alternately, the active layer emits direct transition light, and a mixed crystal material having an average composition of the plurality of types of substances has an indirect transition band structure. Semiconductor light emitting device.
JP20930284A 1984-10-05 1984-10-05 Semiconductor light emitting device Expired - Lifetime JP2557040B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20930284A JP2557040B2 (en) 1984-10-05 1984-10-05 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20930284A JP2557040B2 (en) 1984-10-05 1984-10-05 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPS6188573A JPS6188573A (en) 1986-05-06
JP2557040B2 true JP2557040B2 (en) 1996-11-27

Family

ID=16570701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20930284A Expired - Lifetime JP2557040B2 (en) 1984-10-05 1984-10-05 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2557040B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3445653B2 (en) 1994-03-23 2003-09-08 士郎 酒井 Light emitting element

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AppliedPhysicsLetters29[6]1976−9−15PP.323〜325
JAPANSEJOURNALOFAPPLIEDPHYSICSVol.23,No.9(1984−9)PP.L657〜659

Also Published As

Publication number Publication date
JPS6188573A (en) 1986-05-06

Similar Documents

Publication Publication Date Title
US6177684B1 (en) Quantum semiconductor device having a quantum dot structure
US5625202A (en) Modified wurtzite structure oxide compounds as substrates for III-V nitride compound semiconductor epitaxial thin film growth
US5045897A (en) Quaternary II-VI materials for photonics
DE60317862T2 (en) Light-emitting semiconductor device
EP0325275A2 (en) A visible light semiconductor laser with (AlxGa1-x)0.5In0.5P crystal layers and a process for growing an (AlxGa1-x)0.5In0.5P crystal
Pessa et al. All-solid-source molecular beam epitaxy for growth of III–V compound semiconductors
Iwaya et al. Recent development of UV-B laser diodes
EP0176087B1 (en) Semiconductor superlattice structure
Uesugi et al. Epitaxial growth of zinc‐blende ZnSe/MgS superlattices on (001) GaAs
US5299217A (en) Semiconductor light-emitting device with cadmium zinc selenide layer
KR20020081450A (en) Gain-coupled distributed feedback semiconductor laser device and production method therefor
US4761790A (en) Optical semiconductor device
JP2557040B2 (en) Semiconductor light emitting device
JPS61242093A (en) Improved simiconductor laser device
JPS607121A (en) Structure of super lattice
EP0186336B1 (en) Semiconductor device comprising a superlattice structure
Wilk et al. MBE growth of InAs/InAsSb/AlAsSb structures for mid-infrared lasers
Bedair et al. A new GaAsP—InGaAs strained-layer super-lattice light-emitting diode
JP3582021B2 (en) Optical semiconductor device
US4806994A (en) Semiconductor device
Kaiander MOCVD growth of InGaAs/GaAs QDs for long wavelength lasers and VCSELs
Hernández-Calderón Layer-by-Layer Growth of Thin Films of Ternary Alloys of II–VI Semiconductors by Submonolayer Pulsed Beam Epitaxy (SPBE)
Holmes Jr et al. Strained GaInAsP single‐quantum‐well lasers grown with tertiarybutylarsine and tertiarybutylphosphine
Kobayashi et al. MOCVD growth of AlAs1− xPx lattice-matched to GaAs and AlAs1− xPx-GaAs superlattices
JPH0521892A (en) Semiconductor laser

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term