JP2555418B2 - Polysaccharide composition - Google Patents
Polysaccharide compositionInfo
- Publication number
- JP2555418B2 JP2555418B2 JP63168879A JP16887988A JP2555418B2 JP 2555418 B2 JP2555418 B2 JP 2555418B2 JP 63168879 A JP63168879 A JP 63168879A JP 16887988 A JP16887988 A JP 16887988A JP 2555418 B2 JP2555418 B2 JP 2555418B2
- Authority
- JP
- Japan
- Prior art keywords
- solid electrolyte
- polysaccharide
- electrolyte membrane
- organic solid
- metal salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Dispersion Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Secondary Cells (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、多糖類と金属塩よりなり、固体電解質とし
て好適に使用し得る有機固体電解質膜及びその製造方法
に関する。TECHNICAL FIELD The present invention relates to an organic solid electrolyte membrane comprising a polysaccharide and a metal salt, which can be suitably used as a solid electrolyte, and a method for producing the same.
(従来の技術) 従来、電池やエレクトロ・クロミック・ディスプレイ
(以下、ECDという。)等の電解質としては、LiClO4お
よび有機溶媒の混合物に代表される液体型、及びTa2O5
に代表される無機固体型が主に用いられている。(Prior Art) Conventionally, liquid electrolytes represented by a mixture of LiClO 4 and an organic solvent, and Ta 2 O 5 have been used as electrolytes for batteries and electrochromic displays (hereinafter referred to as ECDs).
The inorganic solid type represented by is mainly used.
液体電解質の場合には、導電率が高いが、電池やECD
等のセルへの組み込みが困難な上に液漏れなど、セルの
信頼性に欠ける。In the case of liquid electrolyte, it has high conductivity, but
It is difficult to incorporate the same into a cell, and the cell is lacking in reliability due to liquid leakage.
一方、無機固体電解質については、通常、真空蒸着
法、スパッタ法など、いわゆる真空法が用いられること
から、コストが高くつくうえに大面積化が困難であると
いう欠点を有する。On the other hand, with respect to the inorganic solid electrolyte, since a so-called vacuum method such as a vacuum vapor deposition method and a sputtering method is usually used, it has the drawbacks of high cost and difficulty in increasing the area.
(発明が解決しようとする課題) そこで、最近では、ポリエチレングリコールやポリプ
ロピレングリコール等の有機物を固体電解質に用いるこ
とが行なわれている。しかしながら、ポリエチレングリ
コールとLiClO4からなる有機固体電解質の導電率は10-6
Scm-1以下であり、電池やECD等の電解質として使用する
ことはできない。(Problems to be solved by the invention) Therefore, recently, organic substances such as polyethylene glycol and polypropylene glycol have been used for the solid electrolyte. However, the conductivity of an organic solid electrolyte composed of polyethylene glycol and LiClO 4 is 10 −6.
Since it is less than Scm -1 , it cannot be used as an electrolyte for batteries or ECDs.
そこで、本発明は、10-6Scm-1以上の導電率を示し、
しかも大面積化が容易でかつ製法の容易な有機固体電解
質膜を提供することを目的とする。Therefore, the present invention shows a conductivity of 10 -6 Scm -1 or more,
Moreover, it is an object of the present invention to provide an organic solid electrolyte membrane that can easily be made large in area and can be easily manufactured.
(課題を解決するための手段) 本発明者らは、上述の目的を達成するべく鋭意検討の
結果、多糖類がLiClO4,LiBF4,LiAsF6,NaPF4,KPF4等の金
属塩の解離を促進し、且つ安定な複合体を形成して高い
イオン伝導性を発現する事を見い出し、本発明を完成す
るに至った。(Means for Solving the Problems) As a result of intensive studies to achieve the above-mentioned object, the present inventors have found that polysaccharides dissociate metal salts such as LiClO 4 , LiBF 4 , LiAsF 6 , NaPF 4 , and KPF 4. The present invention has been completed by promoting the formation of a stable complex and forming a stable complex to exhibit high ionic conductivity.
即ち、本発明は、多糖類100重量部と金属塩1〜200重
量部とよりなることを特徴とする有機固体電解質膜及
び、金属塩が溶解または懸濁した多糖類溶液を膜状に成
形した後、溶媒を除去することを特徴とする上記有機固
体電解質膜の製造方法である。That is, the present invention is an organic solid electrolyte membrane characterized by comprising 100 parts by weight of a polysaccharide and 1 to 200 parts by weight of a metal salt, and a polysaccharide solution in which a metal salt is dissolved or suspended is formed into a film shape. After that, the solvent is removed, which is a method for producing the organic solid electrolyte membrane.
本発明の有機固体電解質膜は、固体であり、実施例の
製造方法に示すように、所謂電解質溶液と異なり、水等
の溶媒を実質的に含んでおらず、多糖類の均質連続相中
に金属塩が分散した状態となっている。The organic solid electrolyte membrane of the present invention is a solid, and unlike the so-called electrolyte solution, it does not substantially contain a solvent such as water, as shown in the production method of the embodiment, in the homogeneous continuous phase of the polysaccharide. The metal salt is in a dispersed state.
本発明に用いる多糖類は、少糖類を含まない所謂狭義
の多糖類であり、天然多糖類、人工多糖類を問わず用い
得る。本発明の有機固体電解質膜を後述するキャスティ
ング法により成形する場合には、多糖類は水又は有機溶
媒に可溶であるもの、好適には15重量%以上の溶液を作
り得るものが用いられる。多糖類を構成する単糖類とし
て、例えば、アロピラノース,アルトロピラノース,グ
ルコピラノース,マンノピラノース,グロピラノース,
ガラクトピラノース,タロピラノース等の六員環のも
の;プシコフラノース,フルクトフラノース,ソルボフ
ラノース,タガトフラノース等の五員環のものが挙げら
れる。本発明に於いて好適に使用される多糖類は、天然
多糖類であり、単一多糖類、複合多糖類のいずれも用い
ることができる。該天然多糖類としては、例えば、セル
ロース、キチン、イヌリン、ペクチン、アラビナン、キ
サンタンゴム、ゲランゴム、アミロース、プルラン、デ
キストラン、グリコーゲン等が挙げられる。また、キチ
ンを脱アセチル化したキトサンでも良く、化学的手法に
よって特に制限されるものではない。The polysaccharide used in the present invention is a so-called narrowly defined polysaccharide that does not contain an oligosaccharide, and may be a natural polysaccharide or an artificial polysaccharide. When the organic solid electrolyte membrane of the present invention is molded by the casting method described below, the polysaccharide is one that is soluble in water or an organic solvent, and preferably one that can make a solution of 15% by weight or more. Examples of monosaccharides constituting polysaccharides include allopyranose, altropyranose, glucopyranose, mannopyranose, glopyranose,
Examples include a six-membered ring such as galactopyranose and talopyranose; examples include a five-membered ring such as psicofuranose, fructofuranose, sorbofuranose and tagatofuranose. The polysaccharide preferably used in the present invention is a natural polysaccharide, and either a single polysaccharide or a complex polysaccharide can be used. Examples of the natural polysaccharides include cellulose, chitin, inulin, pectin, arabinan, xanthan gum, gellan gum, amylose, pullulan, dextran, glycogen and the like. Further, chitosan obtained by deacetylating chitin may be used and is not particularly limited by a chemical method.
本発明で用いる金属塩としては、アルカリ金属、アル
カリ土類金属及びCu,Fe,Ni等の遷移金属を陽イオンと
し、複数元素で構成された陰イオンを対イオンとする金
属塩が好適である。例えば、LiClO4,LiAsCl6,LiBF4,NaB
F4,LiPF6,KPF6,NaPF6,LiAsF6,LiCF3SO3,Ca(AsF6)2等
が挙げられる。The metal salt used in the present invention is preferably a metal salt having an alkali metal, an alkaline earth metal and a transition metal such as Cu, Fe or Ni as a cation and an anion composed of a plurality of elements as a counter ion. . For example, LiClO 4 , LiAsCl 6 , LiBF 4 , NaB
F 4, LiPF 6, KPF 6 , NaPF 6, LiAsF 6, LiCF 3 SO 3, Ca (AsF 6) 2 and the like.
本発明の有機固体電解質膜の導電率は、金属塩配合量
に比例して高くなるが、成膜性等の成形の容易さを勘案
すると、金属配合量は、多糖類100重量部に対して1〜2
00重量部、望ましくは40〜100重量部である。The conductivity of the organic solid electrolyte membrane of the present invention is increased in proportion to the metal salt content, but considering the ease of forming such as film-forming property, the metal content is relative to 100 parts by weight of the polysaccharide. 1-2
The amount is 00 parts by weight, preferably 40 to 100 parts by weight.
金属塩の配合量が1重量部未満では充分な導電率が得
られず、金属塩の配合量が200重量部を越えると得られ
る有機固体電解膜質が脆くなり用途によっては好ましく
ない。If the amount of the metal salt blended is less than 1 part by weight, sufficient conductivity cannot be obtained, and if the amount of the metal salt blended exceeds 200 parts by weight, the resulting organic solid electrolyte membrane becomes brittle, which is not preferable for some applications.
更に、多糖類と金属塩の他に、固体電解質を構成する
物質として、すでに公知であるポリエチレングリコー
ル、ポリエーテルスルホン、ポリプロピレンオキサイド
等を第三成分として加えても差し支えない。Further, in addition to the polysaccharide and the metal salt, polyethylene glycol, polyether sulfone, polypropylene oxide, etc., which are already known, may be added as a third component as a substance constituting the solid electrolyte.
本発明の有機固体電解質膜を得る方法としては、上記
の成分を溶媒に溶解させ、キャスティング法により成形
する方法が好適である。溶媒としては、水、エタノー
ル、アセトニトリル、ジメチルスルホキシド、プロピレ
ンカーボネート等の上記の成分を溶解するものが用いら
れるが、特に高い誘電率を誘するアセトニトリル、ジメ
チルスルホキシド、プロピレンカーボネート等が好まし
い。また、溶剤は、1種あるいは2種以上同時に用いて
も差し支えない。こうして得られた溶液からキャスティ
ング法により膜状物を容易に成形することができる。As a method for obtaining the organic solid electrolyte membrane of the present invention, a method of dissolving the above components in a solvent and molding by a casting method is suitable. As the solvent, those which dissolve the above-mentioned components such as water, ethanol, acetonitrile, dimethylsulfoxide, propylene carbonate and the like are used, but acetonitrile, dimethylsulfoxide, propylene carbonate and the like which particularly induce a high dielectric constant are preferable. The solvent may be used alone or in combination of two or more. A film-like material can be easily formed from the solution thus obtained by a casting method.
本発明の有機固体電解質膜は、何ら支持体がなくと
も、膜としての形状を保持する強度を有するものであ
る。しかしながら、膜に要求される強度に応じて更にバ
ッキング材などの支持体を使用しても良い。The organic solid electrolyte membrane of the present invention has the strength to retain the shape of the membrane without any support. However, a support such as a backing material may be used depending on the strength required for the membrane.
本発明の有機固体電解質膜は、有機固体電解質として
好適に使用でき、例えば、一次電池、二次電池、ECD、
センサー等の固体電解質に適している。The organic solid electrolyte membrane of the present invention can be preferably used as an organic solid electrolyte, for example, primary battery, secondary battery, ECD,
Suitable for solid electrolytes such as sensors.
(効果) 本発明の有機固体電解質は、多糖類が金属塩の解離を
促進し、イオンとして存在させ、かつ、安定な有機体を
形成するため高い導電率を示す。(Effect) The organic solid electrolyte of the present invention exhibits high electrical conductivity because the polysaccharide promotes dissociation of the metal salt, is allowed to exist as an ion, and forms a stable organism.
また、固体であるため電解質が漏洩、揮散することは
ない。Further, since it is a solid, the electrolyte does not leak or volatilize.
更に、高分子有機体であるため、成形性、大面積化、
フレキシブル性に富む。Further, since it is a high molecular weight organic matter, it has a good moldability, a large area,
Rich in flexibility.
(実施例) 以下、実施例を挙げて本発明を説明するが、本発明は
これら実施例によって制限されるものではない。(Examples) Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.
実施例1 キトサン1gを10重量%の酢酸水溶液4gに溶解後、LiCl
O40.05g、プロピレンカーボネート5gを加えて混合撹拌
機、ガラス板上にキャスティングした。Example 1 1 g of chitosan was dissolved in 4 g of a 10% by weight aqueous acetic acid solution and then LiCl
0.05 g of O 4 and 5 g of propylene carbonate were added, and the mixture was cast on a mixing stirrer and a glass plate.
100℃で5時間減圧乾燥を行い、溶媒を除去し、厚さ
0.2mmの有機固体電解質膜を得た。Dry under reduced pressure at 100 ℃ for 5 hours to remove the solvent and
A 0.2 mm organic solid electrolyte membrane was obtained.
該有機固体電解質膜の導電率は、二点法にて1000サイ
クルの交流で測定した。The conductivity of the organic solid electrolyte membrane was measured by a two-point method under an alternating current of 1000 cycles.
導電率は20℃で3.5×10-5Scm-1であった。The conductivity was 3.5 × 10 -5 Scm -1 at 20 ° C.
実施例2 LiClO4の代わりにLiBF4を0.5g用いたこと以外は実施
例1と同様にして有機固体電解質膜を得た。Example 2 An organic solid electrolyte membrane was obtained in the same manner as in Example 1 except that 0.5 g of LiBF 4 was used instead of LiClO 4 .
その結果、得られた該有機固体電解質膜の導電率は20
℃で1.4×10-5Scm-1であった。As a result, the conductivity of the obtained organic solid electrolyte membrane was 20.
It was 1.4 × 10 -5 Scm -1 at ℃.
実施例3 キトサンの代わりにデンプン(アミロース)1gを70℃
の温水4gに溶解したこと以外は実施例1と同様にして有
機固体電解質膜を得た。Example 3 1 g of starch (amylose) was used instead of chitosan at 70 ° C.
An organic solid electrolyte membrane was obtained in the same manner as in Example 1 except that the organic solid electrolyte membrane was dissolved in 4 g of warm water.
その結果、得られた該有機固体電解質膜の導電率は20
℃で1.9×10-6Scm-1であった。As a result, the conductivity of the obtained organic solid electrolyte membrane was 20.
It was 1.9 × 10 -6 Scm -1 at ℃.
実施例4 第1表に示した多糖類と金属塩及び溶媒を用いた以外
は、実施例1と同様にして有機固体電解質膜を得、その
導電率を測定した。Example 4 An organic solid electrolyte membrane was obtained in the same manner as in Example 1 except that the polysaccharide, metal salt and solvent shown in Table 1 were used, and the conductivity thereof was measured.
その結果を第1表に示した。 The results are shown in Table 1.
比較例 デンプンに代えてポリエチレングリコールを用いた以
外は実施例3と同様にして有機固体電解質膜を得た。導
電率は20℃で3.0×10-8Scm-1であった。 Comparative Example An organic solid electrolyte membrane was obtained in the same manner as in Example 3 except that polyethylene glycol was used instead of starch. The conductivity was 3.0 × 10 -8 Scm -1 at 20 ° C.
Claims (2)
よりなり、多糖類の均質連続相中に金属塩が分散してな
る有機固体電解質膜。1. An organic solid electrolyte membrane comprising 100 parts by weight of a polysaccharide and 1 to 200 parts by weight of a metal salt, wherein the metal salt is dispersed in a homogeneous continuous phase of the polysaccharide.
膜状に成形した後、溶媒を除去することを特徴とする特
許請求の範囲第(1)項に記載の有機固体電解質膜の製
造方法。2. The organic solid electrolyte membrane according to claim 1, wherein the polysaccharide solution in which the metal salt is dissolved or suspended is formed into a film, and then the solvent is removed. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63168879A JP2555418B2 (en) | 1988-07-08 | 1988-07-08 | Polysaccharide composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63168879A JP2555418B2 (en) | 1988-07-08 | 1988-07-08 | Polysaccharide composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0220537A JPH0220537A (en) | 1990-01-24 |
JP2555418B2 true JP2555418B2 (en) | 1996-11-20 |
Family
ID=15876256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63168879A Expired - Lifetime JP2555418B2 (en) | 1988-07-08 | 1988-07-08 | Polysaccharide composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2555418B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2687405A1 (en) * | 1992-02-13 | 1993-08-20 | Inst Nat Polytech Grenoble | MACROMOLECULAR MATERIAL BASED ON POLYSACCHARIDES AND ION CONDUCTIVE MATERIAL CONTAINING THE SAME. |
JP3475595B2 (en) * | 1995-08-03 | 2003-12-08 | 日清紡績株式会社 | Ion conductive polymer solid electrolyte battery |
EP0953218B1 (en) * | 1996-12-20 | 2003-03-26 | Danionics A/S | Lithium secondary battery |
JP4416200B2 (en) * | 1999-03-18 | 2010-02-17 | 富士通株式会社 | Solid electrolyte and battery using the same |
JP5696928B2 (en) * | 2010-11-04 | 2015-04-08 | 学校法人 関西大学 | Non-aqueous electrolyte, power storage device including the same, and method for producing non-aqueous electrolyte |
CN109935885B (en) * | 2019-01-29 | 2021-02-09 | 浙江隆劲电池科技有限公司 | Glucan gel interfacial film, preparation method thereof and application thereof in solid alkali metal/alkaline earth metal battery |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62138538A (en) * | 1985-12-13 | 1987-06-22 | Daicel Chem Ind Ltd | Hydrous gel composition |
JPS6335637A (en) * | 1986-07-30 | 1988-02-16 | Hokuetsu Seishi Kk | Water-based composition for coating or impregnation and worked product thereof |
-
1988
- 1988-07-08 JP JP63168879A patent/JP2555418B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0220537A (en) | 1990-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lizundia et al. | Advances in natural biopolymer‐based electrolytes and separators for battery applications | |
Al-Harbi et al. | Tuning optical, dielectric, and electrical properties of Polyethylene oxide/Carboxymethyl cellulose doped with mixed metal oxide nanoparticles for flexible electronic devices | |
Aziz et al. | Crystalline and amorphous phase identification from the tanδ relaxation peaks and impedance plots in polymer blend electrolytes based on [CS: AgNt] x: PEO (x-1)(10≤ x≤ 50) | |
Bridel et al. | Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries | |
CN102822204B (en) | high viscosity carboxymethyl cellulose and preparation method thereof | |
Ghosh et al. | Self-assembly of a conducting polymer nanostructure by physical crosslinking: applications to conducting blends and modified electrodes | |
WO2012129805A1 (en) | Conductive polymer, synthesis method thereof, and electroactive electrode covered with said conductive polymer | |
JP2555418B2 (en) | Polysaccharide composition | |
US20210005893A1 (en) | Cellulose-templated conductive polymer containing binder for active material compositions and lithium ion batteries prepared therefrom | |
Nematdoust et al. | Partially oxidized cellulose grafted with polyethylene glycol mono-methyl ether (m-PEG) as electrolyte material for lithium polymer battery | |
CA2434077A1 (en) | Cyclodextrin preparations | |
Hasanin et al. | Electrical properties of conducting tertiary composite based on biopolymers and polyaniline | |
Buleon et al. | Single crystals of cellulose II | |
Vega-Rios et al. | Synthesis and electrical properties of polyaniline/iota-carrageenan biocomposites | |
Hama et al. | Simulated EIS and Trukhan model to study the ion transport parameters associated with Li+ ion dynamics in CS based polymer blends inserted with lithium nitrate salt | |
Hadi et al. | Proton conducting polymer blend electrolytes based on MC: FTIR, ion transport and electrochemical studies | |
Raghavan et al. | Recent Advancements on Biopolymer‐Based Flexible Electrolytes for Next‐Gen Supercaps and Batteries: A Brief Sketch | |
JP2003257236A (en) | Polymer solid electrolyte | |
Huang et al. | Protonated chitosan nanostructures for enhancing ionic conductivity of solid-state electrolytes | |
Bari et al. | Conductive Gels for Energy Storage, Conversion, and Generation: Materials Design Strategies, Properties, and Applications | |
Yusof | Characteristics of Corn Starch/Shitosan Blend Green Polymer Electrolytes Complexed with Ammonium Iodide and its Application in Energy Devices | |
Saha et al. | Structural and electrical properties of TSP: CH3COONa amorphous Biopolymer electrolytes for electrochemical cell applications | |
Nandhinilakshmi et al. | High Performance Lithium Ion-Conducting Plasticized Biopolymer Electrolyte for Supercapacitor Application | |
Yuhanees | Characteristics of corn starch/chitosan blend green polymer electrolytes complexed with ammonium iodide and its application in energy devices/Yuhanees Mohamed Yusof | |
Jayanthi et al. | Biopolymer electrolytes for energy storage applications |