JP2555292B2 - Ni-Cr austenitic stainless steel welding material with excellent creep rupture strength and ductility at high temperature - Google Patents
Ni-Cr austenitic stainless steel welding material with excellent creep rupture strength and ductility at high temperatureInfo
- Publication number
- JP2555292B2 JP2555292B2 JP63250442A JP25044288A JP2555292B2 JP 2555292 B2 JP2555292 B2 JP 2555292B2 JP 63250442 A JP63250442 A JP 63250442A JP 25044288 A JP25044288 A JP 25044288A JP 2555292 B2 JP2555292 B2 JP 2555292B2
- Authority
- JP
- Japan
- Prior art keywords
- creep rupture
- ductility
- ferrite
- less
- amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/30—Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
- B23K35/3053—Fe as the principal constituent
- B23K35/308—Fe as the principal constituent with Cr as next major constituent
- B23K35/3086—Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Heat Treatment Of Steel (AREA)
- Arc Welding In General (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は高温におけるクリープ破断強度および延性の
優れたNi−Crオーステナイト系ステンレス鋼溶接材料に
関するものである。TECHNICAL FIELD The present invention relates to a Ni—Cr austenitic stainless steel welding material having excellent creep rupture strength and ductility at high temperatures.
(従来の技術) 現在開発が進められている高速増殖炉の構造材料には
SUS304,SUS316等のオーステナイト系ステンレス鋼が使
用されるが、これらの構造材料はクリープ温度領域で使
用される。高速増殖炉の構造材料に負荷される主要応力
は温度変動にともなう熱応力である。この熱応力による
残留応力が高温運転時にクリープにより緩和される過程
が構造材料に繰り返し加えられることから、クリープ疲
労特性が重要視される。ところで、このクリープ疲労特
性はクリープ破断延性と相関関係があることが明らかに
されており、高速増殖炉の構造材料に使用されるステン
レス鋼はクリープ破断延性が優れていることが要求され
る。このようなステンレス鋼として本発明者等はクリー
プ破断延性の優れた316系のステンレス鋼厚板を発明し
た(特開昭62−23346号公報)。(Prior Art) Structural materials for fast breeder reactors currently under development
Austenitic stainless steels such as SUS304 and SUS316 are used, but these structural materials are used in the creep temperature range. The main stress applied to the structural material of the fast breeder reactor is thermal stress due to temperature fluctuation. Creep-fatigue characteristics are considered important because the process in which residual stress due to thermal stress is relaxed by creep during high-temperature operation is repeatedly applied to structural materials. By the way, it has been clarified that this creep fatigue property correlates with creep rupture ductility, and stainless steel used as a structural material of a fast breeder reactor is required to have excellent creep rupture ductility. As such a stainless steel, the present inventors have invented a 316 series stainless steel thick plate having excellent creep rupture ductility (JP-A-62-23346).
しかしながら、高速増殖炉は大型の溶接構造物である
ことから、その溶接金属部にたいしてもクリープ破断延
性に優れていることが必要になる。これまでの高温用溶
接材料は、たとえばSUS Y316系ではクリープ中に炭化物
が析出し十分なクリープ破断延性が得られず、あるいは
SUS Y316L系ではクリープ破断延性は優れているがクリ
ープ破断強度が低く、いずれも高速増殖炉の構造用とし
て十分とは言えないものであった。However, since the fast breeder reactor is a large welded structure, it is necessary that the weld metal portion also has excellent creep rupture ductility. Conventional high-temperature welding materials, such as SUS Y316 series, do not provide sufficient creep rupture ductility due to carbide precipitation during creep, or
Creep rupture ductility was excellent in the SUS Y316L system, but creep rupture strength was low, and neither was sufficient for structural purposes in fast breeder reactors.
(発明が解決しようとする課題) このように従来の溶接材料はクリープ破断延性、ある
いはクリープ破断強度の何れかの点で高速増殖炉の構造
材料として不十分なものである。この原因は、SUS Y316
系については鋼中に存在するCが高温での使用中にδ−
フェライトとオーステナイト相の界面に炭化物として析
出することに関係している。すなわち、界面に析出する
炭化物は界面脆化を引き起こし、延性低下あるいはクリ
ープ破断強度の劣化原因となる。また、SUS Y316L系で
は強化元素であるC量が低いため、クリープ破断強度が
十分でない。(Problems to be Solved by the Invention) As described above, conventional welding materials are insufficient as structural materials for fast breeder reactors in either of creep rupture ductility and creep rupture strength. The cause is SUS Y316
Regarding the system, C existing in the steel is δ− during use at high temperature.
It is related to precipitation as a carbide at the interface between the ferrite and austenite phases. That is, the carbides precipitated at the interface cause interfacial embrittlement, which leads to a decrease in ductility or deterioration of creep rupture strength. In addition, the creep rupture strength is not sufficient in the SUS Y316L system because the amount of C, which is a strengthening element, is low.
(課題を解決するための手段) 本発明は、以上のような課題を解決するためになされ
たものであって、その要旨とするところは下記のとおり
である。(Means for Solving the Problems) The present invention has been made to solve the above problems, and the gist thereof is as follows.
(1)重量%でC 0.030%以下、Si 1.0%以下、Mn
3.0%以下、P 0.02〜0.07%、Cr 14.0〜22.0%、Ni
10.0〜14.0%、Mo 2.0〜3.0%、Al 0.04%以下、N
0.06〜0.18%を含有し、残部は実質的にFeからなり、
かつ溶接金属部のδ−フェライト量が下記の式−1によ
る算定値として1%から5%未満の範囲である高温での
クリープ破断強度および延性の優れたNi−Crオーステナ
イト系ステンレス鋼溶接材料。(1) C 0.030% or less by weight%, Si 1.0% or less, Mn
3.0% or less, P 0.02 to 0.07%, Cr 14.0 to 22.0%, Ni
10.0-14.0%, Mo 2.0-3.0%, Al 0.04% or less, N
0.06 to 0.18%, the balance consisting essentially of Fe,
A Ni-Cr austenitic stainless steel welding material having excellent creep rupture strength and ductility at high temperatures in which the amount of δ-ferrite in the weld metal is within the range of 1% to less than 5% as calculated by the following formula-1.
なお、δ−フェライト量の算出は次式による。 The amount of δ-ferrite is calculated by the following formula.
δ−フェライト量(%)=−70.29+3.2×Creq−0.031 ×(Nieq)2+15.661×Creq /Nieq−0.0208×Creq×Nieq ……式−1 〔Creq=Cr+Mo+1.5×Si、 Nieq=Ni+0.5×Mn+30×(C+N)〕 (2)重量%でC 0.030%以下、Si 1.0%以下、Mn
3.0%以下、P 0.02〜0.07%、Cr 14.0〜22.0%、Ni
10.0〜14.0%、Mo 2.0〜3.0%、Al 0.04%以下、N
0.06〜0.18%を含有し、さらにW 3.0%以下を含有
し、残部は実質的にFeからなり、かつ溶接金属部のδ−
フェライト量が下記の式−1による算定値として1%か
ら5%未満の範囲である高温でのクリープ破断強度およ
び延性の優れたNi−Crオーステナイト系ステンレス鋼溶
接材料。δ-Ferrite amount (%) = -70.29 + 3.2 x Creq -0.031 x (Nieq) 2 + 15.661 x Creq / Nieq-0.0208 x Creq x Nieq ... formula-1 [Creq = Cr + Mo + 1.5 x Si, Nieq = Ni + 0.5 × Mn + 30 × (C + N)] (2) C 0.030% or less by weight%, Si 1.0% or less, Mn
3.0% or less, P 0.02 to 0.07%, Cr 14.0 to 22.0%, Ni
10.0-14.0%, Mo 2.0-3.0%, Al 0.04% or less, N
0.06 to 0.18%, W 3.0% or less, the balance consisting essentially of Fe, and δ− of the weld metal part.
Ni-Cr austenitic stainless steel welding material excellent in creep rupture strength and ductility at high temperatures in which the amount of ferrite is in the range of 1% to less than 5% as calculated by the following formula-1.
なお、δ−フェライト量の算出は次式による。 The amount of δ-ferrite is calculated by the following formula.
δ−フェライト量(%)=−70.29+3.2×Creq−0.031 ×(Nieq)2+15.661×Creq /Nieq−0.0208×Creq×Nieq ……式−1 〔Creq=Cr+Mo+0.5×W+1.5×Si、 Nieq=Ni+0.5×Mn+30×(C+N)〕 (作用) 以下本発明の要件の技術的根拠について説明する。発
明者は溶接金属部のクリープ破断特性に対する、化学成
分およびδ−フェライト量について系統的な調査を行っ
た。第1図(イ),(ロ)にクリープ破断特性に対する
C量とN量の影響を示す。この図から低C化することに
より、クリープ破断延性が向上しクリープ破断強度が低
下することがわかる。一方、Nについては、Cが0.05%
存在する場合はN量の増加とともにクリープ破断強度は
向上するが、クリープ破断延性は低下する。これに対
し、Cが0.01%と低い系ではN量の増加とともにクリー
プ破断強度は向上するが、クリープ破断延性は低下は少
ない。すなわち、強化元素をCからNに変えることによ
り、クリープ破断強度、クリープ破断延性ともに優れた
溶接材料の開発の可能性が見出された。第2図はこのよ
うなクリープ破断特性の優れた低C−高N系(0.01%C
−07%N−12%Ni−18%Cr−2.2%Mo)の溶接金属部の
クリープ破断特性に対するPの影響を示したものであ
る。Pを添加することによりクリープ破断強度、クリー
プ破断延性がともに向上することがわかる。δ-Ferrite amount (%) = -70.29 + 3.2 x Creq -0.031 x (Nieq) 2 + 15.661 x Creq /Nieq-0.0208 x Creq x Nieq ... formula-1 [Creq = Cr + Mo + 0.5 x W + 1.5 × Si, Nieq = Ni + 0.5 × Mn + 30 × (C + N)] (Operation) The technical basis of the requirements of the present invention will be described below. The inventor systematically investigated the chemical composition and the amount of δ-ferrite with respect to the creep rupture property of the weld metal. The effects of C content and N content on creep rupture properties are shown in FIGS. 1 (a) and 1 (b). From this figure, it is understood that the creep rupture ductility is improved and the creep rupture strength is lowered by lowering the carbon content. On the other hand, for N, C is 0.05%
When present, the creep rupture strength increases with an increase in the amount of N, but the creep rupture ductility decreases. On the other hand, in a system having a low C content of 0.01%, the creep rupture strength is improved as the N content is increased, but the creep rupture ductility is not significantly reduced. That is, by changing the strengthening element from C to N, the possibility of developing a welding material excellent in both creep rupture strength and creep rupture ductility was found. Fig. 2 shows the low C-high N system (0.01% C) with such excellent creep rupture characteristics.
It shows the effect of P on the creep rupture properties of the weld metal part of -07% N-12% Ni-18% Cr-2.2% Mo). It can be seen that the addition of P improves both creep rupture strength and creep rupture ductility.
オーステナイト系の溶接施工上の問題として、高温割
れがあり、この対策として通常溶接金属にδ−フェライ
トを導入することが行われている。このδ−フェライト
は先に述べたように、クリープ亀裂の伝播経路となるこ
とからクリープ破断特性への影響が考えられる。第3図
はクリープ破断特性に対するδ−フェライト量の影響を
示したもので、クリープ破断特性に対してδ−フェライ
ト量に最適値が存在することがわかる。なお、ここでδ
−フェライト量は、下記の式−1によって算定される値
を指すものである。As a problem in austenitic welding work, there is hot cracking, and as a countermeasure against this, δ-ferrite is usually introduced into weld metal. As described above, since this δ-ferrite serves as a propagation path for creep cracks, it is considered that the effect on creep rupture characteristics is affected. FIG. 3 shows the effect of the amount of δ-ferrite on the creep rupture property, and it can be seen that there is an optimum value for the amount of δ-ferrite with respect to the creep rupture property. Where δ
-The amount of ferrite refers to the value calculated by the following formula-1.
δ−フェライト量(%)=−70.29+3.2×Creq−0.031 ×(Nieq)2+15.661×Creq /Nieq−0.0208×Creq×Nieq ……式−1 ここで、Creq=Cr+Mo+1.5×Si、 Nieq=Ni+0.5×Mn+30×(C+N)すなわち、従来型
の0.06CC−0.03%N系ではクリープ中に炭化物の析出が
生じることからδ−フェライトの影響が顕著であるが、
クリープ破断延性が改善された0.01%C−0.12%N系に
おいても、やや変化量は小さいもののやはり最適δ−フ
ェライト量が存在する。以上の調査結果から、従来材並
のクリープ破断強度を有するクリープ破断延性の優れた
溶接材料の可能性を見出したわけであるが、クリープ破
断延性を損なわずに更にクリープ破断強度を高めるため
の検討を行った。クリープ破断延性を損なわずに強化す
る方法として固溶強化が最適であり、その代表元素とし
てNを利用したが、0.18%超では析出するため他の元素
を考える必要がある。固溶強化能が高くかつ溶解度の大
きい元素としてWを選定し、その効果について調査し
た。第4図はその結果を示したもので、0.01%C−0.07
%N−12%Ni−18%Cr−2.2%MoにWを添加することに
よりクリープ破断強度が向上することがわかる。しか
し、多量に添加するとクリープ破断延性が低下するが、
これはWを含む金属間化合物が析出することに起因して
いる。δ-Ferrite amount (%) = -70.29 + 3.2 x Creq -0.031 x (Nieq) 2 + 15.661 x Creq /Nieq-0.0208 x Creq x Nieq ... formula-1 where Creq = Cr + Mo + 1.5 x Si , Nieq = Ni + 0.5 × Mn + 30 × (C + N) That is, in the conventional 0.06CC-0.03% N system, the precipitation of carbides occurs during creep, so the effect of δ-ferrite is significant,
Even in the 0.01% C-0.12% N system in which the creep rupture ductility is improved, the amount of change is slightly small, but the optimum amount of δ-ferrite still exists. From the above survey results, we have found the possibility of a welding material with excellent creep rupture ductility, which has creep rupture strength comparable to that of conventional materials, but we have studied to further enhance creep rupture strength without impairing creep rupture ductility. went. Solid solution strengthening is the most appropriate method for strengthening without impairing the creep rupture ductility, and N was used as the representative element, but if it exceeds 0.18%, it precipitates and it is necessary to consider other elements. W was selected as an element having high solid solution strengthening ability and high solubility, and its effect was investigated. FIG. 4 shows the result, in which 0.01% C-0.07
It can be seen that the creep rupture strength is improved by adding W to% N-12% Ni-18% Cr-2.2% Mo. However, when added in large amounts, the creep rupture ductility decreases,
This is because the intermetallic compound containing W is deposited.
以下に本発明における各成分の限定理由を述べる。 The reasons for limiting each component in the present invention are described below.
先ず本発明の成分系において、Cは有効な強化元素で
はあるが、δ−フェライトとオーステナイト相の界面に
炭化物として析出するため高温長時間使用後のクリープ
破断特性などの高温の機械的性質を損なう元素でもあ
る。このような観点からC量は0.030%以下と定めた
が、とくに高いクリープ破断延性が要求される場合は0.
020%以下とすることが望ましい。First, in the component system of the present invention, C is an effective strengthening element, but since it precipitates as a carbide at the interface between δ-ferrite and austenite phase, it impairs mechanical properties at high temperature such as creep rupture properties after long-time use at high temperature. It is also an element. From this point of view, the C content was specified to be 0.030% or less, but it is 0. 0 when particularly high creep rupture ductility is required.
It is desirable to set it to 020% or less.
次にSiは脱酸材として必要であるが、1.0%を超えて
過剰に存在すると高温割れ感受性を高めるのでこの値を
上限とした。Next, Si is necessary as a deoxidizing agent, but if it is present in excess of 1.0%, the sensitivity to hot cracking increases, so this value was made the upper limit.
Mnは脱酸元素であると同時に、鋼中のSを固定するこ
とから熱間加工性を向上させる効果を有するが、3.0%
を超えるとクリープ破断強度を低下させるのでこの値を
上限とした。Mn is a deoxidizing element and at the same time has the effect of improving the hot workability by fixing S in steel, but 3.0%
If it exceeds, the creep rupture strength decreases, so this value was made the upper limit.
Pは高温保持中にリン化物として結晶粒内に析出し強
化作用を有し、さらに相界面を強化する作用もあること
からクリープ破断延性の点から効果的な元素であるが、
その効果は0.02%より生じることから下限を0.02%とし
た。しかし過剰の添加は溶接性および熱間加工性を著し
く損なうことから、その上限を0.07%とした。P is an element effective from the viewpoint of creep rupture ductility because it has a strengthening effect by precipitating in the crystal grains as a phosphide during holding at high temperature and further strengthening the phase interface.
Since the effect occurs from 0.02%, the lower limit was made 0.02%. However, excessive addition significantly impairs weldability and hot workability, so the upper limit was made 0.07%.
Niはオーステナイト生成元素として必須の元素であ
り、δ−フェライト量を所定の範囲に制御するために、
フェライト生成元素であるCr量に対し成分平衡上、式−
1により調整される元素であるが、クリープ破断特性を
劣化させるδ−相、χ−相の析出を抑制する効果を有す
ることから、10.0%以上とした。14.0%超の添加は、δ
−フェライト量制御に必要なCr量を増加させる結果、全
体の合金量を大幅に高めることになり、溶接性を損なう
ことから、上限を14.0%とした。Ni is an essential element as an austenite forming element, in order to control the amount of δ-ferrite in a predetermined range,
In terms of component equilibrium with respect to the amount of Cr, which is a ferrite-forming element, the formula −
Although it is an element adjusted by 1, it has an effect of suppressing the precipitation of the δ-phase and the χ-phase that deteriorates the creep rupture properties, so the content was made 10.0% or more. Addition of more than 14.0% is δ
-As a result of increasing the amount of Cr necessary for controlling the amount of ferrite, the total amount of alloy is greatly increased and the weldability is impaired. Therefore, the upper limit was made 14.0%.
Crは耐酸化性を高める元素であり、そのためには14.0
%以上を必要とするが、22.0%を超えると高温長時間加
熱による脆化を引き起こすことから、上限を22.0%とし
た。Cr is an element that enhances oxidation resistance, and for that purpose 14.0
% Is required, but if it exceeds 22.0%, embrittlement is caused by heating at high temperature for a long time, so the upper limit was made 22.0%.
Moは固溶強化作用を有する元素であるが、2.0%未満
では不十分であり、また3.0%超では高温長時間加熱に
よる脆化を引き起こすことから、上限を3.0%とした。Mo is an element having a solid solution strengthening effect, but if it is less than 2.0%, it is insufficient, and if it exceeds 3.0%, it causes embrittlement due to heating at high temperature for a long time, so the upper limit was made 3.0%.
Alは強力な脱酸元素であるが、0.04%を超えて添加さ
れると高温長時間加熱により鋼中のNと結合しAlNを形
成し、クリープ破断延性を損なうことから、上限を0.04
%とした。Al is a strong deoxidizing element, but if added in excess of 0.04%, it will combine with N in steel by heating at high temperature for a long time to form AlN and impair creep rupture ductility, so the upper limit is 0.04
%.
Nはオーステナイト系ステンレス鋼において固溶限が
大きく、かく強力な固溶強化作用を有する元素である。
その作用は0.06%より顕著となることから、下限を0.06
%とした。また、0.18%超のN添加は高温使用中に窒化
物の析出を引き起こすことから、0.18%を上限とした。N is an element having a large solid solution limit in austenitic stainless steel and having a strong solid solution strengthening action.
The effect becomes more significant than 0.06%, so the lower limit is 0.06%.
%. Further, since addition of N exceeding 0.18% causes precipitation of nitride during use at a high temperature, the upper limit is set to 0.18%.
以上が本発明における基本成分系であるが、本発明に
おいてはさらに高強度化を図るためWを所定の範囲で含
有せしめることが有効である。すなわち、WはMoと同様
に固溶強化作用を有し、かつ固有限も大きいことから、
クリープ破断延性を損なうことなくクリープ破断強度を
増加させることができる元素である。しかし3.0%を超
えると高温使用中に金属間化合物の析出を引き起こしク
リープ破断延性を低下させることから、この値を上限と
した。The above is the basic component system in the present invention, but in the present invention, it is effective to contain W in a predetermined range in order to further increase the strength. That is, since W has a solid solution strengthening action like Mo and has a large intrinsic limit,
Creep rupture is an element that can increase creep rupture strength without impairing ductility. However, if it exceeds 3.0%, precipitation of intermetallic compounds is caused during use at high temperature and creep rupture ductility is lowered, so this value was made the upper limit.
以上の化学成分の他に、前記の式−1によって算定さ
れる値で表されるδ−フェライト量は、高温長時間使用
後のクリープ破断強度およびクリープ破断延性をともに
確保するために最低1%が必要である。一方、δ−フェ
ライト量が多すぎてもクリープ破断延性を損なうことか
ら上限を5%未満とした。In addition to the above chemical components, the amount of δ-ferrite represented by the value calculated by the above formula-1 is at least 1% in order to secure both creep rupture strength and creep rupture ductility after long-term use at high temperature. is necessary. On the other hand, if the amount of δ-ferrite is too large, the creep rupture ductility is impaired, so the upper limit was made less than 5%.
以下に本発明の効果を実施例に基づいてさらに具体的
に示す。The effects of the present invention will be described more specifically below based on examples.
(実施例) 第1表に本発明溶接材料と比較溶接材料の化学成分を
示す。第2表は第1表の鋼について550℃の引張特性と
クリープ破断特性を示したものである。これら特性調査
結果から明らかなように、本発明溶接材料は比較材に比
べ高温長時間使用後のクリープ破断強度およびクリープ
破断延性がすぐれたものである。(Example) Table 1 shows the chemical components of the welding material of the present invention and the comparative welding material. Table 2 shows the tensile properties and creep rupture properties of the steels in Table 1 at 550 ° C. As is clear from the results of these characteristic investigations, the welding material of the present invention is superior to the comparative material in creep rupture strength and creep rupture ductility after long-term use at high temperature.
(発明の効果) 以上述べた如く本発明溶接材料は従来の溶接材料に比
して優れた高温でのクリープ破断強度とクリープ破断延
性を有する材料となっており、クリープ領域で使用され
る高温構造物用の溶接材料のとして工業的に極めて有効
なものである。 (Effects of the Invention) As described above, the welding material of the present invention is a material having excellent creep rupture strength and creep rupture ductility at high temperatures as compared with conventional welding materials, and has a high temperature structure used in the creep region. It is industrially extremely effective as a welding material for materials.
【図面の簡単な説明】 第1図(イ)はクリープ破断特性に対するC量の影響を
示す図、第1図(ロ)はクリープ破断特性に対するN量
の影響を示す図、第2図はクリープ破断特性に対するP
量の影響を示す図、第3図はクリープ破断特性に対する
δ−フェライト量の影響を示す図、第4図はクリープ破
断特性に対するW量の影響を示す図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 (a) is a diagram showing the effect of C content on creep rupture properties, FIG. 1 (b) is a diagram showing the effect of N content on creep rupture properties, and FIG. 2 is creep. P for fracture characteristics
FIG. 3 is a diagram showing the influence of the amount of δ-ferrite on the creep rupture property, and FIG. 4 is a diagram showing the influence of the amount of W on the creep rupture property.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 小松 肇 神奈川県川崎市中原区井田1618番地 新 日本製鐵株式會社第1技術研究所内 (72)発明者 谷野 満 神奈川県川崎市中原区井田1618番地 新 日本製鐵株式會社第1技術研究所内 (72)発明者 田下 正宣 兵庫県神戸市兵庫区和田崎町1丁目1番 1号 三菱重工業株式会社神戸造船所内 (72)発明者 荻野 雅明 兵庫県神戸市兵庫区和田崎町1丁目1番 1号 三菱重工業株式会社神戸造船所内 (72)発明者 西田 隆 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (72)発明者 川口 聖一 兵庫県高砂市荒井町新浜2丁目1番1号 三菱重工業株式会社高砂研究所内 (56)参考文献 特開 昭58−6792(JP,A) 特開 昭58−58996(JP,A) 特開 昭50−80941(JP,A) 特公 昭62−50232(JP,B2) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Hajime Komatsu Hajime Komatsu 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa 1st Technical Research Institute, Nippon Steel Corporation (72) Manor Yano 1618 Ida, Nakahara-ku, Kawasaki-shi, Kanagawa Nippon Steel Co., Ltd. 1st Technical Research Institute (72) Inventor Masanobu Tashita 1-1-1, Wadasakicho, Hyogo-ku, Kobe, Hyogo Prefecture Mitsubishi Heavy Industries, Ltd. Kobe Shipyard (72) Inventor Masaaki Ogino Hyogo 1-1 1-1 Wadazaki-cho, Hyogo-ku, Kobe Mitsubishi Heavy Industries Ltd., Kobe Shipyard (72) Inventor Takashi Nishida 2-1-1 Niihama, Arai-cho, Takasago, Hyogo Prefecture Mitsubishi Heavy Industries Ltd. Takasago Research Institute (72) Invention S. Kawaguchi Seiichi Kawaguchi, 2-1-1, Niihama, Arai-cho, Takasago-shi, Hyogo Mitsubishi Heavy Industries, Ltd., Takasago Research Institute (56) Reference JP-A-58 6792 (JP, A) JP Akira 58-58996 (JP, A) JP Akira 50-80941 (JP, A) Tokuoyake Akira 62-50232 (JP, B2)
Claims (2)
下、Mn 3.0%以下、P 0.02〜0.07%、Cr 14.0〜22.
0%、Ni 10.0〜14.0%、Mo 2.0〜3.0%、Al 0.04%
以下、N 0.06〜0.18%を含有し、残部は実質的にFeか
らなり、かつ溶接金属部のδ−フェライト量が下記の式
−1による算定値として1%から5%未満の範囲である
高温でのクリープ破断強度および延性の優れたNi−Crオ
ーステナイト系ステンレス鋼溶接材料。 なお、δ−フェライト量の算出は次式による。 δ−フェライト量(%)=−70.29+3.2×Creq−0.031 ×(Nieq)2+15.661×Creq /Nieq−0.0208×Creq×Nieq ……式−1 〔Creq=Cr+Mo+1.5×Si、 Nieq=Ni+0.5×Mn+30×(C+N)〕1. In weight%, C 0.030% or less, Si 1.0% or less, Mn 3.0% or less, P 0.02 to 0.07%, Cr 14.0 to 22.
0%, Ni 10.0-14.0%, Mo 2.0-3.0%, Al 0.04%
Hereinafter, high temperature containing N 0.06 to 0.18%, the balance substantially consisting of Fe, and the amount of δ-ferrite in the weld metal part being in the range of 1% to less than 5% as calculated by the following formula-1. Ni-Cr austenitic stainless steel welding material with excellent creep rupture strength and ductility. The amount of δ-ferrite is calculated by the following formula. δ-Ferrite amount (%) = -70.29 + 3.2 x Creq -0.031 x (Nieq) 2 + 15.661 x Creq / Nieq-0.0208 x Creq x Nieq ... formula-1 [Creq = Cr + Mo + 1.5 x Si, Nieq = Ni + 0.5 × Mn + 30 × (C + N)]
下、Mn 3.0%以下、P 0.02〜0.07%、Cr 14.0〜22.
0%、Ni 10.0〜14.0%、Mo 2.0〜3.0%、Al 0.04%
以下、N 0.06〜0.18%を含有し、さらにW 3.0%以
下を含有し、残部は実質的にFeからなり、かつ溶接金属
部のδ−フェライト量が下記の式−1による算定値とし
て1%から5%未満の範囲である高温でのクリープ破断
強度および延性の優れたNi−Crオーステナイト系ステン
レス鋼溶接材料。 なお、δ−フェライト量の算出は次式による。 δ−フェライト量(%)=−70.29+3.2×Creq−0.031 ×(Nieq)2+15.661×Creq /Nieq−0.0208×Creq×Nieq ……式−1 〔Creq=Cr+Mo+0.5×W+1.5×Si、 Nieq=Ni+0.5×Mn+30×(C+N)〕2. By weight%, C 0.030% or less, Si 1.0% or less, Mn 3.0% or less, P 0.02 to 0.07%, Cr 14.0 to 22.
0%, Ni 10.0-14.0%, Mo 2.0-3.0%, Al 0.04%
In the following, N 0.06 to 0.18% is contained, W 3.0% or less is further contained, the balance substantially consists of Fe, and the amount of δ-ferrite in the weld metal part is 1% as a calculated value according to the following formula-1. To Ni-Cr austenitic stainless steel welding material with excellent creep rupture strength and ductility at high temperatures in the range of less than 5%. The amount of δ-ferrite is calculated by the following formula. δ-Ferrite amount (%) = -70.29 + 3.2 x Creq -0.031 x (Nieq) 2 + 15.661 x Creq /Nieq-0.0208 x Creq x Nieq ... formula-1 [Creq = Cr + Mo + 0.5 x W + 1.5 X Si, Nieq = Ni + 0.5 x Mn + 30 x (C + N)]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63250442A JP2555292B2 (en) | 1988-10-04 | 1988-10-04 | Ni-Cr austenitic stainless steel welding material with excellent creep rupture strength and ductility at high temperature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63250442A JP2555292B2 (en) | 1988-10-04 | 1988-10-04 | Ni-Cr austenitic stainless steel welding material with excellent creep rupture strength and ductility at high temperature |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0299295A JPH0299295A (en) | 1990-04-11 |
JP2555292B2 true JP2555292B2 (en) | 1996-11-20 |
Family
ID=17207936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63250442A Expired - Fee Related JP2555292B2 (en) | 1988-10-04 | 1988-10-04 | Ni-Cr austenitic stainless steel welding material with excellent creep rupture strength and ductility at high temperature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2555292B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2619079B2 (en) | 1989-11-28 | 1997-06-11 | 新日本製鐵株式会社 | Ni-Cr austenitic stainless steel welding consumables with excellent creep rupture ductility, strength and embrittlement resistance at high temperatures |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2811255B2 (en) * | 1992-05-20 | 1998-10-15 | 新日本製鐵株式会社 | Method for producing austenitic stainless steel with excellent high temperature creep rupture properties |
IT1294228B1 (en) * | 1997-08-01 | 1999-03-24 | Acciai Speciali Terni Spa | PROCEDURE FOR THE PRODUCTION OF AUSTENITIC STAINLESS STEEL BELTS, AUSTENITIC STAINLESS STEEL BELTS SO |
US7137706B2 (en) | 2001-09-03 | 2006-11-21 | Matsushita Electric Industrial Co., Ltd. | Fan apparatus, method of manufacturing fan apparatus, projection type display device and electronic device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5080941A (en) * | 1973-11-22 | 1975-07-01 | ||
JPS551909A (en) * | 1978-06-17 | 1980-01-09 | Nippon Steel Corp | Welding wire for austenitic stainless steel |
JPS586792A (en) * | 1981-07-03 | 1983-01-14 | Nippon Steel Corp | Gas shielded welding material for stainless steel |
JPS5858996A (en) * | 1981-10-02 | 1983-04-07 | Sumitomo Metal Ind Ltd | Filler metal for tig welding |
JPS6250232A (en) * | 1985-08-28 | 1987-03-04 | Toyota Motor Corp | Four-wheel-drive device |
-
1988
- 1988-10-04 JP JP63250442A patent/JP2555292B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2619079B2 (en) | 1989-11-28 | 1997-06-11 | 新日本製鐵株式会社 | Ni-Cr austenitic stainless steel welding consumables with excellent creep rupture ductility, strength and embrittlement resistance at high temperatures |
Also Published As
Publication number | Publication date |
---|---|
JPH0299295A (en) | 1990-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0219089B1 (en) | High-strength high-cr ferritic heat-resistant steel and process for producing the same | |
CN107138876B (en) | High-temperature creep resistant low-nickel copper-containing T/P92 steel welding material | |
JP3457834B2 (en) | Weld metal for low Cr ferritic heat resistant steel with excellent toughness | |
JP2555292B2 (en) | Ni-Cr austenitic stainless steel welding material with excellent creep rupture strength and ductility at high temperature | |
JPH0550288A (en) | Austenitic stainless steel welding material having excellent creep rupture characteristic and embrittlement resistance | |
JP2834196B2 (en) | High strength, high toughness ferritic heat resistant steel | |
JPH0550287A (en) | Austenitic stainless steel welding material having excellent creep rupture characteristic and embrittlement resistance | |
JP2831051B2 (en) | Austenitic stainless steel welding wire | |
GB1564243A (en) | Austenitic stainless steel | |
JPS6358214B2 (en) | ||
JP2559218B2 (en) | High-strength ferrite type heat-resistant steel pipe steel | |
JP2619079B2 (en) | Ni-Cr austenitic stainless steel welding consumables with excellent creep rupture ductility, strength and embrittlement resistance at high temperatures | |
JPH0543986A (en) | High chromium ferritic heat resisting steel reduced in deterioration in strength in weld heat-affected zone | |
JP2817136B2 (en) | High-strength low-alloy heat-resistant steel with excellent weld strength | |
JPH11285889A (en) | Tig welding material superior in high temperature creep strength and post aging toughness for austenitic heat resisting steel | |
JPH0248613B2 (en) | ||
JPH0796390A (en) | Wire for welding 9cr-1mo steel | |
JP3387145B2 (en) | High Cr ferritic steel with excellent high temperature ductility and high temperature strength | |
JP3165902B2 (en) | High Cr steel welding method | |
JP2562740B2 (en) | Ferrite stainless steel with excellent intergranular corrosion resistance, pipe forming property and high temperature strength | |
US5164271A (en) | Overlaid stainless clad steels with improved resistance to hydrogen induced disbonding | |
JP2543801B2 (en) | Coated arc welding rod for high Cr ferritic heat resistant steel | |
JPH0753898B2 (en) | High strength austenitic heat resistant alloy | |
JPH06271993A (en) | Austenitic stainless steel excellent in oxidation resistance | |
JPH10225792A (en) | Tig welding material for austenitic heat resistant steel excellent in high temperature strength |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |