JP2554509B2 - Dryer equipped with high-speed fluidized bed - Google Patents
Dryer equipped with high-speed fluidized bedInfo
- Publication number
- JP2554509B2 JP2554509B2 JP62250878A JP25087887A JP2554509B2 JP 2554509 B2 JP2554509 B2 JP 2554509B2 JP 62250878 A JP62250878 A JP 62250878A JP 25087887 A JP25087887 A JP 25087887A JP 2554509 B2 JP2554509 B2 JP 2554509B2
- Authority
- JP
- Japan
- Prior art keywords
- fluidized bed
- gas
- steam
- particles
- heater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Drying Of Solid Materials (AREA)
- Crucibles And Fluidized-Bed Furnaces (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、過熱水蒸気を流動層の流動用流体として用
いるとともに、蒸発蒸気を再圧縮し自己加熱の熱源とし
て用いる乾燥装置に関するものである。また、本発明
は、化学工業における諸物質の乾燥、食品工業における
諸製品の乾燥、鉱工業における諸生産物の乾燥等の工程
に利用されるものである。Description: TECHNICAL FIELD The present invention relates to a drying apparatus that uses superheated steam as a fluid for flowing in a fluidized bed and recompresses evaporated vapor to use as a heat source for self-heating. Further, the present invention is used in processes such as drying of various substances in the chemical industry, drying of various products in the food industry, and drying of various products in the mining industry.
乾燥装置はその伝熱機構の違いにより、直接加熱方式
と間接加熱方式に大別される。直接加熱方式は高温ガス
(加熱空気、燃焼ガス等)を被処理物に直接接触させて
加熱し液分を蒸発させ、発生した蒸発蒸気は温度の低下
した供給ガスとともに系外へ分離排気させるものである
が、一般に排気の露点は低く、排気とともに廃棄される
排熱を回収利用するのは困難である。排気の一部を再循
環させて、排気の露点を高くする高湿度乾燥方式も実現
されているが、それでも露点は70〜80℃程度である。Dryers are roughly classified into a direct heating method and an indirect heating method, depending on the difference in their heat transfer mechanism. In the direct heating method, high-temperature gas (heating air, combustion gas, etc.) is brought into direct contact with the object to be heated to evaporate the liquid component, and the generated vapor is separated and exhausted out of the system together with the supply gas whose temperature has dropped. However, the dew point of the exhaust gas is generally low, and it is difficult to recover and utilize the exhaust heat that is discarded together with the exhaust gas. A high-humidity drying method has been realized in which a part of the exhaust gas is recirculated to increase the dew point of the exhaust gas, but the dew point is still about 70 to 80 ° C.
間接加熱方式は伝熱面を介して被処理物を間接的に加
熱させるものであるが、蒸発蒸気を系外に取り出すため
にはキャリアガスとして一般に大気を被処理物に供給す
る必要があり、排気の露点は80〜90℃程度のものとな
り、排熱を十分に回収利用するのはやはり困難である。The indirect heating method indirectly heats the object to be processed through the heat transfer surface, but in order to take out the evaporated vapor out of the system, it is generally necessary to supply the atmosphere to the object to be processed as a carrier gas, The dew point of the exhaust gas is around 80 to 90 ° C, and it is still difficult to fully recover and utilize the exhaust heat.
過熱水蒸気を用いて被処理物を直接加熱すれば、100
℃露点の排熱を得ることが可能である。しかし、過熱水
蒸気による直接加熱の場合、供給される処理物の温度が
露点より低いことから生じる流動水蒸気の内部結露の問
題、装置放熱による装置内面の結露の問題、原料および
製品の供給・排出における系外とのシール性、系内に漏
入する大気の除去方法等、実用上の問題が多い。If the object to be treated is directly heated using superheated steam, 100
It is possible to obtain exhaust heat at a dew point of ℃. However, in the case of direct heating with superheated steam, the problem of internal dew condensation of the flowing steam caused by the temperature of the supplied processing product being lower than the dew point, the problem of dew condensation on the inner surface of the device due to heat radiation from the device, and the supply and discharge of raw materials and products. There are many practical problems such as the sealing property with the outside of the system and the method of removing the air leaking into the system.
すなわち、第1に、過熱水蒸気中へ処理物を供給する
と、一般に過熱水蒸気の飽和温度(100℃)より処理物
の温度は低いために、まず処理物の表面で水蒸気の凝縮
が生じ、それに伴い発生する処理物の温度上昇により処
理物中の水分温度が上昇してから蒸発が始まる。この
間、処理物の含水率は見掛け上高くなり供給時の物性と
異なる状態となる。すなわち処理物の流動性が低下し、
それらの凝集、付着といった現象が発生し、装置の運転
を著しく妨害する原因となる。That is, firstly, when the processed product is supplied into the superheated steam, the temperature of the processed product is generally lower than the saturation temperature (100 ° C.) of the superheated steam, so that the steam is first condensed on the surface of the processed product, and accordingly Evaporation starts after the temperature of the water in the processed product rises due to the temperature rise of the processed product generated. During this period, the water content of the treated product is apparently high, which is different from the physical properties at the time of supply. That is, the fluidity of the treated product is reduced,
Phenomena such as agglomeration and adhesion occur, which is a cause of extremely disturbing the operation of the device.
第2に、これに対する方策としては、通常過熱水蒸気
の過熱度を高くし(例えば140℃以上)、伝熱を促進し
て含水率の高い状態となるべく短くすることが効果的で
あるが、処理物を過度に昇温することによる処理物の変
性やさらには付着といった現象を派生しがちとなる。ま
た、供給する熱源の温度を高くする必要があるため、た
とえば本発明のごとく飽和温度100℃の排熱を蒸気圧縮
機で昇温昇圧した後、高速流動層の加熱に利用するよう
な場合、圧縮に多大な動力を消費させることが必要とな
る。Secondly, as a measure against this, it is usually effective to increase the superheat degree of superheated steam (for example, 140 ° C. or higher) and accelerate heat transfer to shorten the water content as high as possible. A phenomenon such as denaturation of the processed product and further adhesion due to excessive temperature rise of the product tends to be induced. Further, since it is necessary to raise the temperature of the heat source to be supplied, for example, when the exhaust heat having a saturation temperature of 100 ° C. is heated and boosted by a steam compressor as in the present invention, and is used for heating the high-speed fluidized bed, It is necessary to consume a great deal of power for compression.
第3に、過熱水蒸気による直接過熱乾燥操作は、低含
水蒸気ガスによる場合と比べて蒸発に要するドライビン
グフォースが乏しくなるため乾燥速度が低下する。この
ため装置を効率化するためには、なるべく伝熱効率の高
い方式を使用する必要がある。Thirdly, the direct superheat drying operation using superheated steam reduces the driving force required for evaporation as compared with the case of using a low steam content gas, and thus the drying speed decreases. Therefore, in order to improve the efficiency of the device, it is necessary to use a method with high heat transfer efficiency.
さらに第4の問題として、過熱水蒸気は循環利用され
る必要があるが、循環系の一部は大気圧に対し負圧にな
ることがあることによる、循環系への大気の漏れ込みが
ある。また原料・製品の供給・排出の際に、循環系へ若
干の大気の漏入が発生する。また、処理物質によっては
加熱により非凝縮性の気体を発生する場合もある。こう
した非凝縮ガスが循環系に蓄積されると過熱水蒸気の露
点が低下してくるため、循環ガスの一部を放出して非凝
縮性ガスの濃度を一定値以下に保持する必要があるが、
この放出する非凝縮ガスに同伴される水蒸気の熱量は損
失となる。A fourth problem is that the superheated steam needs to be circulated and used, but a part of the circulatory system may have a negative pressure with respect to the atmospheric pressure, so that the atmospheric air leaks into the circulatory system. In addition, when the raw materials and products are supplied and discharged, some air leaks into the circulation system. Further, depending on the substance to be treated, non-condensable gas may be generated by heating. When such non-condensable gas accumulates in the circulation system, the dew point of superheated steam decreases, so it is necessary to release part of the circulation gas to maintain the concentration of the non-condensable gas below a certain value.
The calorific value of the steam entrained in the released non-condensable gas is lost.
このように、過熱水蒸気による直接乾燥自体は知られ
ているものの、エネルギー効率や処理物の物性変化、あ
るいは運転上の問題などから実際上はシステムが確定し
たものがない。As described above, although direct drying itself by superheated steam is known, there is actually no system that has been determined due to energy efficiency, changes in the physical properties of processed materials, operational problems, and the like.
そこで本発明の主たる目的は、単位エネルギー当りの
乾燥効率が高く、被乾燥物(処理物)の物性変化がな
く、しかも安定した運転が可能な乾燥装置を提供するこ
とにある。Therefore, a main object of the present invention is to provide a drying device which has a high drying efficiency per unit energy, does not change physical properties of a material to be dried (processed material), and can be stably operated.
前記問題点を解決するための本第1発明は、加熱器を
内蔵し、流動用流体としての過熱水蒸気によって粒子の
終末速度付近で運転される高速流動層と;この流動層上
部から排出される含粒子水蒸気から粒子を捕集する気固
分離機と;この気固分離機から排出される粒子が除去さ
れた水蒸気を流動層下部へ再循環させるための流動輸送
手段を含む蒸気循環路、ならびに前記循環蒸気の一部を
圧縮し前記の高速流動層内の加熱器に導く蒸気圧縮加熱
手段と;前記気固分離機によって捕集された粒子の一部
を乾燥製品として系外に排出し、さらに残余の粒子と系
外から供給される湿潤原料とを前記循環蒸気の一部また
は全部を流動させた雰囲気において混合し、循環蒸気と
ともにこの混合物を前記高速流動層下部へ定量的に供給
する混合手段と;を備えたことを特徴とするものであ
る。A first aspect of the present invention for solving the above problems is a high-speed fluidized bed which has a built-in heater and is operated near the terminal velocity of particles by superheated steam as a fluid for fluidization; A gas-solid separator for collecting particles from particle-containing water vapor; a vapor circulation path including a fluid-transporting means for recirculating the water vapor from which particles are discharged from the gas-solid separator to the lower part of the fluidized bed; A vapor compression heating means for compressing a part of the circulating vapor and guiding it to a heater in the high-speed fluidized bed; discharging a part of the particles collected by the gas-solid separator as a dry product to the outside of the system, Further, the residual particles and the wet raw material supplied from outside the system are mixed in an atmosphere in which a part or all of the circulating steam is made to flow, and this mixture is quantitatively supplied together with the circulating steam to the lower part of the high-speed fluidized bed. Means and; And it is characterized in that there was example.
また、第2発明は、加熱器を内蔵し、流動用流体とし
ての過熱水蒸気によって粒子の終末速度付近で運転され
る高速流動層と;この流動層上部から排出される含粒子
水蒸気から粒子を捕集する気固分離機と;この気固分離
機から排出される粒子が除去された水蒸気を流動層下部
へ再循環させるための流動輸送手段を含む蒸気循環路、
ならびに前記循環蒸気の一部を圧縮し前記の高速流動層
内の加熱器に導く蒸気圧縮加熱手段と;前記気固分離機
によって捕集された粒子の一部を乾燥製品として系外に
排出し、さらに残余の粒子と系外から供給される湿潤原
料とを前記循環蒸気の一部または全部を流通させた雰囲
気において混合し、循環蒸気とともにこの混合物を前記
高速流動層下部へ定量的に供給する混合手段と;前記高
速流動層の加熱器より排出される凝縮水蒸気路に気液分
離器を設け、系内の非凝縮ガスを分離し、さらにこの非
凝縮ガスにより、それに同伴する水蒸気の潜熱を利用し
て系外から供給される湿潤原料を間接加熱により予熱す
る手段と;を備えたことを特徴とするものである。A second aspect of the present invention is a high-speed fluidized bed which has a built-in heater and is operated near the terminal velocity of particles by superheated steam as a fluid for fluidization; A gas-solid separator for collecting; a vapor circulation path including a fluid-transporting means for recirculating the steam, from which particles are removed, discharged from the gas-solid separator to the lower part of the fluidized bed,
And a vapor compression heating means for compressing a part of the circulating vapor and guiding it to the heater in the high-speed fluidized bed; and discharging a part of the particles collected by the gas-solid separator to the outside of the system as a dry product. Further, the residual particles and the wet raw material supplied from outside the system are mixed in an atmosphere in which a part or all of the circulating steam is circulated, and this mixture is quantitatively supplied to the lower part of the high-speed fluidized bed together with the circulating steam. Mixing means; a gas-liquid separator is provided in the condensed steam path discharged from the heater of the high-speed fluidized bed to separate the non-condensed gas in the system, and the non-condensed gas further reduces the latent heat of steam accompanying it. Means for preheating the wet raw material supplied from outside the system by indirect heating.
本発明では、加熱器内蔵型高速流動層を用いており、
被処理粒子を終末速度付近の速度へ過熱水蒸気で加速し
た状態で過熱水蒸気と接触させるので、過熱水蒸気と粒
子間の熱移動、物質移動を最大限に促進でき、循環過熱
蒸気から処理物質への伝熱効率を高くできる。また流動
層内部に加熱器を内蔵させているので、過熱水蒸気に高
い熱還流率による加熱が可能で、過熱水蒸気から粒子へ
の熱移動が槽内で低下することなく行える。In the present invention, a high-speed fluidized bed with a built-in heater is used,
Since the particles to be treated are brought into contact with superheated steam in a state of being accelerated by superheated steam to a velocity near the terminal velocity, heat transfer between the superheated steam and particles and mass transfer can be maximized, and the circulating superheated steam to the treated substance The heat transfer efficiency can be increased. In addition, since a heater is built in the fluidized bed, superheated steam can be heated by a high heat reflux rate, and heat transfer from the superheated steam to the particles can be performed without decreasing in the tank.
他方、一般に高速流動層への原料供給に際しては、流
動層内の混合効果が大きいため循環粉体流へ原料を投入
する程度の手段で高速流動層へ原料供給しているが、本
発明では循環粒子を混合機へ導入し供給源料と急速に混
合し、循環粒子の蓄熱を利用して流動層へ供給される原
料を前段で昇温を行っている。またこの混合の際に流動
層へ供給される大量の過熱水蒸気の一部または全部を流
通させることにより、局部的な過熱水蒸気の温度低下を
防止する。これにより供給原料表面への水蒸気凝縮を最
小限のものとし、原料供給部や流動層内部での凝集、付
着を防止し、原料物性の変化を防止できる。On the other hand, in general, when the raw material is supplied to the high-speed fluidized bed, since the mixing effect in the fluidized bed is great, the raw material is supplied to the high-speed fluidized bed by a means such that the raw material is supplied to the circulating powder stream. The particles are introduced into the mixer and rapidly mixed with the source material, and the heat of the circulating particles is used to raise the temperature of the raw material supplied to the fluidized bed in the previous stage. Further, a part or all of a large amount of superheated steam supplied to the fluidized bed during the mixing is circulated to prevent a local temperature drop of the superheated steam. This minimizes water vapor condensation on the surface of the feed material, prevents aggregation and adhesion in the material supply section and inside the fluidized bed, and prevents changes in the physical properties of the material.
かくして、過熱水蒸気の過熱度を低下させても高速流
動層の運転が可能となり、その結果流動層の加熱源とし
て要求される温度も低下できる。そのため、循環過熱水
蒸気から、処理物からの蒸発量相当の水蒸気を分散して
圧縮加熱する際の動力が低下し、高速流動層の加熱源と
して利用する際のエネルギー効率が改善され実用性が高
まる。Thus, the high-speed fluidized bed can be operated even if the degree of superheat of superheated steam is reduced, and as a result, the temperature required as a heating source for the fluidized bed can be reduced. Therefore, the power required to disperse the steam equivalent to the amount of vaporization from the treated material by compression and heat from the circulating superheated steam is reduced, and the energy efficiency when used as a heating source for the high-speed fluidized bed is improved and the practicality is increased. .
また、第2発明に従って、圧縮加熱され流動層の加熱
に使用済の蒸気は、非凝縮性ガスとともに流動層内の加
熱器より放出されるが、この放出蒸気を気液分離して非
凝縮性ガスを大気放出する途上に供給原料との熱交換器
を設けておけば、非凝縮性ガスが同伴する熱量供給原料
の予熱のために利用すれば、流動層の加熱器の伝熱係数
低下を防止し、また供給原料の予熱により原料供給の際
のトラブルを回避できる。Further, according to the second aspect of the present invention, the vapor that has been used for heating the fluidized bed by compression heating is released from the heater in the fluidized bed together with the non-condensable gas. If a heat exchanger with the feedstock is provided on the way of releasing the gas to the atmosphere, the heat transfer coefficient of the fluidized bed heater can be reduced if it is used for preheating the calorific feedstock accompanied by the non-condensable gas. In addition, it is possible to prevent troubles and prevent troubles when the raw material is supplied by preheating the raw material.
なお、本発明の好ましい態様では、高速流動層に内蔵
される加熱器としては、多管式加熱器のものが用いられ
る。通常の流動層は、粒子の終末速度の10〜20%程度の
流速で流動化させて運転される。この場合、流動層内に
加熱器(平板状、管状)を備えて流動気体および粒子に
加熱を行うことができるが、一定の流動層断面積あたり
の伝熱量を増加させるためには加熱器を流動層の高さ方
向に増加させる必要がある。それに伴い、流動層の粉体
層厚も増加させる必要があり、結果的に流動層における
流動ガスの圧力損失は過大なものとなる。In a preferred embodiment of the present invention, a multitubular heater is used as the heater incorporated in the high-speed fluidized bed. A normal fluidized bed is operated by fluidizing at a flow rate of about 10 to 20% of the final velocity of particles. In this case, it is possible to heat the fluidized gas and particles by providing a heater (flat plate, tubular) in the fluidized bed, but in order to increase the heat transfer amount per constant fluidized bed cross-sectional area, the heater is used. It is necessary to increase the height of the fluidized bed. Along with this, it is necessary to increase the powder bed thickness of the fluidized bed, resulting in an excessive pressure loss of the fluidized gas in the fluidized bed.
高速流動層では、先に述べたように粒子の終末速度付
近で流動層内を粒子を流動通過させるものであり、流動
ガス中の粒子濃度は通常の流動層と比べて低く、圧力損
失も少なくなる。従って流動層断面積あたりの加熱器伝
熱面装備量を十分に大きくすることが可能である。また
高速流動層では、通常の流動層と比べて数倍の伝熱係数
が得られるようになることも重要である。In the high-speed fluidized bed, as described above, the particles flow through the fluidized bed in the vicinity of the terminal velocity of the particles.The particle concentration in the fluidized gas is lower than in a normal fluidized bed, and the pressure loss is also small. Become. Therefore, it is possible to sufficiently increase the amount of heater heat transfer surface equipment per fluidized bed cross-sectional area. It is also important that the high-speed fluidized bed can obtain a heat transfer coefficient several times higher than that of a normal fluidized bed.
高速流動層における加熱器の形態としては、通常の流
動層と同様に平板状、管状のいずれも可能であるが、流
動ガスの高速化にともない増加する流動ガス量をなるべ
く少なくするためには、流動ガスおよび粉体粒子の通過
部の断面積あたりの伝熱面量が大きいものほど有利であ
る。この点で多管式熱交換器の管内に流動ガスおよび粉
体粒子を導入させ、管外から蒸気等で加熱することで高
速流動層を構成させるのが最適である。この場合、流動
ガスおよび粉体粒子が各管に均一に分配されることが望
ましいが、分配が不均一になりやすい場合は、加熱器を
複数に分割して直列につなぎ、各加熱器間に空隙を設け
て再分散させるのが適当である。The form of the heater in the high-speed fluidized bed can be either flat or tubular like a normal fluidized bed, but in order to minimize the amount of fluidized gas that increases with the speeding up of fluidized gas, The larger the heat transfer surface amount per cross-sectional area of the passage portion of the flowing gas and the powder particles, the more advantageous. From this point of view, it is optimal to introduce a fluidizing gas and powder particles into the tube of the multi-tube heat exchanger and heat them with steam or the like from the outside of the tube to form a high-speed fluidized bed. In this case, it is desirable that the flowing gas and powder particles be evenly distributed in each tube, but if the distribution is likely to be uneven, divide the heater into multiple pieces and connect them in series, and place between each heater. It is suitable to provide voids for redispersion.
この多管式加熱器による高速流動層は、伝熱面の外部
が加熱媒体で取り囲まれている形状となっているため
に、流動層本体での、放熱による問題発生の恐れが極め
て少ないものとなっている。また伝熱面の清掃も比較的
容易である。また、管の一部を閉塞させることで一定の
流動ガスに対してガスの通過断面積を減量させ、流動ガ
ス流速を増加調整することも容易に可能である。Since the high-speed fluidized bed using this multi-tube heater has a shape in which the outside of the heat transfer surface is surrounded by the heating medium, there is very little risk of problems due to heat dissipation in the fluidized bed body. Has become. Also, cleaning the heat transfer surface is relatively easy. Further, it is also possible to easily adjust the flow velocity of the flowing gas to increase by reducing the gas passage cross-sectional area for a certain flowing gas by closing a part of the pipe.
以下に図面を参照しながら、本発明の基本的な構成を
具体的に説明する。The basic configuration of the present invention will be specifically described below with reference to the drawings.
第1図は第1実施例を示し、同図の1は処理粉体を流
動ガス(過熱水蒸気)により粒子の終末速度付近で流動
通過させる高速流動層で、内部には通過流体を加熱する
ための板状もしくは管状の加熱器2を装備するものであ
る。通過ガス量に対し大きな伝熱面積を与えるために、
流動層の断面積に対する高さの比率は通常の流動層と比
べて大きなものとされている。FIG. 1 shows the first embodiment, and 1 in FIG. 1 is a high-speed fluidized bed in which the treated powder is fluidized and passed by a fluidized gas (superheated steam) near the terminal velocity of the particles. This is equipped with the plate-shaped or tubular heater 2. In order to give a large heat transfer area to the amount of passing gas,
The ratio of the height to the cross-sectional area of the fluidized bed is larger than that of a normal fluidized bed.
高速流動層1を通過した流動ガスは、サイクロン、バ
グフィルター等で構成される気固分離機3へ導入され、
処理粉体と分離される。清浄化された過熱水蒸気は蒸気
循環ブロワー4により再び高速流動層1下部へ導入さ
れ、かくして流動ガスの循環が形成されている。気固分
離機3を通過した流動ガスの一部(乾燥により新たに発
生した水蒸気量に相当する量)は、蒸気圧縮機5で加圧
昇温され、加熱器2へ供給され1の通過流体の加熱に利
用される。循環加熱水蒸気系には、原料製品の供給排出
部から、および原料の抱え込む大気から空気が漏入した
り、また処理物によっては加熱により非凝縮性のガスが
発生したりするため、そのまま非凝縮性ガスを蓄積させ
ると系内の蒸気飽和温度が低下し、特に加熱器2におい
ての伝熱を妨害する。このため加熱器2からの凝縮液排
出流路に気液分離機6が設けられ、非凝縮ガスを分離し
抜出し、原料予熱機7へ流量調整バルブ8を介して導入
して非凝縮ガスに同伴する水蒸気の潜熱を原料(被乾燥
物)10を予熱することにより回収した後、系外へ放出さ
せる。流量調整バルブ8の開度調整は、先の循環過熱水
蒸気に含まれる酸素濃度を酸素濃度分析計9で測定し一
定の値となるように制御するのがよい。The fluidized gas that has passed through the high-speed fluidized bed 1 is introduced into a gas-solid separator 3 composed of a cyclone, a bag filter, etc.
Separated from treated powder. The purified superheated steam is again introduced into the lower part of the high-speed fluidized bed 1 by the steam circulation blower 4, and thus the circulation of the fluidized gas is formed. A part of the flowing gas that has passed through the gas-solid separator 3 (amount corresponding to the amount of water vapor newly generated by drying) is pressurized and heated by the vapor compressor 5 and is supplied to the heater 2 and the passing fluid of 1 is passed. It is used for heating. In the circulating heating steam system, air leaks from the supply and discharge part of the raw material product and from the atmosphere held by the raw material, and depending on the processed material, non-condensable gas is generated due to heating Accumulation of the volatile gas lowers the vapor saturation temperature in the system and hinders heat transfer particularly in the heater 2. Therefore, a gas-liquid separator 6 is provided in the condensate discharge passage from the heater 2, separates and extracts the non-condensed gas, and introduces it into the raw material preheater 7 via the flow rate adjusting valve 8 to accompany the non-condensed gas. The latent heat of the generated steam is recovered by preheating the raw material (material to be dried) 10 and then released to the outside of the system. The opening degree of the flow rate adjusting valve 8 is preferably controlled so that the oxygen concentration contained in the circulating superheated steam is measured by the oxygen concentration analyzer 9 and becomes a constant value.
原料予熱機7は、供給原料10を伝熱面を介して加熱す
る間接加熱手段であり、たとえばジャケットを有するパ
ドル型混合輸送機、もしくはディスク型加熱軸による混
合輸送機等を使用するのが適当であるが、原料貯槽内に
管状もしくは板状の伝熱面を配したものでも可能であ
る。予熱された供給原料はスクリューフィーダー等の原
料供給器11で定量的に混合機12へ供給される。The raw material preheater 7 is an indirect heating means for heating the feed raw material 10 through the heat transfer surface, and it is suitable to use, for example, a paddle type mixing transporter having a jacket, or a mixing transporter having a disc type heating shaft. However, it is also possible to arrange a tubular or plate-shaped heat transfer surface in the raw material storage tank. The preheated feed material is quantitatively supplied to the mixer 12 by a material supply device 11 such as a screw feeder.
前記の気固分離機3で捕集された乾燥処理済粒子はロ
ータリーバルブ等のシール機構13を経て分配器14へ投入
され、分配器14からそのほとんどは混合機12へ送られる
が、一部は乾燥製品15として系外へ取り出される。The dried particles collected by the gas-solid separator 3 are fed into the distributor 14 through the sealing mechanism 13 such as a rotary valve, and most of the particles are sent from the distributor 14 to the mixer 12, but some Is taken out of the system as a dry product 15.
混合機12では分配器14から与えられる乾燥処理粒子中
へ原料供給機11から供給される湿潤供給原料を投入し混
合する。混合機12としては、一軸もしくは二軸のパドル
型混合機が一般的に用いることができるが、循環ブロワ
ー4から吐出される過熱水蒸気の一部もしくは全部を導
入し、混合機12内の気相部を隈なく過熱状態に保持する
ように配慮することが望まれる。In the mixer 12, the wet feed raw material supplied from the raw material supply device 11 is charged into the dry-processed particles supplied from the distributor 14 and mixed. As the mixer 12, a single-screw or double-screw paddle type mixer can be generally used. However, by introducing a part or all of the superheated steam discharged from the circulation blower 4, the gas phase inside the mixer 12 can be increased. Care should be taken to keep all parts overheated.
混合された処理粉体は、高速流動層1の下部へ導入過
熱水蒸気とともに供給され、加熱乾燥される。一般に加
熱器2に供給されるべき熱量は、蒸気圧縮機5から供給
できる蒸発量相当の熱量では不足するために、加熱補給
蒸気16を供給してやることが望ましい。The mixed treated powder is supplied to the lower part of the high-speed fluidized bed 1 together with the superheated steam introduced, and is heated and dried. Generally, the amount of heat to be supplied to the heater 2 is insufficient with the amount of heat equivalent to the amount of evaporation that can be supplied from the vapor compressor 5, so it is desirable to supply the heating supplemental steam 16.
第2図は、第2実施例を示し、高速流動層1は、第3
図および第4図に示すような多管式熱交換器形状の加熱
器2a,2bも、本実施例では2段直列に内蔵している。下
段は蒸発蒸気を圧縮加熱した蒸気で加熱され、上段は加
熱補給蒸気16で加熱される。これにより加熱補給蒸気16
の凝縮ドレン17は清浄なままボイラーへ戻すことが可能
となる。また高速流動層1での加熱調整を加熱補給蒸気
16の圧力を制御することでも可能となる。FIG. 2 shows a second embodiment, in which the high-speed fluidized bed 1 has a third
The heaters 2a, 2b in the form of a shell-and-tube heat exchanger as shown in FIGS. 4 and 5 are also built in two stages in series in this embodiment. The lower stage is heated by the vapor obtained by compressing and heating the evaporated vapor, and the upper stage is heated by the heating replenishment vapor 16. As a result, heating replenishment steam 16
The condensed drain 17 of can be returned to the boiler while being clean. In addition, heating adjustment in the high-speed fluidized bed 1 is performed by heating supplemental steam
It is also possible to control 16 pressures.
流動ガスおよび処理粒子は加熱管の内部を通過し、サ
イクロン3へ導入される。サイクロン3下部はダブルダ
ンパー13Aでシールされ、捕集された粉体は混合機12へ
送られる。The flowing gas and the treated particles pass through the inside of the heating pipe and are introduced into the cyclone 3. The lower part of the cyclone 3 is sealed with a double damper 13A, and the collected powder is sent to the mixer 12.
サイクロン3からの排出水蒸気の一部は、循環ガス加
熱器18を経て循環ブロワー4により昇圧される。循環ガ
ス加熱器18は、装置の温度上昇を促進するために、起動
時に加熱補助蒸気を利用して加熱する装置であり、連続
運転時には一般に不要となる。A part of the steam discharged from the cyclone 3 is pressurized by the circulation blower 4 via the circulation gas heater 18. The circulating gas heater 18 is a device that heats using auxiliary heating steam at the time of startup in order to accelerate the temperature rise of the device, and is generally unnecessary during continuous operation.
混合機12はたとえば一軸パドル混合機であり、上流側
下部に粉体分配抜出し座を有し、ダブルダンパー13Aよ
り供給される乾燥粉体の一部を乾燥製品15としてロータ
リーバルブ19を用いて定量的に取り出せる機構となって
いる。その下流では、供給ロータリーバルブ11Bを通し
て供給される湿潤原料と混合され、蒸気循環ブロワー4
からの過熱水蒸気流中に投入された後、高速流動層1下
部へ供給される。バイパスバルブ20は混合機12に導入す
る過熱水蒸気量を調整するものである。The mixer 12 is, for example, a single-screw paddle mixer, has a powder distribution / extraction seat at the lower portion on the upstream side, and a portion of the dry powder supplied from the double damper 13A is quantified as a dry product 15 using a rotary valve 19. It is a mechanism that can be taken out. Downstream thereof, the steam circulation blower 4 is mixed with the wet raw material supplied through the supply rotary valve 11B.
After being charged into the superheated steam flow from the above, it is supplied to the lower part of the high-speed fluidized bed 1. The bypass valve 20 is for adjusting the amount of superheated steam introduced into the mixer 12.
循環水蒸気の他部は、水スプレー洗浄式スクラバーに
よる蒸気洗浄装置21で、同伴する微粉を除去したのち、
ほぼ大気圧で蒸気圧縮機5Aへ導入される。圧縮加熱され
た蒸気は流動層下部1bの加熱に使用される。発生した凝
縮水と被凝縮性ガスは気液分離器6で分離され、非凝縮
性ガスは流量調整バルブ8を経て原料予熱機7Aに導入さ
れる。凝縮水は蒸気洗浄装置21の補給水として利用され
る。洗浄排水は洗浄水循環ポンプ22を利用して排水23さ
れる。The other part of the circulating steam is a steam cleaning device 21 using a water spray cleaning type scrubber, and after removing the accompanying fine powder,
It is introduced into the vapor compressor 5A at about atmospheric pressure. The compressed and heated steam is used to heat the lower part 1b of the fluidized bed. The generated condensed water and the condensable gas are separated by the gas-liquid separator 6, and the non-condensable gas is introduced into the raw material preheater 7A via the flow rate adjusting valve 8. The condensed water is used as makeup water for the steam cleaning device 21. The cleaning waste water is drained 23 using the cleaning water circulation pump 22.
原料予熱機7Aは、たとえば伝熱ジャケットつきのパド
ル輸送機であり、テーブルフィーダーによる原料供給機
11Aから定量的に原料が投入され、気液分離器6からの
非凝縮性ガスの同伴する蒸気の潜熱を利用して原料を予
熱するものである。温度の低下した非凝縮性ガス排気24
は系外へ放出される。The raw material preheater 7A is, for example, a paddle transporter with a heat transfer jacket, and is a raw material supply device using a table feeder.
The raw material is quantitatively charged from 11A, and the raw material is preheated by utilizing the latent heat of the vapor accompanying the non-condensable gas from the gas-liquid separator 6. Non-condensable gas exhaust with reduced temperature 24
Is released out of the system.
ところで、第2実施例での多管式熱交換器からなる加
熱器2a,2bを備えた高速流動層1の詳細構造例は、第3
図および第4図に示すもので、上下加熱器胴30A,30Bを
スペーサーリング31を介して止めボルト32により連結す
るとともに、胴30A,30Bの上部および下部には流動ガス
の出口コーン33Aおよび入口コーン33Bを設けてある。ま
た、内部には、多数の伝熱管34,34…を設け、上側域と
下側域とを区切るべく管板35が設けられている。これに
よって、上部および下部に区画された、加熱蒸気入口36
A,36Bから凝縮液出口37A,37Bに至る加熱蒸気流路室が形
成されている。また、上部域と下部域との連結部にはス
ペーサーリング31をはさみ空隙を設け流動ガスの再分散
を行い、各管になるべく均等に流動ガスが分配されるよ
うにしてある。By the way, the detailed structure example of the high-speed fluidized bed 1 provided with the heaters 2a and 2b formed of the multitubular heat exchanger in the second embodiment is the third embodiment.
As shown in Fig. 4 and Fig. 4, the upper and lower heater cylinders 30A, 30B are connected by a stopper bolt 32 through a spacer ring 31, and the upper and lower parts of the cylinders 30A, 30B have an outlet cone 33A and an inlet for flowing gas. A cone 33B is provided. Further, a large number of heat transfer tubes 34, 34 ... Are provided inside, and a tube plate 35 is provided to separate the upper side area and the lower side area. This allows the heated steam inlet 36 to be divided into upper and lower parts.
A heated steam flow passage chamber is formed from A, 36B to the condensate outlets 37A, 37B. In addition, a spacer ring 31 is sandwiched between the upper region and the lower region to form a space for re-dispersing the flowing gas so that the flowing gas is evenly distributed to each tube.
かかる流動層型式では、一定の流動ガス量に対して与
えられる伝熱面積が比較的多くとれる。また上下の複数
段(実施例のように2段に限定されずそれ以上でもよ
い。)の加熱器2a,2bを連結することで、加熱条件を段
毎に変えたり、また管の材質、肉厚を変えることができ
る。In such a fluidized bed type, a relatively large heat transfer area can be provided for a constant amount of fluidized gas. Further, by connecting the heaters 2a and 2b in a plurality of upper and lower stages (the number of stages is not limited to two as in the embodiment), it is possible to change the heating condition for each stage, the material of the tube, and the meat. The thickness can be changed.
次に実施例を示し、本発明の効果を明らかにする。実
施した装置は、第2図〜第4図に示すもので、その仕様
は次の通りである。Next, examples will be shown to clarify the effects of the present invention. The implemented apparatus is shown in FIGS. 2 to 4, and its specifications are as follows.
本実施例での運転実績データの一部を下記に示す。 A part of the operation result data in this example is shown below.
そして、安定した運転が図れ、かつ効率よい乾燥操作
を行うことができることが明らかとなった。 And it became clear that stable operation can be achieved and efficient drying operation can be performed.
以上の通り、本発明によれば、単位エネルギー当りの
乾燥効率が高くなり、かつ被乾燥物の物性変化を防止で
き、また安定した運転を行い得る。As described above, according to the present invention, the drying efficiency per unit energy is increased, the physical property change of the material to be dried can be prevented, and stable operation can be performed.
第1図は本発明装置の第1実施例を示す概要図、第2図
は第2実施例の概要図、第3図は第2実施例で用いた高
速流動層の縦断面、第4図はIV−IV線矢斜図である。 1……高速流動層、2,2a,2b……加熱器、3……気固分
離機、4……蒸気循環ブロワー、5,5A……蒸気圧縮機、
6……気液分離器、7,7A……原料予熱器、10……供給原
料(被乾燥物)、11,11A……原料供給機、12……混合
機、14……分配器、34……伝熱器。FIG. 1 is a schematic diagram showing a first embodiment of the device of the present invention, FIG. 2 is a schematic diagram of the second embodiment, FIG. 3 is a longitudinal section of a high-speed fluidized bed used in the second embodiment, and FIG. Is a line IV-IV arrow oblique view. 1 ... High-speed fluidized bed, 2,2a, 2b ... heater, 3 ... gas-solid separator, 4 ... steam circulation blower, 5,5A ... vapor compressor,
6 ... gas-liquid separator, 7, 7A ... raw material preheater, 10 ... feed material (material to be dried), 11, 11A ... raw material feeder, 12 ... mixer, 14 ... distributor, 34 ...... Heat transfer device.
フロントページの続き (72)発明者 中嶋 一 東京都中央区佃2丁目17番15号 月島機 械株式会社内 (72)発明者 守田 稔 東京都中央区佃2丁目17番15号 月島機 械株式会社内 (72)発明者 上條 泰彦 東京都中央区佃2丁目17番15号 月島機 械株式会社内 (56)参考文献 特開 昭60−259883(JP,A) 特開 昭54−143960(JP,A) 特開 昭59−15785(JP,A) 特開 昭62−230911(JP,A) 実開 昭59−178595(JP,U) 特公 昭49−1502(JP,B1) 実公 昭50−14385(JP,Y1) 実公 昭50−302(JP,Y1)Front Page Continuation (72) Inventor Hajime Nakajima 2-17-15 Tsukushima Machinery, Chuo-ku, Tokyo Within Tsukishima Kikai Co., Ltd. (72) Minoru Morita 2-17-15 Tsukishima Kikai, Chuo-ku, Tokyo In-company (72) Inventor Yasuhiko Kamijo 2-17-15 Tsukushima, Chuo-ku, Tokyo Tsukishima Kikai Co., Ltd. (56) Reference JP-A-60-259883 (JP, A) JP-A-54-143960 (JP) , A) JP 59-15785 (JP, A) JP 62-230911 (JP, A) Actual development 59-178595 (JP, U) JP 49-1502 (JP, B1) JP 50-14385 (JP, Y1) S.K. 50-302 (JP, Y1)
Claims (4)
水蒸気によって粒子の終末速度付近で運転される高速流
動層と;この流動層上部から排出される含粒子水蒸気か
ら粒子を捕集する気固分離機と;この気固分離機から排
出される粒子が除去された水蒸気を流動層下部へ再循環
させるための流体輸送手段を含む蒸気循環路、ならびに
前記循環蒸気の一部を圧縮し前記の高速流動層内の加熱
器に導く蒸気圧縮加熱手段と;前記気固分離機によって
捕集された粒子の一部を乾燥製品として系外に排出し、
さらに残余の粒子と系外から供給される湿潤原料とを前
記循環蒸気の一部または全部を流通させた雰囲気におい
て混合し、循環蒸気とともにこの混合物を前記高速流動
層下部へ定量的に供給する混合手段と;を備えたことを
特徴とする高速流動層を備えた乾燥装置。1. A high-speed fluidized bed having a built-in heater, which is operated near the terminal velocity of particles by superheated steam as a fluid for fluidization; particles are collected from particle-containing water vapor discharged from the upper part of the fluidized bed. A gas-solid separator; a vapor circulation path including a fluid-transporting means for recirculating the water vapor discharged from the gas-solid separator to the lower part of the fluidized bed, and a part of the circulating vapor. A vapor compression heating means for leading to a heater in the high-speed fluidized bed; a part of the particles collected by the gas-solid separator is discharged as a dry product out of the system,
Further, the residual particles and a wet raw material supplied from outside the system are mixed in an atmosphere in which a part or all of the circulating steam is circulated, and this mixture is quantitatively supplied together with the circulating steam to the lower part of the high-speed fluidized bed. A drying device having a high-speed fluidized bed.
水蒸気によって粒子の終末速度付近で運転される高速流
動層と;この流動層上部から排出される含粒子水蒸気か
ら粒子を捕集する気固分離機と;この気固分離機から排
出される粒子が除去された水蒸気を流動層下部へ再循環
させるための流体輸送手段を含む蒸気循環路、ならびに
前記循環蒸気の一部を圧縮し前記の高速流動層内の加熱
器に導く蒸気圧縮加熱手段と;前記気固分離機によって
捕集された粒子の一部を乾燥製品として系外に排出し、
さらに残余の粒子と系外から供給される湿潤原料とを前
記循環蒸気の一部または全部を流通させた雰囲気におい
て混合し、循環蒸気とともにこの混合物を前記高速流動
層下部へ定量的に供給する混合手段と;前記高速流動層
の加熱器より排出される凝縮水蒸気流路に気液分離器を
設け、系内の非凝縮ガスを分離し、さらにこの非凝縮ガ
スにより、それに同伴する水蒸気の潜熱を利用して系外
から供給される湿潤原料を間接加熱により予熱する手段
と;を備えたことを特徴とする高速流動層を備えた乾燥
装置。2. A high-speed fluidized bed which has a built-in heater and is operated near the terminal velocity of particles by superheated steam as a fluid for fluidization; particles are collected from the particle-containing water vapor discharged from the upper part of the fluidized bed. A gas-solid separator; a vapor circulation path including a fluid-transporting means for recirculating the water vapor discharged from the gas-solid separator to the lower part of the fluidized bed, and a part of the circulating vapor. A vapor compression heating means for leading to a heater in the high-speed fluidized bed; a part of the particles collected by the gas-solid separator is discharged as a dry product out of the system,
Further, the residual particles and a wet raw material supplied from outside the system are mixed in an atmosphere in which a part or all of the circulating steam is circulated, and this mixture is quantitatively supplied together with the circulating steam to the lower part of the high-speed fluidized bed. A means for separating the non-condensable gas in the system from the condensed water vapor flow path discharged from the heater of the high-speed fluidized bed, and the non-condensed gas to remove latent heat of water vapor accompanying it. And a means for preheating the wet raw material supplied from outside the system by indirect heating, the drying apparatus having a high-speed fluidized bed.
外に加熱用蒸気、管内に流動用蒸気および処理粉体粒子
を導入させるようにした特許請求の範囲第1項または第
2項記載の装置。3. A multi-tube heater as a high-speed fluidized bed, wherein heating steam is introduced outside the tube, and flowing steam and treated powder particles are introduced into the tube. The device according to the item.
で高速流動層を構成し、各加熱器間に空隙を設けること
により、流動用蒸気および処理粉体粒子を再分散させる
ことを可能にした特許請求の範囲第3項記載の乾燥装
置。4. A high-speed fluidized bed is constructed by connecting a plurality of multitubular heaters in series, and a void is provided between the heaters to redisperse the steam for flowing and the treated powder particles. The drying device according to claim 3, which enables the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62250878A JP2554509B2 (en) | 1987-10-05 | 1987-10-05 | Dryer equipped with high-speed fluidized bed |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62250878A JP2554509B2 (en) | 1987-10-05 | 1987-10-05 | Dryer equipped with high-speed fluidized bed |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0195281A JPH0195281A (en) | 1989-04-13 |
JP2554509B2 true JP2554509B2 (en) | 1996-11-13 |
Family
ID=17214356
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62250878A Expired - Lifetime JP2554509B2 (en) | 1987-10-05 | 1987-10-05 | Dryer equipped with high-speed fluidized bed |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2554509B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5461283B2 (en) * | 2010-04-02 | 2014-04-02 | 三菱重工業株式会社 | Fluidized bed drying equipment |
JP5746479B2 (en) * | 2010-04-16 | 2015-07-08 | 川崎重工業株式会社 | Fluidized bed drying apparatus and fluidized bed drying method |
JP5511702B2 (en) * | 2011-01-28 | 2014-06-04 | 三菱重工業株式会社 | Hydrous solid fuel drying equipment |
JP5851884B2 (en) * | 2012-02-28 | 2016-02-03 | 三菱重工業株式会社 | Fluidized bed drying apparatus, gasification combined power generation facility, and drying method |
CN102927792B (en) * | 2012-11-06 | 2014-11-05 | 大唐国际发电股份有限公司 | Calcium silicate drying method and system |
JP6267147B2 (en) * | 2015-03-20 | 2018-01-24 | 株式会社栗本鐵工所 | Airflow dryer and drying apparatus equipped with the same |
JP6680012B2 (en) * | 2016-03-16 | 2020-04-15 | 株式会社Ihi | Drying system and method of starting the drying system |
-
1987
- 1987-10-05 JP JP62250878A patent/JP2554509B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0195281A (en) | 1989-04-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4970803A (en) | Method for drying sludge | |
US5291668A (en) | Steam atmosphere drying exhaust steam recompression system | |
US4785554A (en) | Method and apparatus for conditioning bulk material | |
EP0088174B1 (en) | An improved drying method and apparatus | |
JP2554509B2 (en) | Dryer equipped with high-speed fluidized bed | |
US4583301A (en) | Variable volume vacuum drying chamber | |
JPS61250096A (en) | Method and apparatus for drying low grade coal | |
US20200348078A1 (en) | Modular System and Process of Drying Solids and Liquid-Solid Mixtures | |
GB2074299A (en) | Method and Apparatus for Heating Particulate Material | |
CN106766818A (en) | A kind of Yi nationality, distributed over Yunnan, Sichuan and Guizhou's drug extract efficient energy-saving pneumatic conveyer dryer and its drying means | |
US20080178488A1 (en) | Portable counter flow drying and highly efficient grain drier with integrated heat recovery | |
JPS601077B2 (en) | Sewage sludge evaporative concentrator | |
BE902454A (en) | METHOD AND APPARATUS FOR WARM TREATING LIQUID MATERIALS | |
JPS5829353B2 (en) | Coal preheating method and device for coking | |
US4085516A (en) | Fluidized bed drying process for porous materials | |
US11221180B2 (en) | Systems and methods related to staged drying of temperature sensitive materials | |
AT504996A1 (en) | METHOD AND DEVICE FOR DRYING CRYSTALLINE CARBOXYLIC ACIDS | |
FI79753B (en) | FOERFARANDE FOER TORKNING AV PULVERFORMIGT, KORNIGT, SPAONFORMIGT ELLER MOTSVARANDE MATERIAL. | |
DE4427709A1 (en) | Drying of solid particles, esp. wood for chipboard mfr. | |
US3699662A (en) | Drying process for pulverulent material | |
US2261224A (en) | Apparatus for the recovery of unfermentable residues | |
US3925904A (en) | Method and apparatus for drying stillage | |
JPS58158485A (en) | Improved drying method and drier | |
US1577545A (en) | Drying apparatus | |
DE4221573A1 (en) | Method and arrangement for drying tobacco |