JP2552966B2 - Correction method of error in optical measuring device - Google Patents

Correction method of error in optical measuring device

Info

Publication number
JP2552966B2
JP2552966B2 JP3229217A JP22921791A JP2552966B2 JP 2552966 B2 JP2552966 B2 JP 2552966B2 JP 3229217 A JP3229217 A JP 3229217A JP 22921791 A JP22921791 A JP 22921791A JP 2552966 B2 JP2552966 B2 JP 2552966B2
Authority
JP
Japan
Prior art keywords
image
light
error
work
reference block
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3229217A
Other languages
Japanese (ja)
Other versions
JPH0566113A (en
Inventor
直次 山岡
学 土田
幸宏 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP3229217A priority Critical patent/JP2552966B2/en
Publication of JPH0566113A publication Critical patent/JPH0566113A/en
Application granted granted Critical
Publication of JP2552966B2 publication Critical patent/JP2552966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ワークにスリット光を
照射する投光器と、ワークに照射されたスリット光が描
く光切断像を撮像する撮像器とを備える光学式測定装置
を用い、撮像器の画面上の光切断画像からワークの形状
や位置を測定する際の誤差の補正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention uses an optical measuring device provided with a projector for irradiating a work with slit light and an imager for picking up a light section image drawn by the slit light irradiated on the work. The present invention relates to a method for correcting an error when measuring the shape and position of a work from a light section image on the screen.

【0002】[0002]

【従来の技術】ワークにスリット光を照射すると、ワー
ク表面に、これに照射されたスリット光により、その光
軸を含むスリット光に平行な光切断面でワークを切断し
たときのワーク表面の断面形状に合致する光切断像が描
かれ、この光切断像を撮像器により撮像して、撮像器の
画面上の光切断画像の特定点の位置を計測し、該点に対
応する光切断面上の点の座標値を算出して、ワークの形
状や位置を測定する方法が知られている。又、撮像器を
用いて計測を行う場合、特開昭62−200207号公
報や特開平1−221632号公報に見られるように、
撮像器の画像歪曲を予め測定し、画像歪曲による誤差を
補正することも知られている。
2. Description of the Related Art When a work is irradiated with slit light, a cross section of the work surface when the work is cut by a light cutting plane parallel to the slit light including the optical axis by the slit light irradiated on the work surface. A light-section image that matches the shape is drawn, this light-section image is captured by an imager, the position of a specific point of the light-section image on the screen of the imager is measured, and on the light-section plane corresponding to that point. There is known a method of calculating the coordinate value of the point and measuring the shape and position of the work. Further, when the measurement is performed using an image pickup device, as seen in JP-A-62-200207 and JP-A-1-221632,
It is also known to measure the image distortion of an image pickup device in advance and correct the error due to the image distortion.

【0003】[0003]

【発明が解決しようとする課題】ところで、ワークにス
リット光を照射する投光器と、撮像器とを備える光学式
測定装置を用いて上記の如くワークの形状や位置を測定
する場合、上述した撮像器の画像歪曲による誤差だけで
なく、ピントずれによる誤差や、投光器と撮像器との相
対位置関係のずれによる誤差を生ずるおそれがあり、こ
れら誤差を一括して補正し得るようにすることが望まれ
ている。本発明は、かかる要望に適合した誤差の補正方
法を提供することをその目的としている。
By the way, in the case of measuring the shape and position of the work as described above by using the optical measuring device provided with the projector for irradiating the work with slit light and the image pickup device, the above-mentioned image pickup device is used. In addition to the error due to the image distortion, the error due to the focus shift and the error due to the shift in the relative positional relationship between the projector and the image pickup device may occur, and it is desirable that these errors can be collectively corrected. ing. An object of the present invention is to provide an error correction method that meets such a demand.

【0004】[0004]

【課題を解決するための手段】上記目的を達成すべく、
本発明は、ワークにスリット光を照射する投光器と、ワ
ークに照射されたスリット光が描く光切断像を撮像する
撮像器とを備える光学式測定装置を用い、撮像器の画面
上の光切断画像からワークの形状や位置を測定する際の
誤差の補正方法であって、ワークと同形又は似た形状の
基準ブロックを光学式測定装置に対向配置して、該基準
ブロックをスリット光の光軸を含むスリット光に平行な
光切断面上の複数の計測ポイントに移動しつつ該基準ブ
ロックの光切断像を撮像し、各計測ポイント毎に基準ブ
ロックの光切断面上の移動量と基準ブロックの光切断画
像の画面上の移動量との所定の対応関係からのずれ量を
誤差として計測し、計測された誤差から誤差の補正式を
求めて、ワークの計測に際し光切断画像から求められる
測定値を補正式によって補正することを特徴とする。
In order to achieve the above object,
The present invention uses an optical measurement device that includes a light projector that irradiates a work with slit light and an imager that captures a light-sectioned image drawn by the slit light that is irradiated onto the work. Is a method of correcting an error when measuring the shape or position of a work, in which a reference block having the same shape as or similar to the work is arranged facing the optical measuring device, and the reference block is set to the optical axis of the slit light. The light cutting image of the reference block is taken while moving to a plurality of measurement points on the light cutting surface parallel to the slit light including the moving amount on the light cutting surface of the reference block and the light of the reference block for each measurement point. The amount of deviation from the predetermined correspondence with the amount of movement of the cut image on the screen is measured as an error, the correction formula for the error is calculated from the measured error, and the measurement value obtained from the optical cut image when measuring the workpiece is calculated. In the correction formula And correcting me.

【0005】[0005]

【作用】基準ブロックを光切断面上で移動し、各計測ポ
イント毎に撮像器の画面上における基準ブロックの光切
断画像の移動量を計測し、撮像器と投光器との相対位置
関係から幾何学的に求められる画面上の座標値と光切断
面上の座標値との対応関係に基いて光切断画像の画面上
の移動量に対応する基準ブロックの光切断面上の移動量
を割出し、この移動量と基準ブロックの実際の移動量と
のずれ量を誤差として計測する。この誤差には、撮像器
の画像歪曲による誤差や、ピントずれによる誤差や、投
光器と撮像器との相対位置関係のずれによる誤差などの
光学式測定装置の持つ全ての誤差が含まれ、この誤差か
ら求められる補正式を用いてワーク計測時の測定値を補
正することにより、全ての誤差を一括して補正してワー
クの計測を正確に行い得られる。
[Operation] The reference block is moved on the light cutting plane, the amount of movement of the light cutting image of the reference block on the screen of the image pickup device is measured for each measurement point, and the geometrical position is determined based on the relative positional relationship between the image pickup device and the projector. Indexing the movement amount on the light cutting surface of the reference block corresponding to the movement amount on the screen of the light cutting image based on the correspondence between the coordinate value on the screen and the coordinate value on the light cutting surface, The deviation amount between this movement amount and the actual movement amount of the reference block is measured as an error. This error includes all the errors that the optical measuring device has, such as the error due to the image distortion of the image pickup device, the error due to the focus shift, and the error due to the shift of the relative positional relationship between the projector and the image pickup device. By correcting the measurement value at the time of measuring the work using the correction formula obtained from, all the errors can be corrected collectively and the work can be accurately measured.

【0006】[0006]

【実施例】図示の実施例は、図1に示す自動車車体のル
ーフサイドレールから成るワークAの光切断画像に基い
てワークAの位置を計測し、車体の組立精度を判定する
光学式測定装置の誤正補正に本発明を適用したもので、
該測定装置は、図2に示す如く、ワークAに向けて垂直
のスリット光を照射するレーザ等から成る投光器1と、
ワークAの表面上のスリット光の像たるワークAの光切
断像S′を撮像するCCDカメラから成る撮像器2と
を、スリット光の光軸と撮像器2の光軸とが所要の角度
θで斜交するような位置関係で、共通のベースプレート
3に取付けて成るものとした。図中4は画像処理を行う
電子制御回路である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The illustrated embodiment is an optical measuring device for measuring the position of the work A based on a light section image of the work A formed of the roof side rails of the vehicle body shown in FIG. The present invention is applied to the correction of
As shown in FIG. 2, the measuring device includes a projector 1 including a laser or the like for irradiating a work A with vertical slit light,
The image pickup device 2 formed of a CCD camera for picking up the light section image S ′ of the work A, which is an image of the slit light on the surface of the work A, and the optical axis of the slit light and the optical axis of the image pickup device 2 have a required angle θ. The base plate 3 is attached to the common base plate 3 in such a positional relationship as to be obliquely crossed. Reference numeral 4 in the figure is an electronic control circuit for performing image processing.

【0007】撮像器2の画面Wには、図3に示すよう
に、画面Wの横方向と縦方向の座標軸を夫々X軸、Y軸
として、X軸方向の極大部を有し、この極大部に対しY
軸方向上側が曲線部分、下側が直線部分となった光切断
画像Sが結像される。この画像Sは、極大部が丸くなっ
ていて位置の判定基準に適した明瞭な角部が無いため、
曲線部分の線S1と直線部分の線S2との交点Qの画面W
上のX、Y座標値を、曲線S1の方程式と直線S2の方程
式とから算出し、この交点Qを基準点としてワークAの
位置を計測するようにした。
As shown in FIG. 3, the screen W of the image pickup device 2 has a maximum part in the X-axis direction with the horizontal and vertical coordinate axes of the screen W as the X-axis and the Y-axis, respectively. Y for department
A light-section image S having a curved portion on the upper side in the axial direction and a linear portion on the lower side is formed. In this image S, since the maximum portion is rounded and there is no clear corner portion suitable for the position determination reference,
Screen W of the intersection Q of the curved line S 1 and the straight line S 2
The above X and Y coordinate values are calculated from the equation of the curve S 1 and the equation of the straight line S 2 , and the position of the work A is measured with the intersection Q as a reference point.

【0008】ここで、曲線S1の方程式は、近似的に曲
線部分の特定領域の3点を通る円の方程式として表わす
ことができ、そのため光切断画像Sの上半部に第1乃至
第3の3つのウインドW1、W2、W3を設定して、こ
れら各ウインドにおける光切断画像Sの重心G1、G
2、G3のX、Y座標値を計測し、これら3つの重心を
通る円の方程式を求めてこれを曲線S1の方程式とし
た。ところで、光切断画像Sはある幅を持っており、こ
の画像Sの境界線近傍に位置する画素の受光量が所定の
閾値を上回るか否かの微妙な差で重心の座標値が変化し
てしまい、同一のワークを同一の位置に置いた場合でも
重心の座標値は多少とも変化する。この場合、中間の第
2ウインドW2の画像重心G2の座標値の変化に対する
円の半径の変化率と、他の重心G1、G3の座標値の変
化に対する円の半径の変化率とを比べると、前者の変化
率の方が大きく、重心G2の座標値の誤差が曲線S1
方程式の算出精度に大きく影響する。一方、ワークAの
曲率は個々の製品で左程ばらつくことはなく、この曲率
半径を予め計測しておけば、曲線S1上の2点の座標値
と曲率半径とから曲線S1の方程式を算出できる。そし
て、曲線方程式を微小領域からサンプリングして算出す
る場合、上記G2の座標値の誤差による影響を排除して
方程式の算出精度を向上させるには、2つの点と曲率半
径とから曲線S1の方程式を算出する方が有利であり、
そこで本実施例では、図4に示すように、光切断画像S
の上半部に第1と第3の2つのウインドW1、W3を設
定して、該各ウインドの画像重心G1、G3の座標値を
計測し、これと曲率半径Rとから曲線S1の方程式を算
出するようにした。尚、曲率半径Rの計測に際しては、
ワークAと同形状のマスタワークを所定の基準位置に置
いてその光切断画像を撮像し、画面Wに上記第1乃至第
3の3つのウインドW1、W2、W3を設定して、これ
らウインドの画像重心からマスタワークの光切断画像の
曲線の半径を求め、これを数回繰返して求められた半径
の平均値を曲率半径Rとし、この値を電子制御回路4に
記憶させておく。尚、前記マスタワークは、生産ライン
でのオンライン計測をする場合、該ラインに流れる車体
でもよく、その場合、測定を開始する際の最初の1台も
しくは数台をマスタワークとする。ワークAの光切断画
像Sの直線S2の方程式は、画像Sの下半部に第4と第
5の2つのウインドW4、W5を設定し、該各ウインド
の画像重心G4、G5の座標値を計測することで算出す
る。
Here, the equation of the curve S 1 can be approximately expressed as an equation of a circle passing through the three points in the specific region of the curved portion, and therefore the first to third portions of the upper half of the light section image S are represented. 3 windows W1, W2, W3 are set, and the centers of gravity G1, G of the light section images S in these windows are set.
2. The X and Y coordinate values of G3 were measured, the equation of a circle passing through these three centers of gravity was determined, and this was used as the equation of the curve S 1 . By the way, the light section image S has a certain width, and the coordinate value of the center of gravity changes due to a subtle difference in whether or not the amount of light received by the pixels located near the boundary line of the image S exceeds a predetermined threshold value. Even if the same work is placed at the same position, the coordinate value of the center of gravity changes slightly. In this case, comparing the change rate of the radius of the circle with respect to the change of the coordinate value of the image center of gravity G2 of the intermediate second window W2 and the change rate of the radius of the circle with respect to the change of the coordinate values of the other center of gravity G1 and G3, The former rate of change is larger, and the error in the coordinate value of the center of gravity G2 greatly affects the calculation accuracy of the equation of the curve S 1 . On the other hand, the curvature of the work A does not fluctuate to the left for individual products. If this curvature radius is measured in advance, the equation of the curve S 1 can be calculated from the coordinate values of the two points on the curve S 1 and the curvature radius. Can be calculated. When the curve equation is sampled and calculated from a minute area, in order to eliminate the influence of the error of the coordinate value of G2 and improve the equation calculation accuracy, the curve S 1 is calculated from two points and the radius of curvature. It is advantageous to calculate the equation,
Therefore, in this embodiment, as shown in FIG.
The first and third windows W1 and W3 are set in the upper half part of each of the windows, the coordinate values of the image centroids G1 and G3 of the respective windows are measured, and from this and the radius of curvature R, the equation of the curve S 1 is obtained. Was calculated. When measuring the radius of curvature R,
A master work having the same shape as the work A is placed at a predetermined reference position, a light-section image of the master work is taken, and the three first to third windows W1, W2, and W3 are set on the screen W, and these windows are set. The radius of the curve of the light-cut image of the masterwork is obtained from the image center of gravity, and the average value of the radii obtained by repeating this several times is set as the radius of curvature R, and this value is stored in the electronic control circuit 4. In the case of performing online measurement on a production line, the master work may be a vehicle body flowing through the line. In that case, the first one or several machines at the time of starting the measurement are master works. The equation of the straight line S 2 of the light-cut image S of the work A is set with the fourth and fifth windows W4 and W5 in the lower half of the image S, and the coordinate values of the image centroids G4 and G5 of the respective windows are set. It is calculated by measuring.

【0009】ところで、ワークAの撮像器2との相対位
置関係が変化すると、画面W上の光切断画像Sの位置も
変化し、上記ウインドW1〜W5を画面Wの定位置に設
定したのでは、ウインドが光切断画像Sから外れたり、
又曲線部分に設定するウインドW1、W3が曲率半径の
小さな画像部分にかかって曲線方程式を正確に算出でき
なくなることがある。この場合、図4に示すように、光
切断画像SのX軸方向の極大部の最左端の点Pを基準に
してウインドW1〜W5の位置を設定することも考えら
れるが、光切断画像Sの極大部が角付けされていない限
り点PのY軸座標値を一義的に決定することは困難であ
り、ウインドW1〜W5の光切断画像Sに対する相対的
位置がY軸方向にばらついてしまう。そこで、本実施例
では、点PのX座標値を基準にして右方に所定長さ離間
した位置に、図5(a)に示す如く、Y軸方向に長手の
第6と第7の上下1対のウインドW6、W7を設定し、
該各ウインドの画像重心G6、G7の座標値を計測し
て、両重心G6、G7と所定の相関関係を持った点、例
えば両重心G6、G7の中点となる基準点Mの座標値を
求め、この点Mを基準にして図5(b)に示すように前
記各ウインドW1〜W5の位置を決定するようにした。
By the way, when the relative positional relationship between the work A and the image pickup device 2 changes, the position of the light section image S on the screen W also changes, and the windows W1 to W5 may be set to the fixed positions of the screen W. , The window is out of the light section image S,
Further, the windows W1 and W3 set in the curved portion may be applied to the image portion having a small radius of curvature, and the curve equation may not be accurately calculated. In this case, as shown in FIG. 4, it is conceivable that the positions of the windows W1 to W5 are set with reference to the leftmost end point P of the maximum portion in the X-axis direction of the light section image S, but the light section image S It is difficult to unambiguously determine the Y-axis coordinate value of the point P unless the maximum part of the is not squared, and the relative positions of the windows W1 to W5 with respect to the light section image S vary in the Y-axis direction. . In view of this, in the present embodiment, as shown in FIG. 5A, the sixth and seventh upper and lower parts that are long in the Y-axis direction are provided at positions separated by a predetermined length to the right with respect to the X coordinate value of the point P. Set a pair of windows W6 and W7,
The coordinate values of the image centroids G6 and G7 of the respective windows are measured, and the coordinate value of a point having a predetermined correlation with the centroids G6 and G7, for example, the coordinate value of the reference point M which is the midpoint of the centroids G6 and G7, is calculated. Based on this point M, the positions of the windows W1 to W5 are determined as shown in FIG. 5 (b).

【0010】これによれば、光切断画像Sの画面W上の
位置がずれても、この画像Sに対し一定の相関関係を保
って正確にウインドW1〜W5を設定でき、かくて曲線
1と直線S2との方程式を正しく算出して、正確に交点
Qの座標値を求めることができる。尚、図5(b)にお
いて、dxn、dynは各ウインドWnの左上コーナの
基準点Mに対するX軸方向とY軸方向の位置、Wxn、
Wynは各ウインドWnのX軸方向とY軸方向の長さで
あり、電子制御回路4に記憶されている。
According to this, even if the position of the light cut image S on the screen W is displaced, the windows W1 to W5 can be accurately set while maintaining a constant correlation with the image S, and thus the curve S 1 And the straight line S 2 are correctly calculated, and the coordinate value of the intersection Q can be accurately obtained. In FIG. 5B, dxn and dyn are the positions in the X-axis direction and the Y-axis direction with respect to the reference point M of the upper left corner of each window Wn, Wxn,
Wyn is the length of each window Wn in the X-axis direction and the Y-axis direction, and is stored in the electronic control circuit 4.

【0011】又、ワークAがスリット光の光軸方向に変
位すると、光切断画像Sが画面W上でX軸方向に変位す
ると共に、画像Sの拡大率が変化する。これを図6を参
照して説明する。図6は、撮像器2の光軸をZ軸とし、
Z軸上のC点に撮像器2を置いて、C点から所定の基準
距離Lだけ離れた撮像器2の基準撮像面W′上にX軸と
Y軸とを取ると共に、スリット光の光軸を含むスリット
光に平行な光切断面T上に光軸方向のU軸とこれに直交
するV軸とを取ってV軸をY軸に合致させ、且つX−Y
座標の原点OをU軸が通るように座標系を設定した状態
を示している。今、撮像面W′からZ軸方向に距離aだ
け離れた位置に存する光切断面T上の長さHの像をC点
を視点として撮像面W′に投射したときの像の長さをh
とすると、拡大率K=h/HはL/(L−a)となる。
ここで、HのU軸座標値をu、hのX軸座標値をx(原
点Oの左側が正、右側が負)とすると、aはucosθ
となり、拡大率Kは、 K=L/(L−ucosθ) ……(1) となる。一方、X−Z座標面におけるC点からHへの視
線とZ軸との成す角度をαとして、tanα=x/Lと
なり、又、HのX軸座標値はusinθであるから、 tanα=usinθ/(L−a)=usinθ/(L−ucosθ) となり、これからxとuとの関係を求めると、 x/L=usinθ/(L−ucosθ) 即ち、 u=Lx/(Lsinθ+xcosθ) ……(2) となり、(2)式を(1)式に代入して整理すると、拡
大率Kは、 K=1+(x/L)cotθ ……(3) となる。従って、ワークAがスリット光の光軸方向に変
位するとき、光切断画像Sが画面W上においてX軸方向
に変位し、この変位の方向はワークAが近付くとき左
方、遠ざかるとき右方となり、且つ画像Sの大きさが
(3)式の拡大率に応じて拡大縮小されることになる。
そのため、画像Sの拡大率に応じて上記ウインドW1〜
W5の位置及び大きさを変更することが望まれる。そこ
で、本実施例では、ワークAを正規の位置にセットした
ときに、光切断画像Sの最左端の点Pの画面W上のX軸
座標値が零になるように光学式測定装置を調節してお
き、画像SがX軸方向に変位したとき、点PのX軸座標
値Pxを(3)式のxとして代入して拡大率Kを求め、
図7に示すように各ウインドWnのY軸座標値を上記d
ynにKを乗算した値とし、更に各ウインドWnの大き
さも拡大率Kに応じて変え、光切断画像Sの所要位置に
夫々ウインドW1〜W5を設定できるようにした。
Further, when the work A is displaced in the optical axis direction of the slit light, the light section image S is displaced in the X axis direction on the screen W and the enlargement ratio of the image S is changed. This will be described with reference to FIG. In FIG. 6, the optical axis of the image pickup device 2 is the Z axis,
The image pickup device 2 is placed at a point C on the Z axis, the X axis and the Y axis are taken on the reference image pickup surface W ′ of the image pickup device 2 which is separated from the point C by a predetermined reference distance L, and the light of slit light is emitted. A U-axis in the optical axis direction and a V-axis orthogonal to the optical-axis are arranged on a light-cutting plane T parallel to the slit light including the axis so that the V-axis coincides with the Y-axis and XY
It shows a state in which the coordinate system is set so that the U axis passes through the origin O of the coordinates. Now, let us say that the image length when an image of length H on the light section plane T, which is located at a distance a in the Z-axis direction from the image plane W ′, is projected onto the image plane W ′ with the point C as the viewpoint. h
Then, the enlargement ratio K = h / H is L / (La).
Here, assuming that the U-axis coordinate value of H is u and the X-axis coordinate value of h is x (the left side of the origin O is positive and the right side is negative), a is ucos θ.
Therefore, the enlargement ratio K is K = L / (L-ucos θ) (1) On the other hand, tan α = x / L, where α is the angle between the Z-axis and the line of sight from point C to H on the X-Z coordinate plane, and the X-axis coordinate value of H is usinθ, so tan α = usinθ / (L−a) = usinθ / (L−ucosθ), from which the relationship between x and u is calculated: x / L = usinθ / (L−ucosθ) That is, u = Lx / (Lsinθ + xcosθ). 2), and by substituting the equation (2) into the equation (1) and rearranging, the enlargement factor K is K = 1 + (x / L) cotθ (3). Therefore, when the work A is displaced in the optical axis direction of the slit light, the light section image S is displaced in the X axis direction on the screen W, and the displacement direction is left when the work A approaches, and right when the work A moves away. Moreover, the size of the image S is enlarged or reduced according to the enlargement ratio of the equation (3).
Therefore, the window W1 to
It is desired to change the position and size of W5. Therefore, in the present embodiment, when the work A is set to the normal position, the optical measuring device is adjusted so that the X-axis coordinate value on the screen W of the point P at the leftmost end of the light section image S becomes zero. Incidentally, when the image S is displaced in the X-axis direction, the X-axis coordinate value Px of the point P is substituted as x in the equation (3) to obtain the enlargement factor K,
As shown in FIG. 7, the Y-axis coordinate value of each window Wn is set to the above d.
The value of yn is multiplied by K, and the size of each window Wn is changed according to the enlargement ratio K so that the windows W1 to W5 can be set at the required positions of the light section image S, respectively.

【0012】又、画像処理による形状の計測では、撮像
器2のレンズ系の歪曲による誤差や、ピントずれによる
誤差や、ベースプレート3の加工誤差及びこれへの投光
器1と撮像器2の取付誤差に起因した投光器1と撮像器
2の相対位置関係の誤差による誤差を生ずることがあ
る。そこで、図8に示す如く、光学式測定装置を定盤5
上に取付けると共に、定盤5上に光切断面上の直交2方
向即ち前記U軸方向とV軸方向とに移動可能なテーブル
6を設けて、該テーブル6上にワークAの形状に似た形
状の基準ブロック7を置き、誤差を予め計測するように
した。これを詳述するに、基準ブロック7をテーブル6
により後記する交点に対応する基準ブロック7の仮想コ
ーナ点が光切断面上に設定した複数の計測ポイントU1
1、…UmVmに各合致するように順に移動し、各ポイ
ントにおいて基準ブロック7に投光器1からスリット光
を照射して該ブロック7上の光切断像S′を撮像器2で
撮像し、撮像器2の画面上の光切断画像から上記と同様
の方法で該画像を構成する2つの線の交点(上記Qに対
応する点)の位置を求め、この交点に対応する光切断面
上の座標値と計測ポイントの座標値とのU軸方向とV軸
方向の誤差Δu、Δvを各計測ポイント毎に計測する。
尚、本実施例では基準ブロック7の基部に上記仮想コー
ナ点に合致するエッジ部7aを形成し、仮想コーナ点が
計測ポイントに合致するように該エッジ部7aを目安に
して基準ブロック7を正確にセッティングし得るように
した。図9は、複数の計測ポイントU11、…UmVmに
おける夫々のΔuを立体的に示した図であり、Δuのデ
ータから重回帰によりΔuを表す補正式Δu=f
1(u、v)を求め、同様にΔvを表す補正式Δy=f2
(u、v)を求め、ワークAの計測で得られた交点Qの
光切断面上の座標値にこれら補正式で求められる補正値
を加減算して、ワークAの位置を判定する座標値とし、
上記種々の原因による誤差を一括して補正して正確な計
測を行い得られるようにした。
Further, in the measurement of the shape by image processing, an error due to the distortion of the lens system of the image pickup device 2, an error due to focus shift, a processing error of the base plate 3 and an attachment error of the projector 1 and the image pickup device 2 to the error. An error may occur due to an error in the relative positional relationship between the projector 1 and the image pickup device 2 caused by the error. Therefore, as shown in FIG.
A table 6 which is mounted on the base 5 and is movable in two orthogonal directions on the light cutting plane, that is, the U-axis direction and the V-axis direction, is provided on the surface plate 5, and the table 6 resembles the shape of the work A. The reference block 7 having a shape was placed, and the error was measured in advance. To explain this in detail, the reference block 7 is set to the table 6
Therefore, the virtual corner points of the reference block 7 corresponding to the intersections to be described later are set to a plurality of measurement points U 1 set on the light cutting plane.
V 1 , ... Umvm are sequentially moved so as to match each other, and at each point, the reference block 7 is irradiated with slit light from the light projector 1 and a light-section image S ′ on the block 7 is picked up by the image pickup device 2 and picked up. From the light section image on the screen of the container 2, the position of the intersection (the point corresponding to the above Q) of the two lines forming the image is obtained by the same method as above, and the coordinates on the light section plane corresponding to this intersection point are obtained. The errors Δu and Δv in the U-axis direction and the V-axis direction between the value and the coordinate value of the measurement point are measured for each measurement point.
In this embodiment, an edge portion 7a that coincides with the virtual corner point is formed at the base of the reference block 7, and the reference block 7 is accurately measured by using the edge portion 7a as a guide so that the virtual corner point coincides with the measurement point. I was able to set to. FIG. 9 is a diagram three-dimensionally showing each Δu at a plurality of measurement points U 1 V 1 , ... UmVm, and a correction formula Δu = f representing Δu by multiple regression from the data of Δu.
1 (u, v) is calculated, and a correction expression Δy = f 2 that similarly expresses Δv
(U, v) is obtained, and the correction value obtained by these correction equations is added to or subtracted from the coordinate value on the optical cutting plane of the intersection Q obtained by the measurement of the work A to obtain the coordinate value for determining the position of the work A. ,
The errors due to the above various causes are collectively corrected so that accurate measurement can be performed.

【0013】以上の処理手順をまとめて表わすと図10
の通りとなる。即ち、先ず誤差計測により補正式f1
2を求め、次にマスタワークを用いて曲率半径Rを求
め、その後に量産車体の計測を行う。この計測に際して
は、図11に示す如く、先ず光切断画像Sの最左端の点
Pの位置を計測し(S1)、次に点Pを基準にして第6
ウインドW6を設定し(S2)、該ウインドW6におけ
る画像重心G6の位置を計測する(S3)。又、点Pを
基準にして第7ウインドW7を設定し(S4)、該ウイ
ンドW7における画像重心G7の位置を計測して(S
5)、両重心G6、G7の位置から基準点Mを決定する
(S6)。次に、基準点Mに基いて第1ウインドW1を
設定して該ウインドW1の画像重心G1の位置を計測し
(S7、S8)、以下同様にして第3乃至第5ウインド
W3、W4、W5を順に設定して各ウインドの画像重心
G3、G4、G5の位置を計測する(S9…S14)。
ここで各ウインドW1〜W5の設定処理手順は図12に
示す通りであり、即ちメモリから各ウインドWnの位置
及び大きさを表すパラメータdxn、dyn、Wxn、
Wynを読出し()、次に点PのX軸座標値Pxに応
じた拡大率Kを求めて()、dynをK・dyn、W
xnとWynを夫々K・Wxn、K・Wynに変更し
()、基準点Mからdxn、dynの位置にWxn、
Wynの大きさのウインドWnを設定する()。図1
1に戻って、各重心G1〜G5の位置を計測した後、G
1とG3と上記曲率半径Rに前記拡大率Kを乗算した半
径とから曲線S1の方程式を算出し(S15)、次にG
4とG5から直線S2の方程式を算出して(S16)、
両方程式から交点Qの位置を求め(S17)、次いで交
点Qの画面Wの座標値を光切断面上の座標値に変換して
(S18)、この座標値に補正式f1、f2から求められ
る補正値を加減算して(S19)、このように補正され
た座標値をワークAの位置データとして車体の組立精度
を判定する上位コンピュータに送信し(S20)、1回
の計測処理を完了する。
A summary of the above processing procedure is shown in FIG.
It becomes the street. That is, first, the correction formula f 1 ,
f 2 is obtained, then the radius of curvature R is obtained using the master work, and then the mass production vehicle body is measured. In this measurement, as shown in FIG. 11, first, the position of the leftmost point P of the light section image S is measured (S1), and then the sixth point is set with reference to the point P.
The window W6 is set (S2), and the position of the image center of gravity G6 on the window W6 is measured (S3). Further, the seventh window W7 is set based on the point P (S4), and the position of the image center of gravity G7 on the window W7 is measured (S4).
5) Then, the reference point M is determined from the positions of the center of gravity G6 and G7 (S6). Next, the first window W1 is set on the basis of the reference point M, the position of the image center of gravity G1 of the window W1 is measured (S7, S8), and the third to fifth windows W3, W4, W5 are similarly processed. Are sequentially set and the positions of the image centroids G3, G4, and G5 of each window are measured (S9 ... S14).
Here, the setting processing procedure of each window W1 to W5 is as shown in FIG. 12, that is, the parameters dxn, dyn, Wxn, indicating the position and size of each window Wn from the memory.
Wyn is read (), then the enlargement factor K corresponding to the X-axis coordinate value Px of the point P is obtained (), and dyn is K · dyn, W
xn and Wyn are changed to K · Wxn and K · Wyn, respectively (), and Wxn, dxn, dyn at the position from the reference point M to dxn, dyn
A window Wn having a size of Wyn is set (). FIG.
After returning to 1 and measuring the positions of the respective centers of gravity G1 to G5,
The equation of the curve S 1 is calculated from 1 and G3 and the radius obtained by multiplying the radius of curvature R by the enlargement factor K (S15), and then G
Calculate the equation of the straight line S 2 from 4 and G5 (S16),
The position of the intersection Q is obtained from both equations (S17), then the coordinate value of the screen W of the intersection Q is converted into the coordinate value on the light cutting plane (S18), and this coordinate value is calculated from the correction formulas f 1 and f 2. The calculated correction values are added and subtracted (S19), and the coordinate values thus corrected are transmitted as position data of the work A to a host computer that determines the assembly accuracy of the vehicle body (S20), and one measurement process is completed. To do.

【0014】[0014]

【発明の効果】以上の説明から明らかなように、本発明
によれば、撮像器の画像歪曲による誤差や、ピントずれ
による誤差や、投光器と撮像器との相対位置関係のずれ
による誤差などの光学式測定装置の持つ全ての誤差を一
括して補正でき、補正のための演算処理が容易になり、
且つ誤差の計測をワーク形状に近い形状の基準ブロック
を用いて行うため、ワーク計測時の光切断画像の画像処
理と同様の画像処理で誤差を計測でき、ワーク計測時の
誤差を正確に補正できる効果を有する。
As is apparent from the above description, according to the present invention, the error due to the image distortion of the image pickup device, the error due to the focus shift, the error due to the shift of the relative positional relationship between the projector and the image pickup device, etc. All the errors that the optical measuring device has can be corrected at once, and the calculation process for correction becomes easy,
Moreover, since the error measurement is performed using the reference block having a shape close to the shape of the work, the error can be measured by the same image processing as the image processing of the light section image at the time of measuring the work, and the error at the time of measuring the work can be accurately corrected. Have an effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】 ワークの斜視図FIG. 1 is a perspective view of a work.

【図2】 本発明を適用する光学式測定装置の一例の
平面図
FIG. 2 is a plan view of an example of an optical measuring device to which the present invention is applied.

【図3】 光切断画像の画像処理方法を示す図FIG. 3 is a diagram showing an image processing method of a light section image.

【図4】 光切断画像の他の画像処理方法を示す図FIG. 4 is a diagram showing another image processing method of a light section image.

【図5】 (a)は画像処理用のウインドを設定する
基準点の求め方を示す図、(b)は基準点を基準にした
ウインドの設定パラメータを示す図
5A is a diagram showing how to obtain a reference point for setting a window for image processing, and FIG. 5B is a diagram showing window setting parameters based on the reference point.

【図6】 ワークの光軸方向の変位による画像変化の
原理を示す図
FIG. 6 is a diagram showing the principle of image change due to displacement of the workpiece in the optical axis direction.

【図7】 画像変化に合わせたウインドの設定パラメ
ータの変更を示す図
FIG. 7 is a diagram showing changes in window setting parameters according to image changes.

【図8】 本発明による誤差計測に際しての装置レイ
アウトを示す斜視図
FIG. 8 is a perspective view showing a device layout in error measurement according to the present invention.

【図9】 光切断面に合致する座標面上に計測された
誤差を立体的に表わした図
FIG. 9 is a three-dimensional view of an error measured on a coordinate plane that matches a light-section plane.

【図10】 全体的な計測手順を示すフローチャートFIG. 10 is a flowchart showing the overall measurement procedure.

【図11】 ワーク計測時の処理手順を示すフローチャ
ート
FIG. 11 is a flowchart showing a processing procedure when measuring a workpiece.

【図12】 ウインドの設定手順を示すフローチャートFIG. 12 is a flowchart showing a window setting procedure.

【符号の説明】[Explanation of symbols]

1 投光器 2 撮像器 7 基準ブ
ロック A ワーク W 画面 S 光切断
画像
1 Projector 2 Imager 7 Reference block A Work W screen S Light section image

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−108203(JP,A) 特開 昭63−131007(JP,A) 特開 昭63−140905(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-63-108203 (JP, A) JP-A-63-131007 (JP, A) JP-A-63-140905 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ワークにスリット光を照射する投光器
と、ワークに照射されたスリット光が描く光切断像を撮
像する撮像器とを備える光学式測定装置を用い、撮像器
の画面上の光切断画像からワークの形状や位置を測定す
る際の誤差の補正方法であって、ワークと同形又は似た
形状の基準ブロックを光学式測定装置に対向配置して、
該基準ブロックをスリット光の光軸を含むスリット光に
平行な光切断面上の複数の計測ポイントに移動しつつ該
基準ブロックの光切断像を撮像し、各計測ポイント毎に
基準ブロックの光切断面上の移動量と基準ブロックの光
切断画像の画面上の移動量との所定の対応関係からのず
れ量を誤差として計測し、計測された誤差から誤差の補
正式を求めて、ワークの計測に際し光切断画像から求め
られる測定値を補正式によって補正することを特徴とす
る光学式測定装置における誤差の補正方法。
1. A light cutting device on a screen of an image pickup device using an optical measuring device comprising a light projector for irradiating a work with slit light and an image pickup device for picking up a light cutting image drawn by the slit light irradiating the work. A method of correcting an error when measuring the shape or position of a work from an image, in which a reference block having the same shape or a similar shape as the work is arranged facing the optical measuring device,
While moving the reference block to a plurality of measurement points on a light cutting plane parallel to the slit light including the optical axis of the slit light, a light cut image of the reference block is captured, and the light cut of the reference block is performed for each measurement point. The amount of deviation from the predetermined correspondence between the amount of movement on the surface and the amount of movement of the optical cut image of the reference block on the screen is measured as an error, and the correction formula for the error is calculated from the measured error, and the workpiece is measured. A method for correcting an error in an optical measuring device, characterized in that a measurement value obtained from a light-section image is corrected by a correction equation.
JP3229217A 1991-09-09 1991-09-09 Correction method of error in optical measuring device Expired - Fee Related JP2552966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3229217A JP2552966B2 (en) 1991-09-09 1991-09-09 Correction method of error in optical measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3229217A JP2552966B2 (en) 1991-09-09 1991-09-09 Correction method of error in optical measuring device

Publications (2)

Publication Number Publication Date
JPH0566113A JPH0566113A (en) 1993-03-19
JP2552966B2 true JP2552966B2 (en) 1996-11-13

Family

ID=16888664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3229217A Expired - Fee Related JP2552966B2 (en) 1991-09-09 1991-09-09 Correction method of error in optical measuring device

Country Status (1)

Country Link
JP (1) JP2552966B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3055698B1 (en) * 2016-09-08 2018-08-17 Safran Aircraft Engines METHOD FOR CONTROLLING THE CONFORMITY OF THE PROFILE OF A CURVED SURFACE OF AN ELEMENT OF A TURBOMACHINE
CN112536644B (en) * 2020-11-11 2022-04-12 湖北文理学院 Method for establishing motion error model of machine tool machining test piece

Also Published As

Publication number Publication date
JPH0566113A (en) 1993-03-19

Similar Documents

Publication Publication Date Title
US7659921B2 (en) Distance measurement apparatus, distance measurement method, and distance measurement program
EP1258700A2 (en) A method of adjusting the relative attitude of a work in a surface texture measuring instrument
US9418435B2 (en) Three-dimensional measurement method
JP3988588B2 (en) 3D measuring device
JP2509357B2 (en) Work position detector
JP2005017286A (en) Method and system for camera calibration
US5311289A (en) Picture processing method in optical measuring apparatus
KR101078651B1 (en) System and method for measuring a curved surface
US20200242806A1 (en) Stereo camera calibration method and image processing device for stereo camera
JP6838225B2 (en) Stereo camera
JP2552966B2 (en) Correction method of error in optical measuring device
JP2523420B2 (en) Image processing method in optical measuring device
EP0459106B1 (en) Coordinate system correcting apparatus for machine tool
JP2520804B2 (en) Image processing method in optical measuring device
JP2559646B2 (en) Image processing method in optical measuring device
JP2624557B2 (en) Angle measuring device for bending machine
JPH03259705A (en) Angle measuring instrument for bending machine
JP2602292B2 (en) Welding system and welding method
JPH05337785A (en) Grinding path correcting device of grinder robot
JP2691681B2 (en) Image processing method in optical measuring device
JPH07218227A (en) Method and apparatus for measuring sectional shape
JP2691683B2 (en) Image processing method in optical measuring device
JPH0996506A (en) Adjusting method for position by three-dimensional visual sensor and recognition apparatus for three-dimensional image
JP2724961B2 (en) Image processing method in optical measuring device
CN108907897A (en) Milling glue film carve shape in machine visible detection method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees