JP2552143B2 - EDM control device - Google Patents

EDM control device

Info

Publication number
JP2552143B2
JP2552143B2 JP62183676A JP18367687A JP2552143B2 JP 2552143 B2 JP2552143 B2 JP 2552143B2 JP 62183676 A JP62183676 A JP 62183676A JP 18367687 A JP18367687 A JP 18367687A JP 2552143 B2 JP2552143 B2 JP 2552143B2
Authority
JP
Japan
Prior art keywords
machining
discharge
value
electric discharge
disturbance model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62183676A
Other languages
Japanese (ja)
Other versions
JPS6427813A (en
Inventor
祥人 今井
温 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62183676A priority Critical patent/JP2552143B2/en
Publication of JPS6427813A publication Critical patent/JPS6427813A/en
Application granted granted Critical
Publication of JP2552143B2 publication Critical patent/JP2552143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、放電加工において常に放電加工状態を適切
に保ち、放電加工能率の向上を図るための放電加工制御
装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to an electric discharge machining control device for always maintaining an appropriate electric discharge machining state in electric discharge machining to improve electric discharge machining efficiency.

[従来の技術] 第4図は、例えば機械技術(1980年6月号、第28巻第
7号、第25〜27頁、日刊工業新聞社発行)に示された従
来の放電加工制御装置のブロツク図である。図におい
て、1は加工電極、2は被加工物、3は加工槽、4は加
工液、5は加工間隙の制御のため加工電極1を上下動せ
しめる電極駆動装置、6は電極駆動装置5に対し制御信
号を発する電極制御器、7は放電加工状態を最適に維持
するためあらかじめ設定される基準値の設定器、8は放
電加工状態を評価できる状態量を検出するための放電状
態検出器、9はフイルタ、10は加工電源である。
[Prior Art] FIG. 4 shows a conventional electric discharge machining control apparatus shown in, for example, mechanical technology (June 1980, Vol. 28, No. 7, pages 25 to 27, published by Nikkan Kogyo Shimbun). It is a block diagram. In the figure, 1 is a machining electrode, 2 is a workpiece, 3 is a machining tank, 4 is a machining liquid, 5 is an electrode driving device for vertically moving the machining electrode 1 for controlling a machining gap, and 6 is an electrode driving device 5. An electrode controller that issues a control signal, 7 is a setter for a reference value that is preset in order to optimally maintain the electric discharge machining state, 8 is an electric discharge state detector for detecting a state quantity that can evaluate the electric discharge machining state, Reference numeral 9 is a filter, and 10 is a processing power source.

次に動作について説明する。 Next, the operation will be described.

安定した放電加工を実現するには、加工電極1の被加
工物2の間隙を調整することが常に放電状態を最適に保
つうえで必要である。そこで、第4図においては、放電
加工状態を評価できる状態量を放電状態検出器8により
極間電圧として検出し、該検出値をフイルタ9に通して
平均化して得られた極間電圧値と、指令値設定器7であ
らかじめ設定された基準値とを比較し、その偏差が零と
なるように電極制御器6を介して電極駆動装置5により
加工電極1を下方向または上方向に移動させ、加工電極
1の位置制御を行う。
In order to realize stable electric discharge machining, it is necessary to always adjust the gap between the work piece 2 and the machining electrode 1 in order to keep the electric discharge state optimum. Therefore, in FIG. 4, the state quantity capable of evaluating the electric discharge machining state is detected by the electric discharge state detector 8 as the inter-electrode voltage, and the detected value is passed through the filter 9 and averaged to obtain the inter-electrode voltage value. , The reference value preset by the command value setter 7 is compared, and the machining electrode 1 is moved downward or upward by the electrode driving device 5 via the electrode controller 6 so that the deviation becomes zero. The position of the machining electrode 1 is controlled.

このとき観測される典型的な極間電圧波形を第5図に
示すが、加工間隙に電圧を印加してから放電を開始する
までの時間td,すなわち無負荷時間11は加工間隙に浮遊
する加工くず量や加工面に生じる放電痕の微小な凹凸の
影響を受け不規則に変動する。
Fig. 5 shows a typical inter-electrode voltage waveform observed at this time. The time td from the application of voltage to the machining gap until the start of discharge, that is, the no-load time 11, is the machining that floats in the machining gap. It fluctuates irregularly under the influence of the amount of waste and minute unevenness of discharge marks generated on the machined surface.

第3図は一定時間内に観測される無負荷時間の確率密
度関数を示すものであり、図中、12は上記の基準値を大
きく設定した場合、13は反対に基準値を小さく設定した
場合を示すものである。これらの確率密度関数12,13の
平均値12a,13aを基準値により制御され、またそれぞれ
の分散は前述の不規則な変動によるものである。したが
つて、放電加工状態を最適に保つための従来の制御技術
は、無負荷時間の平均値を最適に制御することであると
考えられる。
Fig. 3 shows the probability density function of no-load time observed within a certain period of time. In the figure, 12 is when the above reference value is set large and 13 is when the reference value is set small. Is shown. The mean values 12a and 13a of these probability density functions 12 and 13 are controlled by the reference value, and the respective variances are due to the aforementioned irregular fluctuation. Therefore, it is considered that the conventional control technique for keeping the electric discharge machining state optimal is to optimally control the average value of the no-load time.

なお、ここでは、加工時に観測される無負荷時間につ
いて述べたが、放電加工状態の評価値としてはその他に
加工間隔の平均電圧すなわち平均極間電圧、放電開始直
後の加工間隙のインピーダンスがあり、これらについて
も同様である。
In addition, here, the no-load time observed at the time of machining was described, but as the evaluation value of the electric discharge machining state, the average voltage of the machining interval, that is, the average inter-electrode voltage, and the impedance of the machining gap immediately after the start of the discharge are included. The same applies to these.

[発明が解決しようとする問題点] 従来の放電加工制御装置は、以上のように構成されて
いるので、例えば個々の放電の無負荷時間が不規則に変
動する限り、その変動幅、すなわち分散値を考慮し、短
絡放電の発生頻度が増大しない範囲において基準値を設
定しなければならず、その結果、無負荷時間、言い換え
れば加工が行われない時間が大きくなり、十分な加工能
率を得るには問題があつた。
[Problems to be Solved by the Invention] Since the conventional electric discharge machining control apparatus is configured as described above, as long as the no-load time of each electric discharge fluctuates irregularly, for example, its fluctuation range, that is, dispersion. Considering the value, the reference value must be set within the range where the frequency of short-circuit discharge does not increase, and as a result, the no-load time, in other words, the time during which machining is not performed, increases, and sufficient machining efficiency is obtained. Had a problem.

本発明は、上記の問題点を解消するためになされたも
ので、加工くず量や放電痕に起因する不規則な外乱が存
在する放電加工において、放電加工状態を評価できる状
態量の検出値の分散値を小さく制御することにより、従
来と比較してより小さい基準値を設定可能とし、加工能
率の向上を図る放電加工制御装置を得ることを目的とす
る。
The present invention has been made in order to solve the above problems, in the electric discharge machining in which there is an irregular disturbance due to the amount of machining scraps and electric discharge marks, of the detected value of the state quantity that can evaluate the electric discharge machining state. It is an object of the present invention to obtain an electric discharge machining control device capable of setting a smaller reference value as compared with the related art by controlling the dispersion value to be small and improving machining efficiency.

[問題点を解決するための手段] 本発明に係る放電加工制御装置は、従来の場合と同様
に放電加工状態が評価できる状態量を放電状態検出器に
より検出するが、該検出値の平均値を制御するのみでな
く、その検出値に含まれる不規則な変動成分を加工外乱
モデルの出力時系列と見なし、さらに該加工外乱モデル
を加工外乱モデル推定器により推定し、該推定結果をも
とに前記検出値の分散制御器を構成することにより前記
検出値の分散値が小さくなるように可変加工電源を制御
するようにしたものである。すなわち、本発明の放電加
工制御装置は、放電状態が評価できる以下の〜のい
ずれか1つの状態量を検出する放電状態検出器と、該放
電状態検出器の検出値に含まれる不規則な変電成分を加
工外乱モデルの出力時系列と見なすときの該加工外乱モ
デルを推定する加工外乱モデル推定器と、該推定器の推
定結果をもとに前記検出値を分散値を制御するために構
成された分割値制御器と、該分散値制御器により制御さ
れる可変加工電源とを備え、前記分散値制御器が、加工
用主電源に同期して重畳する重畳電圧値または重畳電圧
のスロープを可変にするよう構成されていることを特徴
とするものである。
[Means for Solving Problems] The electric discharge machining control device according to the present invention detects the state quantity by which the electric discharge machining state can be evaluated by the electric discharge state detector as in the conventional case. In addition to controlling, the irregular fluctuation component included in the detected value is regarded as the output time series of the machining disturbance model, the machining disturbance model is further estimated by the machining disturbance model estimator, and the estimation result is used as the basis. In addition, the variable processing power source is controlled so that the dispersion value of the detection value becomes small by configuring the dispersion controller of the detection value. That is, the electric discharge machining control device of the present invention includes a discharge state detector that detects any one of the following state quantities capable of evaluating a discharge state, and an irregular electric transformation included in a detection value of the discharge state detector. A machining disturbance model estimator that estimates the machining disturbance model when the component is regarded as the output time series of the machining disturbance model, and is configured to control the variance of the detected value based on the estimation result of the estimator. And a variable machining power source controlled by the variance value controller, wherein the variance value controller varies the superimposed voltage value or the slope of the superimposed voltage that is superimposed in synchronization with the main power source for machining. It is characterized in that it is configured to.

放電波形の無負荷時間 放電間隙の平均電圧すなわち平均極間電圧 放電開始直後の加工間隙のインピーダンス ここで、導入した加工外乱モデルは、一般に知られて
いる形成フイルタに等価なものであり、該モデルの入力
に白色ノイズを仮定し、上述の検出値に含まれる不規則
な変動成分と同じ動特性を持つ出力時系列を作り出すも
のである。
No-load time of discharge waveform Average voltage of discharge gap, that is, average gap voltage Impedance of machining gap immediately after the start of discharge Here, the introduced machining disturbance model is equivalent to the generally known forming filter. It is assumed that white noise is assumed to be the input of the above, and an output time series having the same dynamic characteristic as the irregular fluctuation component included in the above-mentioned detected value is created.

[作 用] 本発明による放電加工制御装置では、加工外乱モデル
推定器によつて放電状態検出器の検出値に含まれる不規
則な変動成分の動特性を推定し、該推定結果に基づいて
分散値制御器を構成したので、該分散値制御器が上述の
変動成分を補償するように可変加工電源に指令を発する
ため、該検出値の分散値を小さく制御することができ
る。
[Operation] In the electric discharge machining control device according to the present invention, the machining disturbance model estimator estimates the dynamic characteristics of the irregular fluctuation component included in the detection value of the electric discharge state detector, and the variance is estimated based on the estimation result. Since the value controller is configured, the dispersion value controller issues a command to the variable processing power source so as to compensate the above-mentioned fluctuation component, so that the dispersion value of the detected value can be controlled to be small.

[実施例] 以下、本発明の一実施例を図により説明する。Embodiment An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例のブロツク図であり、図に
おいて、1〜9は従来例を示した第4図のものと同じも
のである。15は放電状態検出器8の検出値をもとに加工
外乱モデルを推定する加工外乱モデル推定器、16は加工
外乱モデル推定器15による推定結果をもとに構成される
分散値制御器、17は分散値制御器16の指令に従つて放電
状態検出器8に検出値の分散値を制御するための可変加
工電源である。
FIG. 1 is a block diagram of an embodiment of the present invention. In the figure, 1 to 9 are the same as those of FIG. 4 showing a conventional example. 15 is a machining disturbance model estimator that estimates the machining disturbance model based on the detection value of the discharge state detector 8, 16 is a variance value controller configured based on the estimation result by the machining disturbance model estimator 15, 17 Is a variable processing power source for controlling the dispersion value of the detection value in the discharge state detector 8 according to the instruction of the dispersion value controller 16.

前述したように、一定時間内に観測される無負荷時間
は、加工くず量や放電痕の影響により不規則に変動し、
第3図のような特質を有する。そこで、第2図に示す放
電加工プロセスモデル18を考える。同図において、Gv
(Z)は加工外乱モデルの動特性、Gs(Z)は可変加工
電源による無負荷時間制御系の動特性、r(t)は無負
荷時間の目標指令値、td(t)は可変加工電源17によ
り制御される確定値である。したがつて、サンプル時刻
tにおいて観測される無負荷時間td(t)は、上述した
不規則な外乱成分w(t)と確定成分td(t)は代数
和である。
As mentioned above, the no-load time observed within a certain period of time fluctuates irregularly due to the influence of the amount of scraps and electrical discharge marks,
It has the characteristics shown in FIG. Therefore, consider the electrical discharge machining process model 18 shown in FIG. In the figure, Gv
(Z) is the dynamic characteristic of the machining disturbance model, Gs (Z) is the dynamic characteristic of the no-load time control system by the variable machining power source, r (t) is the target command value of the no-load time, and td * (t) is the variable machining. It is a definite value controlled by the power supply 17. Therefore, in the no-load time td (t) observed at the sample time t, the irregular disturbance component w (t) and the deterministic component td * (t) described above are algebraic sums.

いま、加工外乱モデルGv(Z)にARモデルを、また入
力に白色ノイズλv(t)を仮定すると、不規則な外乱
成分w(t)は、 w(t)=−a1w(t−1)−a2w(t−2)−… …−anw(t−n)+bov(t) bo=λ あるいは、 w(Z)=Gv(Z)・v(Z) bo=λ と記述できる。
Assuming that the machining disturbance model Gv (Z) is an AR model and the input is white noise λv (t), the irregular disturbance component w (t) is w (t) = − a 1 w (t− 1) -a 2 w (t- 2) - ... ... -a n w (t-n) + b o v (t) b o = λ or a, w (Z) = Gv ( Z) · v (Z) It can be described as b o = λ.

ただし、ここでは簡単のためにサンプル周期を単位時
間とし、w(Z),v(Z)はそれぞれw(t),v(t)
をZ変換したものである。
However, here, for the sake of simplicity, the sampling period is set as a unit time, and w (Z) and v (Z) are w (t) and v (t), respectively.
Is Z-transformed.

加工外乱モデル推定器15では、放電状態検出器8から
得られるN個の検出値{td(t)|t=1,2,…N}を用
い、前述のARモデルのパラメータθ=[a1,a2,…an,
boを最小二乗推定、あるいは最丈推定により決定す
る。
The machining disturbance model estimator 15 uses the N detection values {td (t) | t = 1,2, ... N} obtained from the discharge state detector 8 and uses the above-mentioned AR model parameter θ = [a 1 , a 2 , ... a n ,
b o ] T is determined by least-squares estimation or maximum-length estimation.

また、該ARモデルの次数nは、次式で定義される情報
量基準AICが最小となるように決定する。
Further, the order n of the AR model is determined so that the information amount reference AIC defined by the following equation is minimized.

AIC=N・logeσn 2+2・n 上式で、nは次数、Nはデータ数、σn 2は推定誤差の
分散値である。
AIC = N · log e σ n 2 + 2 · n where n is the order, N is the number of data, and σ n 2 is the variance of the estimation error.

以上の推定結果をもとに分散値制御器16を例えば最小
分散制御理論に従つて構成する。
Based on the above estimation results, the variance value controller 16 is configured according to, for example, the minimum variance control theory.

可変加工電源17は、分散値制御器16の指令値に従つ
て、例えば重畳印加電圧値を大きくすることにより無負
荷時間を小さく、逆に重畳印加電圧値を小さくすること
により無負荷時間を大きくし、前述の検出値を分散値が
小さくなるように動作する。
The variable machining power source 17 reduces the no-load time according to the command value of the dispersion value controller 16, for example, by increasing the superimposed applied voltage value, and conversely increases the no-load time by reducing the superimposed applied voltage value. Then, the detection value is operated so that the variance value becomes smaller.

放電加工では、荒・中・仕上加工の種別により加工電
源条件が異なることや、加工の進行に伴つて加工深さ、
加工面積などが変化することから、加工外乱モデルの動
特性が一定であることは限らない。したがつて、分散値
制御器16の構成にあたつては、種々の加工条件に対して
あらかじめ加工外乱モデルを推定し、それぞれの条件に
対応した分散値制御器を求めておくか、あるいはある周
期毎に加工外乱モデルの推定と分散値制御器の校正を適
宜に行つてもよい。
In electrical discharge machining, machining power supply conditions vary depending on the types of rough, medium, and finish machining, and the machining depth changes as the machining progresses.
Since the machining area changes, the dynamic characteristics of the machining disturbance model are not always constant. Therefore, in the configuration of the variance value controller 16, the machining disturbance model is estimated in advance for various machining conditions, and the variance value controller corresponding to each condition is obtained, or The estimation of the machining disturbance model and the calibration of the variance value controller may be appropriately performed for each cycle.

以上のように構成された放電加工制御装置によれば、
第3図に従来の場合と比較して示すように、本発明にお
ける無負荷時間の確率密度関数14は、従来の確率密度関
数12,13より分散値を小さく制御できるとともに、短絡
放電の発生頻度を増大させることなく平均値14aを小さ
く設定できることを示しており、よつて、可能能率の向
上が実現できる。
According to the electric discharge machining control device configured as described above,
As shown in FIG. 3 in comparison with the conventional case, the probability density function 14 in the no-load time of the present invention can control the variance value to be smaller than the conventional probability density functions 12 and 13, and the frequency of occurrence of short circuit discharge. It is shown that the average value 14a can be set to be small without increasing, and therefore, improvement of the possible efficiency can be realized.

なお、上記実施例では、加工外乱モデルにARモデルを
仮定したが、次式のようなARMAモデルを仮定してもよ
い。
Although the AR model is assumed as the machining disturbance model in the above embodiment, an ARMA model as in the following equation may be assumed.

w(t)=−a1w(t−1)−a2w(t−2)−… …−anw(t−n)+bov(t)+b1 v(t−1)+…+bmv(t−m) あるいは、 w(Z)=Gv(Z)・v(Z) また、上記実施例では、放電状態を無負荷時間により
検出する場合について説明したが、前述した平均極間電
圧または放電開始直後の加工間隙のインピーダンスの状
態量であつてもよく、上記実施例と同様の効果を奏す
る。
w (t) = - a 1 w (t-1) -a 2 w (t-2) - ... ... -a n w (t-n) + b o v (t) + b 1 v (t-1) + ... + b m v (t- m) or a, w (Z) = Gv ( Z) · v (Z) Further, in the above embodiment, the case where the discharge state is detected by the no-load time has been described, but it may be the state quantity of the above-mentioned average inter-electrode voltage or the impedance of the machining gap immediately after the start of the discharge. Has the same effect.

さらに、可変加工電源についても、重畳印加電圧値を
可変にする場合に代えて、重畳印加電圧のスロープを可
変としてもよく、上記実施例と同様の効果を奏する。
Further, also with respect to the variable processing power source, the slope of the superimposed applied voltage may be variable instead of the case where the superimposed applied voltage value is variable, and the same effect as that of the above-described embodiment is obtained.

[発明の効果] 以上のように本発明によれば、放電加工状態を評価で
きる状態量を検出し、該検出値に含まれる不規則な変動
成分を加工外乱モデルで補え、該検出値の分散値を小さ
く制御できるように放電加工制御装置を構成したので、
従来よりも小さな基準値を設定することが可能となり、
放電加工能率の向上が図れる。
[Effects of the Invention] As described above, according to the present invention, the state quantity capable of evaluating the electric discharge machining state is detected, the irregular fluctuation component included in the detected value is supplemented by the machining disturbance model, and the dispersion of the detected value is detected. Since the electric discharge machining control device was configured to control the value small,
It becomes possible to set a smaller reference value than before,
The electric discharge machining efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例のブロツク図、第2図は本発明
で仮定した放電加工プロセスのブロツク図、第3図は従
来例と本発明の実施例において、ある一定時間内に観測
される無負荷時間の確率密度関数を比較した図、第4図
は従来例のブロツク図、第5図は放電加工における典型
的な極間電圧波形を示す図である。 8……放電状態検出器 15……加工外乱モデル推定器 16……分散値制御器 17……可変加工電源 なお、図中、同一符号は同一又は相当部分を示す。
FIG. 1 is a block diagram of an embodiment of the present invention, FIG. 2 is a block diagram of an electric discharge machining process assumed in the present invention, and FIG. 3 is observed within a certain time in a conventional example and an embodiment of the present invention. FIG. 4 is a diagram comparing probability density functions of no-load time, FIG. 4 is a block diagram of a conventional example, and FIG. 5 is a diagram showing a typical inter-electrode voltage waveform in electric discharge machining. 8 ... Discharge state detector 15 ... Machining disturbance model estimator 16 ... Variance value controller 17 ... Variable machining power source In the figures, the same symbols indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】放電状態が評価できる以下の〜のいず
れか1つの状態量を検出する放電状態検出器と、該放電
状態検出器の検出値に含まれる不規則な変動成分を加工
外乱モデルの出力時系列と見なすときの該加工外乱モデ
ルを推定する加工外乱モデル推定器と、該推定器の推定
結果をもとに前記検出値の分散値を制御するために構成
された分散値制御器と、該分散値制御器により制御され
る可変加工電源とを備え、前記分散値制御器が、加工用
主電源に同期して重畳する重畳電圧値または重畳電圧の
スロープを可変にするよう構成されていることを特徴と
する放電加工制御装置。 放電波形の無負荷時間 放電間隙の平均電圧すなわち平均極間電圧 放電開始直後の加工間隙のインピーダンス
1. A discharge state detector for detecting any one of the following state quantities capable of evaluating a discharge state, and an irregular fluctuation component included in a detection value of the discharge state detector for a machining disturbance model: A machining disturbance model estimator that estimates the machining disturbance model when considered as an output time series, and a variance value controller configured to control the variance value of the detected values based on the estimation result of the estimator A variable machining power source controlled by the variance value controller, wherein the variance value controller is configured to vary the superimposed voltage value or the slope of the superimposed voltage that is superimposed in synchronization with the main power source for machining. An electric discharge machining control device characterized in that No-load time of discharge waveform Average voltage of discharge gap, that is, average gap voltage Impedance of machining gap immediately after the start of discharge
JP62183676A 1987-07-24 1987-07-24 EDM control device Expired - Lifetime JP2552143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62183676A JP2552143B2 (en) 1987-07-24 1987-07-24 EDM control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62183676A JP2552143B2 (en) 1987-07-24 1987-07-24 EDM control device

Publications (2)

Publication Number Publication Date
JPS6427813A JPS6427813A (en) 1989-01-30
JP2552143B2 true JP2552143B2 (en) 1996-11-06

Family

ID=16139975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62183676A Expired - Lifetime JP2552143B2 (en) 1987-07-24 1987-07-24 EDM control device

Country Status (1)

Country Link
JP (1) JP2552143B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4037017B2 (en) * 1999-10-18 2008-01-23 三菱電機株式会社 Wire electrical discharge machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5044595A (en) * 1973-08-24 1975-04-22
JPS6069702A (en) * 1983-09-26 1985-04-20 Toshiba Corp Sampled value process controller

Also Published As

Publication number Publication date
JPS6427813A (en) 1989-01-30

Similar Documents

Publication Publication Date Title
US7262381B2 (en) Controller for wire electric discharge machine
Rajurkar et al. Real-time stochastic model and control of EDM
US4213834A (en) Electrochemical working method and system for effecting same
JP2004283968A (en) Controller for wire electric discharge machine
US4484051A (en) Breakthrough detection means for electric discharge machining apparatus
US4614854A (en) Wire EDM control circuit for rough and finished machining
Jiang et al. Adaptive control for small-hole EDM process with wavelet transform detecting method
KR0127745B1 (en) Servo control device for erosion machine
JP2552143B2 (en) EDM control device
US4527034A (en) Electrode positioning method and apparatus for NC-EDM
US5410118A (en) Method and device for controlling a spark erosion machine
EP0102693B1 (en) Wire-cut electric discharge machine
US5362936A (en) Wire electric discharge machine having alterable discharge period
EP0159109A1 (en) Apparatus for detecting discharge gap in electric discharge machining
US4257865A (en) Electrochemical working method and system for effecting same
US4983800A (en) Interelectrode distance controlling device in electric discharge machining apparatus
JP3375500B2 (en) Electric discharge machining method and electric discharge machine
JPH06283B2 (en) Wire EDM power supply
JPH0677883B2 (en) EDM method
JPH03166021A (en) Method of electric discharge machining
JPS6219322A (en) Electric power device for wire-cut electric discharge machining
JPS63312020A (en) Electrical discharge machining device
JPS6312726B2 (en)
JPS61253877A (en) Laser processing device
SU1301594A1 (en) Method of extremum control of electro-erosion process