JP2548674B2 - Reclaiming method of sodium silicate casting sand - Google Patents

Reclaiming method of sodium silicate casting sand

Info

Publication number
JP2548674B2
JP2548674B2 JP5160436A JP16043693A JP2548674B2 JP 2548674 B2 JP2548674 B2 JP 2548674B2 JP 5160436 A JP5160436 A JP 5160436A JP 16043693 A JP16043693 A JP 16043693A JP 2548674 B2 JP2548674 B2 JP 2548674B2
Authority
JP
Japan
Prior art keywords
sand
sodium silicate
sand particles
particles
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP5160436A
Other languages
Japanese (ja)
Other versions
JPH06344076A (en
Inventor
勝四郎 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagasaki Prefectural Government
Original Assignee
Nagasaki Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagasaki Prefectural Government filed Critical Nagasaki Prefectural Government
Priority to JP5160436A priority Critical patent/JP2548674B2/en
Publication of JPH06344076A publication Critical patent/JPH06344076A/en
Application granted granted Critical
Publication of JP2548674B2 publication Critical patent/JP2548674B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Mold Materials And Core Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微細なCO鋳物砂の
砂粒に付着のケイ酸ソーダを除去するため高温炉内で砂
粒子を高温にて加熱焼成し、砂粒に付着のケイ酸ソーダ
昇華後、更に、未だ砂粒に付着の残留ケイ酸ソーダを
除去するため、水洗し、加水して濾過した瀘液の水素イ
オン濃度のPH値を7程度になるように中和後、砂粒を
乾燥することにより、安価で作業性が簡単な耐環境性に
優れた鋳物砂の再生回収法に関する。
BACKGROUND OF THE INVENTION The present invention relates to sand in a high temperature furnace for removing sodium silicate adhering to the fine sand particles of CO 2 foundry sand.
Sodium silicate adhered to sand grains by heating and firing particles at high temperature
After sublimation, and further, the residual sodium silicate of still adhering to the sand grains
In order to remove it , it is washed with water, hydrolyzed and filtered to remove hydrogen peroxide from the filtrate.
The present invention relates to a method for reclaiming and recovering foundry sand which is inexpensive, easy to work with, and excellent in environmental resistance by drying the sand grains after neutralizing the pH value of the ON concentration to about 7 .

【0002】[0002]

【従来の技術】従来のケイ酸ソーダ系炭酸ガス型砂の再
生回収法として以下の問題がある。
2. Description of the Related Art There are the following problems as a conventional method for regenerating and recovering sodium silicate-based carbon dioxide sand.

【0003】(ア)砂粒に付着した炭酸ソーダを溶かし
出す為の薬品の添加を行う方法、もしくは、アルカリ金
属の水酸化物を含有する水溶液で砂粒子の水ガラスを溶
かし出す方法等が考案されているが、再生回収法として
は経費が高く、回収率も良いほうでない。
(A) A method of adding a chemical for dissolving the sodium carbonate adhering to the sand grains, or a method of dissolving the water glass of the sand particles with an aqueous solution containing a hydroxide of an alkali metal has been devised. However, the recovery and recovery method is expensive and the recovery rate is not good.

【0004】(イ)砂粒子を水洗後、浮遊選別法、もし
くは、大小砂粒子の再還流後の冷却による磁気分離法等
がある。
(A) There is a floating separation method after washing sand particles with water, or a magnetic separation method by cooling after recirculation of large and small sand particles.

【0005】以上により、従来の再生回収方法は、加工
コストが嵩む割には再生効率が悪い。
As described above, the conventional recycling method has a low recycling efficiency despite the high processing cost.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上述した従
来の問題点に着目してなされたもので、高価な装置を必
要とせず、砂粒子表面のケイ酸ソーダ(炭酸ソーダを含
む)を薬品添加によらず、砂粒子表面を高温炉にて加熱
昇温し(砂粒に付着のケイ酸ソーダを逸散し)、さらに
高温加熱による昇華でも除去できないような砂表面に付
着の残留ケイ酸ソーダ分を水洗により容易に沈殿分離す
るのみならず、水洗液を中和して産業廃液に適合する液
出来る方法を提供する事を目的とする。
SUMMARY OF THE INVENTION The present invention has been made by paying attention to the above-mentioned conventional problems, and does not require an expensive device, and does not use sodium silicate (including sodium carbonate) on the surface of sand particles. regardless of the chemicals added, the sand particle surface heating <br/> heated at a high temperature furnace (to dissipate sodium silicate of adhering to the sand grains), further
We provide a method that not only allows residual sodium silicate that adheres to the sand surface that cannot be removed by sublimation due to high-temperature heating to be easily precipitated and separated by washing with water, but can also neutralize the washing liquid to form droplets that are compatible with industrial waste liquid. The purpose is to do.

【0007】[0007]

【課題を解決するための手段】ケイ酸ソーダ(水ガラ
ス)溶液を主成分の粘結材で鋳物砂を混練成型し、炭酸
ガスを通じて固化させる、所謂CO2型法は以下によ
る。
A so-called CO 2 type method in which a molding sand is kneaded and molded with a binder as a main component from a sodium silicate (water glass) solution and solidified through carbon dioxide gas is as follows.

【0008】[0008]

【化1】 Embedded image

【0009】現在までに試みられたCO2型砂の再生回
収法は、砂に固着したケイ酸ゲルおよび炭酸ソーダの分
離が完全に出来ず、特に残留ケイ酸ソーダの除去が不完
全にある事と、後処理としての砂の水洗による溶液がP
H値で7程度に押さえる技術に高価な溶液処理法を行う
必要があった。
In the CO 2 -type sand reclaiming method that has been tried so far, it is impossible to completely separate the silicate gel and sodium carbonate fixed to the sand, and in particular, the residual sodium silicate is not completely removed. , The solution obtained by washing sand with post-treatment is P
It was necessary to apply an expensive solution processing method to the technique of suppressing the H value to about 7.

【0010】本発明は、使用済みのCO2型鋳物型から
鋳物砂を再生回収する方法を提供する事にある。
The present invention is to provide a method for regenerating and recovering foundry sand from a used CO 2 casting mold.

【0011】使用済みの鋳型を破砕して、鋳型形成前の
砂に近い粒度を有する砂粒子とする。
The used mold is crushed to obtain sand particles having a particle size close to that of the sand before forming the mold.

【0012】この砂粒子が肌砂として再利用出来るよ
う、590μ以下の砂の大きさに揃える。
[0012] The sand particles to be able to re-use as a skin sand, aligned to the size of the following sand 590μ m.

【0013】しかる後、高温炉に挿入し、900〜11
00℃程度の温度でゆっくり砂粒子を撹拌しながら昇温
し、焼成する。
After that, it was inserted into a high-temperature furnace, and 900 to 11
The temperature is raised to about 00 ° C. while slowly heating the sand particles while stirring and firing.

【0014】砂に付着の炭酸ソーダ分を燃焼により昇華
すると同時に、ケイ酸ソーダ組成分のSiO2およびN
2Oとして残留組成分を融点以上の温度で昇華する。
At the same time as the sodium carbonate content adhering to the sand is sublimated by combustion, at the same time as the SiO 2 and N contents of the sodium silicate composition.
The residual composition as a 2 O is sublimated at a temperature above the melting point.

【0015】砂粒子の表面に未反応として残留のNa
O・SiOまたは、Na・SiO・5HOもし
くは、NaO・2SiO等のケイ酸ゲルを加水し
て、砂の水の比(g/10ml)程度で濾過した後、砂
粒分アルカリ濃度が水素イオン濃度でPH値が7程度
なるように中和する。
Residual Na 2 on the surface of the sand particles as unreacted
O ・ SiO 2 or Na 2・ SiO 2・ 5H 2 O or Na 2 O ・ 2SiO 2 and the like are hydrated and filtered at a sand water ratio (g / 10 ml), then sand
Neutralization is performed so that the alkali concentration of the particles is a hydrogen ion concentration and the PH value is about 7.

【0016】濾過したNa2O・SiO2は昇温時にある
程度砂粒表面から剥離しやすくなった状態になってお
り、融点以上の加熱処理により大部分が昇華されている
ので、1100℃の融点に近い加熱による効果により濾
過成分はほとんどない。
The filtered Na 2 O.SiO 2 is in a state of being easily separated from the surface of the sand grains to some extent when the temperature is raised, and most of it is sublimated by the heat treatment above the melting point. There is almost no filtration component due to the effect of near heating.

【0017】水洗後、溶液と沈殿した砂を浮遊選別法に
てこれを砂と分離し、砂を回収する。
After washing with water, the solution and the precipitated sand are separated from the sand by a floating sorting method, and the sand is recovered.

【0018】砂粒子を乾燥機にて乾燥することによっ
て、鋳肌に再利用可能な鋳物砂に適する。なお、上記水
洗後の水溶液は、必ず中和になっているか否かのPH値
を確認し、場合によっては濾過時点で加水分を増減す
る。
By drying the sand particles in a dryer, it is suitable for molding sand that can be reused for the casting surface. It should be noted that the pH value of the aqueous solution after washing with water is surely neutralized, and the water content is increased or decreased at the time of filtration in some cases.

【0019】[0019]

【作用】使用済みの鋳型から砂粒子を機械的にクラッシ
ャーし、砂表面の炭酸ソーダ分及び未反応のケイ酸ソー
ダ分を剥離し、または剥離しやすい状態にして砂粒子を
揃える。
Function: The sand particles are mechanically crushed from the used mold to remove the sodium carbonate component and the unreacted sodium silicate component on the sand surface, or the sand particles are aligned in such a state that they are easily separated.

【0020】従来、炭酸ソーダ化した分子は、硫酸ソー
ダのような可溶性のものに変えて溶かし出していたが、
未反応なケイ酸ソーダ分も含めて次の表1に水ガラス成
分、表2に各種ケイ酸ソーダの物理的性質を示すとお
り、Na2O・SiO2・Na2O・2SiO2の融点が9
00〜1100℃以下であるので、高温炉内の砂粒子に
付着した上記成分は自然昇華する場合が多く、残留分と
しては、砂粒子から剥離しやすい状態になっている。
Conventionally, sodium carbonate-converted molecules have been dissolved by changing to soluble ones such as sodium sulfate.
Next water glass component in Table 1, including sodium silicate content of unreacted, as shown the physical properties of the various sodium silicate in Table 2, the melting point of Na 2 O · SiO 2 · Na 2 O · 2SiO 2 9
Since the temperature is from 0 to 1100 ° C. or lower, the above components adhering to the sand particles in the high temperature furnace are often sublimated spontaneously, and the residual components are easily separated from the sand particles.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】濾過水洗の残留Na2O・SiO2は、浮遊
選別により砂粒子とは溶液として分離される。
The residual Na 2 O · SiO 2 filtration washing with water, the sand particles are separated as a solution by flotation.

【0024】溶液は昇華による残留Na2O・SiO2
ほとんどない状態なので、加水の調節により中和摘定値
がほぼ7程度を示す。
The solution so a state of residual Na 2 O · SiO 2 by sublimation hardly, exhibit approximately 7 degrees is neutralized摘定value by adjusting the hydrolysis.

【0025】[0025]

【化2】 Embedded image

【0026】ケイ酸ソーダの融点以下の900℃、また
は、1100℃以下での昇温では、摘定に要する酸(H
CL)消費量が未溶解(昇華量に匹敵と解して良い)ケ
イ酸ソーダ量に比例する。
When the temperature is raised to 900 ° C. below the melting point of sodium silicate or 1100 ° C. or below, the acid (H
CL) consumption is proportional to the amount of undissolved (which may be regarded as comparable to the amount of sublimation) sodium silicate.

【0027】水洗後の砂粒子と溶液との浮遊選別は、砂
との分離を容易にすると同時に砂表面の清浄化に寄与
し、その後の乾燥機による砂の乾燥作業により、再利用
する鋳肌砂に適する効果がある。
Floating sorting of sand particles and solution after washing with water facilitates separation of the sand and at the same time contributes to cleaning of the sand surface, and the casting surface to be reused by the sand drying operation thereafter. Has an effect suitable for sand.

【0028】[0028]

【実施例】 本発明の実施例を図面に基づいて説明す
る。本実験に用いた実験装置を図1に示す。高温炉1に
ケイ酸ソーダ系炭酸ガス型鋳型廃砂aを投入する。炉の
通気孔3、炉内の温度計測用クロメルアルメル熱電対4
にて試料aの変化を記録し、電気炉(高温炉)1の温度
制御を行う。aは破砕した鋳型砂粒子で、490μ
下に粒度調整した試料とする。試料aの温度を計測しな
がら、ステンレス製撹拌子2で試料が均一温度になるよ
う撹拌する。所定の温度で処理された試料c(試料aの
成分が変化した試料)を容器6に移し、純水d(イオン
交換水)を6に投入して、ステンレス製撹拌子7で水溶
液が均一になるよう撹拌する。同時に溶液の温度を8の
温度計にて計測する。普通、常温処理を旨とする。PH
計測器(アルカリ濃度計測)にて6内の溶液を計測す
る。つまり、容器6内の溶液を中和するに必要な酸(H
cl:塩酸)消費量摘定及び試料cの水溶性抽出並びに
アルカリ量の摘定等を行う。ポンプ10にて6の水溶液
を容器11に移し、脱液機12にて溶液分と砂試料を分
離する。同時にアルカリ濃度測定器(PH値)計測器1
3にて液の濃度変化を測定する。すなわち、溶液のアル
カリ濃度が、水素イオン濃度でPH9程度に中和してい
るか否かを確認する。更に、容器14に脱液された砂試
料を移した後、乾燥して再生回収専用器内で再生回収砂
eを得る。
Embodiments of the present invention will be described with reference to the drawings. The experimental apparatus used for this experiment is shown in FIG. Sodium silicate-based carbon dioxide type mold waste sand a is charged into the high temperature furnace 1. Vent 3 of furnace, chromel alumel thermocouple 4 for temperature measurement in the furnace
Then, the change of the sample a is recorded and the temperature of the electric furnace (high temperature furnace) 1 is controlled. a is a crushed molding sand particles, and sample size adjusted to below 490μ m. While measuring the temperature of the sample a, the sample is agitated by the stainless stirrer 2 so that the sample has a uniform temperature. A sample c (a sample in which the components of the sample a are changed) treated at a predetermined temperature is transferred to a container 6, pure water d (ion-exchanged water) is charged into the container 6, and a stainless stirrer 7 is used to make the aqueous solution uniform. Agitate until At the same time, the temperature of the solution is measured with a thermometer of 8. Usually, room temperature treatment is the target. PH
Measure the solution in 6 with a measuring instrument (alkali concentration measurement). That is, the acid (H) necessary for neutralizing the solution in the container 6
cl: hydrochloric acid) consumption adjustment and water-soluble extraction of sample c
Adjust the amount of alkali. The aqueous solution of 6 is transferred to the container 11 by the pump 10, and the solution component and the sand sample are separated by the drainer 12. At the same time, alkali concentration measuring device (PH value) measuring device 1
At 3, the change in the concentration of the solution is measured. That is, the solution
Potassium concentration is neutralized to about PH9 in hydrogen ion concentration
Check whether or not Further, the dewatered sand sample is transferred to the container 14 and then dried to obtain the reclaimed sand e in the reclaimed recovery device.

【0029】図1の装置に表1の名称2(モル比2,
5)の水ガラスを砂比で3%添加し、CO2ガスを吹き
込んでCO2型鋳型を形成し、青銅3種(JIS規格B
C3相当品)材を鋳込み温度1170℃で溶解処理した
後の鋳型砂を投入した。その時、図1の容器6内の溶液
を中和するに必要な酸(HCL:塩酸)消費量摘定実験
に用いた試料cの水溶性成分の抽出方法およびアルカリ
量の摘定方法を図2に示す。且つ、水溶性成分の抽出処
理条件を表3に示す。結果を図3に示す。
In the apparatus shown in FIG. 1, the name 2 in Table 1 (molar ratio 2,
Water glass of 5) was added at a sand ratio of 3%, and CO 2 gas was blown into it to form a CO 2 type mold, and bronze type 3 (JIS standard B
(C3 equivalent product) material was melted at a casting temperature of 1170 ° C., and mold sand was added. At that time, the method for extracting the water-soluble component of the sample c and the method for adjusting the amount of alkali used in the experiment for adjusting the consumption amount of acid (HCL: hydrochloric acid) necessary for neutralizing the solution in the container 6 in FIG. Shown in. Table 3 shows the extraction treatment conditions for the water-soluble components. The results are shown in Fig. 3.

【0030】[0030]

【図2】FIG. 2

【0031】[0031]

【表3】 [Table 3]

【0032】図1の装置で図3で使用した再生回収砂の
1例について、その粒度分布を新砂(6号珪砂)の粒度
分布と併せて図4に示す。
FIG. 4 shows the particle size distribution of one example of the reclaimed and recovered sand used in the apparatus of FIG. 1 in FIG. 3 together with the particle size distribution of new sand (No. 6 silica sand).

【0033】図4のグラフから明らかなように、元の砂
とほとんど変わらない粒度分布の再生砂が回収出来る。
再生回収砂は、炭酸ソーダ、ケイ酸ソーダ等の固着成分
が除去された清浄な砂であり、CO2型鋳型の(ケイ酸
ソーダ系鋳物砂)製造用に新砂と同様に使用する事が出
来る。
As is clear from the graph of FIG. 4, recycled sand having a particle size distribution almost the same as the original sand can be recovered.
Reclaimed and recovered sand is clean sand from which fixed components such as sodium carbonate and sodium silicate have been removed, and can be used in the same manner as new sand for the production of CO 2 type mold (sodium silicate casting sand). .

【0034】図3のグラフから明らかなように、廃砂
(試料)温度処理を25℃で設定した時、中和に必要な
HCL(酸)消費量は常温で約10cc(1/10規定
{N})であるが、600℃で0,5cc、700℃で
0,3cc、1000℃でほぼ0ccの酸消費量値を示
した。これは、図1の装置で砂試料を電気炉内で昇温す
ることにより、Na2O・SiO2成分の昇華、炭酸ソー
ダ分の昇華を意味する。
As is apparent from the graph of FIG. 3, when the waste sand (sample) temperature treatment is set at 25 ° C., the consumption amount of HCL (acid) necessary for neutralization is about 10 cc (1/10 normal { N}), the acid consumption value was 0.5 cc at 600 ° C., 0.3 cc at 700 ° C., and almost 0 cc at 1000 ° C. This means sublimation of the Na 2 O.SiO 2 component and sublimation of the sodium carbonate content by raising the temperature of the sand sample in the electric furnace with the apparatus of FIG.

【0035】[0035]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載されるような効果を奏する。
Since the present invention is configured as described above, it has the following effects.

【0036】本発明によれば、困難な操作はなく、高価
な装置を必要とせず、再生費用も僅少ですむ。
According to the present invention, there is no difficult operation, no expensive equipment is required, and the regenerating cost is small.

【0037】砂粒子表面の炭酸ソーダやケイ酸ソーダの
未溶解又は付着分子を溶出する薬品の添加作業及びその
装置等を必要としなく、元の砂の粒度分布の再生砂が得
られ、CO2型鋳型(ケイ酸ソーダ系鋳物砂)製造用に
新砂と同様に使用出来る。
The addition operations chemicals eluting undissolved or adhesion molecules sodium carbonate or sodium silicate sand particle surface and not require the device or the like, reclaimed sand particle size distribution of the original sand obtained, CO 2 It can be used in the same way as new sand for the production of molds (sodium silicate casting sand).

【0038】主作業が電気炉による温度制御方式による
ため、廃砂の作業管理と脱ケイ酸ソーダ処理程度を温度
毎に注出し、酸消費量の摘定により砂に付着した炭酸ソ
ーダ分やケイ酸ソーダ分の管理がグラフより解読出来、
経済性に優れた効果等がある。
Since the main work is a temperature control system using an electric furnace, the work management of waste sand and the degree of desilicating sodium treatment are poured out for each temperature, and the amount of sodium carbonate adhering to the sand and silica are removed by adjusting the amount of acid consumption. Management of acid soda can be deciphered from the graph,
It has excellent economic effects.

【図面の簡単な説明】[Brief description of drawings]

【図1】本実験に用いた実験装置の状況図。FIG. 1 is a state diagram of an experimental apparatus used in this experiment.

【図2】本実験に用いた鋳型砂試料の水溶性成分の抽出
方法およびアルカリ量の摘定方法。
FIG. 2 shows a method for extracting a water-soluble component and a method for adjusting an alkali amount of a template sand sample used in this experiment.

【図3】図1の装置により実施化試験をした、モル比
2.5の水ガラスを用いたCO2鋳型砂に青銅3種の鋳
込み後の、鋳型砂の酸消費量摘定実験結果を表すグラ
フ。
FIG. 3 shows the result of an experiment for acid consumption of mold sand after casting 3 kinds of bronze into CO 2 mold sand using water glass with a molar ratio of 2.5, which was tested by the apparatus of FIG. The graph to represent.

【図4】図1の装置で、図3で使用した再生回収砂の1
例について、その粒度分布を新砂(6号珪砂)の粒度分
布と比較したグラフ。
[Fig. 4] Fig. 4 is a view of the reclaimed sand used in Fig. 3 in the apparatus of Fig. 1.
About the example, the graph which compared the particle size distribution with the particle size distribution of the new sand (No. 6 silica sand).

【符号の説明】[Explanation of symbols]

1 高温電気炉 2 ステンレス製撹拌子(直流モーター駆動による) 3 通気孔 4 温度計測用アルメルクロメル熱電対 5 試料の覗き孔(必要に応じAr等のガス導入も出来
る孔) 6 容器 7 ステンレス撹拌子(モーター駆動方式) 8 温度計 9 PH計(アルカリ濃度測定器) 10 ポンプ 11 容器 12 脱液機 13 PH計 14 容器 15 再生砂回収専用器 a 試料 b アルゴンガス c 試料(aの成分が変化した試料) d 純水(イオン交換水) e 再生回収砂
1 High-temperature electric furnace 2 Stainless steel stirrer (driven by a DC motor) 3 Vent hole 4 Temperature measuring alumel chromel thermocouple 5 Sample peep hole (hole where gas such as Ar can be introduced if necessary) 6 Container 7 Stainless steel stirrer (Motor drive system) 8 Thermometer 9 PH meter (alkali concentration measuring instrument) 10 Pump 11 Container 12 Dewatering machine 13 PH meter 14 Container 15 Reclaimed sand recovery device a Sample b Argon gas c Sample (a component changed) Sample) d Pure water (ion-exchanged water) e Reclaimed sand

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ケイ酸ソーダと硬化材を含む炭酸ガス型
自硬性鋳物砂の再生回収法において (1)使用済みの鋳型を破砕して、鋳型形成前の砂に近
い粒度を有する砂粒子とすること (2)この砂粒子を590μ以下の砂の大きさに揃え
た後、高温炉に挿入し、900〜1100℃程度の温度
でゆっくり撹拌しながら昇温し、焼成すること。つまり
砂粒に付着のケイ酸ソーダを除去する為、砂粒子を高温
炉にて加熱し、焼成する作業、言い換えれば、砂粒子の
高温加熱による燃焼作業により砂粒に付着のケイ酸ソー
ダを昇華すること (3)更に、未だ砂粒に付着の残留ケイ酸ソーダを除去
するため、砂粒子に加水して砂の水の比(g/10m
l)程度で濾過した後、砂粒を加水して濾過した瀘液の
水素イオン濃度のPH値が7程度になるように中和し、
しかる後、砂粒子を乾燥することから成る事を特徴とす
るケイ酸ソーダ系鋳物砂の再生回収方法
1. A method for regenerating and recovering carbon dioxide gas type self-hardening molding sand containing sodium silicate and a hardening material (1) crushing a used mold to obtain sand particles having a particle size close to that of the sand before forming the mold. after aligning it (2) the sand particles to a size of less sand 590Myu m to, inserted in a high temperature furnace, the temperature was elevated while stirring slowly at a temperature of about 900 to 1100 ° C., sintering is possible. In other words, in order to remove the sodium silicate adhering to the sand particles, the sand particles are heated to a high temperature.
The work of heating and firing in a furnace, in other words, of sand particles
Sodium silicate that adheres to the sand particles by burning work by heating at high temperature
Sublimate the da (3) Furthermore, remove the residual sodium silicate still adhering to the sand grains.
In order to do so , water is added to the sand particles and the sand water ratio (g / 10m
l) After filtering about 1), the sand particles are hydrated and filtered
Neutralize so that the PH value of the hydrogen ion concentration becomes about 7,
Then , a method for regenerating and recovering sodium silicate-based foundry sand, characterized by comprising drying sand particles
JP5160436A 1993-06-07 1993-06-07 Reclaiming method of sodium silicate casting sand Expired - Fee Related JP2548674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5160436A JP2548674B2 (en) 1993-06-07 1993-06-07 Reclaiming method of sodium silicate casting sand

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5160436A JP2548674B2 (en) 1993-06-07 1993-06-07 Reclaiming method of sodium silicate casting sand

Publications (2)

Publication Number Publication Date
JPH06344076A JPH06344076A (en) 1994-12-20
JP2548674B2 true JP2548674B2 (en) 1996-10-30

Family

ID=15714899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5160436A Expired - Fee Related JP2548674B2 (en) 1993-06-07 1993-06-07 Reclaiming method of sodium silicate casting sand

Country Status (1)

Country Link
JP (1) JP2548674B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100807103B1 (en) * 2006-08-30 2008-02-26 임정빈 A method for reproduction waste molding sand
DE102007008149A1 (en) 2007-02-19 2008-08-21 Ashland-Südchemie-Kernfest GmbH Thermal regeneration of foundry sand
JP6188502B2 (en) * 2013-09-06 2017-08-30 大木産業株式会社 Casting sand recycling process
JP6445333B2 (en) * 2015-01-14 2018-12-26 旭有機材株式会社 Recycle method of recovered foundry sand
JP6445334B2 (en) * 2015-01-14 2018-12-26 旭有機材株式会社 Recycling of recovered foundry sand
JP6406207B2 (en) * 2015-10-20 2018-10-17 マツダ株式会社 How to recycle foundry sand
WO2021220585A1 (en) * 2020-04-27 2021-11-04 ヤマハ発動機株式会社 Method for reproducing molding sand
CN111496180B (en) * 2020-06-17 2021-08-10 合肥仁创铸造材料有限公司 Combined regeneration and reuse method for cast aluminum inorganic used sand

Also Published As

Publication number Publication date
JPH06344076A (en) 1994-12-20

Similar Documents

Publication Publication Date Title
Bodas Hydrometallurgical treatment of zinc silicate ore from Thailand
JP2548674B2 (en) Reclaiming method of sodium silicate casting sand
Owusu Physical-chemistry study of sodium silicate as a foundry sand binder
CN109399652A (en) A method of recycling waterglass from used sodium silicate sand wet reclamation sewage
WO2016007020A1 (en) Extraction of products from titanium-bearing minerals
CN114080284B (en) Foundry sand regeneration method
CN109628751A (en) A method of silicon in removing zinc oxide fumes leaching process
US6352098B1 (en) Method of recovering and refining filler from a lost wax composition
CN1265635A (en) Continuous non-polluting liquid phase titanium dioxide process
EP0334077B1 (en) Method for recovering refractory compositions from investment casting shell molds
JPS62144846A (en) Casting mold for high melting point metal and its production
JP2000087154A (en) Method for recovering rare earth element from used rare earth element type abrasive material
JP7084704B2 (en) Silica-containing water treatment equipment and treatment method
US4799530A (en) Method for recovering casting refractory compositions from investment casting slurries
US4361542A (en) Zircon retrieval
JP3505595B2 (en) Dust treatment method
JP6445333B2 (en) Recycle method of recovered foundry sand
CN1312219A (en) Chemical restoring process of CO2 hardened old water glass sand
CN108251647B (en) The method that the copper-contained sludge obtained by flocculent precipitation Treatment of Copper waste water does copper sponge
JPS5841135B2 (en) Imonozu Nano Saiseihouhou
JPH10230340A (en) Method for regenerating molding sand for cold box method
WO2015194980A2 (en) A method of hydrometallurgical separation of iron and its compounds from non-ferrous metals and their compounds and a device for carrying out said method
JPS5848267B2 (en) Method for recycling water glass-based foundry sand
JP2001009414A (en) Detoxification treatment system for used chromium- containing refractory material
JPS60103192A (en) Treatment of material accumulated in electrolytic cell

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960514

LAPS Cancellation because of no payment of annual fees