JP2545642C - - Google Patents

Info

Publication number
JP2545642C
JP2545642C JP2545642C JP 2545642 C JP2545642 C JP 2545642C JP 2545642 C JP2545642 C JP 2545642C
Authority
JP
Japan
Prior art keywords
glass
group
film
protective film
fluorocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Publication date

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ガラスに関するものである。さらに詳しくは、家、または自動車、
電車、飛行機等の乗り物に用いられている窓ガラスや鏡、またはガラス容器や眼
鏡等のガラス表面が、直接、または保護膜を介して、フッ素を含む界面活性剤よ
りなる単分子膜状の被膜で覆われている、撥水撥油性に優れたガラスを提供する
ものである。 従来の技術 従来より、ガラス表面の撥水撥油性を改善する方法には、ガラス表面にSi系
界面活性剤を塗布したり(たとえば特開昭55−9652号公報)、フルオロカ ーボン系ポリマーの懸濁液を塗布する方法が用いられてきた。 発明が解決しようとする課題 しかしながら、前記従来の塗布方法は、製造が容易である反面、シリコン系界
面活性剤では撥油性が乏しく、フルオロカーボン系ポリマー膜は表面エネルギー
が極めて小さく、ガラスに対して反応に乏しいため、ガラス表面と塗膜の密着性
を良くすることには限界があり、耐久性のよい塗膜は得られないという課題があ
った。特に、塗膜にピンホールが混在した場合、このピンホールが引金となり膜
剥がれが生じ易かった。 以上のような従来法の欠点に鑑み、本発明の目的は、表面に均一に且つピンホ
ール無くフルオロカーボン基を含む界面活性剤よりなる単分子膜状の耐剥離強度
の高い撥水撥油膜を備えた防汚性ガラスを提供することにある。 課題を解決するための手段 前記目的を達成するため、本発明のガラスは、下記一般式[1] (式中、m=1〜15、n=0〜15、ただしm+n=10〜30の各整数を表
わす) または下記一般式[2] (式中、m=1〜8、n=0〜2、ただしm+n=1〜10、p=5〜25の各
整数を表し、Aはジメチルシリル基(−Si(CH32−)を表わす。) で表わされる有機基がナノメーターレベルの膜厚の単分子膜で、親水性基を表面
に有するガラス基材の最表面または親水性基を有する保護膜で覆われたガラス基
材の最表面に酸素または窒素原子を介して化学結合してなることを特徴とする。 前記した本発明のガラスを得るには、下記一般式[3] F(CF2m(CH2nSiRq3-q [3] (式中、m=1〜15、n=0〜15、ただしm+n=10〜30の各整数を示 し、Rはアルキル基を表し、Xはハロゲン原子またはアルコキシ基を表わす) または下記一般式[4] F(CF2m(CH2nA(CH2pSi(CH3q3-q [4] (式中m=1〜8、n=0〜2、ただしm+n=1〜10、p=5〜25、q=
0〜2の各整数を示し、Aはジメチルシリル基(−Si(CH32−)を表わし
、Xはハロゲン原子またはアルコキシ基を表わす。) で表わされるシラン系界面活性剤を用いて、ガラス表面と反応一体化させる。 作用 本発明のガラスでは、表面にはフッ化炭素基が露出し、ガラスや保護膜との界
面ではガラスや保護膜と共有結合した、すなわち基材と一体になった実用上剥離
しないナノメーターレベルの膜厚の撥水撥油性の被膜が形成されている。したが
って、ガラス本来の透明性や光沢が生かされ、且つ耐久性に優れた防汚効果を発
揮できる作用がある。 さらに、本発明のガラスでは、表面がフッ化炭素の有機基で覆われているため
、表面の摩擦係数が低くなりガラス自体の耐擦傷性が向上する作用もある。 実施例 以下、実施例を第1〜6図を用いて説明する。以下の実施例において%は重量
%を意味する。 例えば、第1図に示すように、あらかじめよく洗浄したガラス基材1(例えば
強化ガラス板)を用意しておく。一方、80%n−ヘキサデカン、12%四塩化
炭素、8%クロロホルムよりなる有機溶媒の混合溶液にビニル基2(CH2=C
H−)を含むシラン界面活性剤、たとえば、CH2=CH−(CH2n−SiC
3(n:整数。10〜20程度が最も扱いやすい)を3×10-3〜5×10-2
M程度の濃度で溶かした化学吸着液を調整しておき、前記ガラス基材1を室温で
1時間程度浸漬する(このとき、ガラス基材は必ずしも化学吸着液に浸漬する必
要はなく、液を塗布したりスプレーして、化学吸着液とガラス基材を接触させて
おけば良い)と、第1図に示したようにガラス基体1表面は水酸基を含んでいる
ため、クロロシラン系界面活性剤のクロロシリル基と水酸基とが反応して表面に
下記式[5]の結合が生成され、ビニル基2を含んだ単分子膜状の保護膜3a が酸素原子を介して化学結合した形で、一層の保護膜として形成された。厚さは
20〜30オングストローム(2〜3nm)であった。 次に、酸素またはN2を含んだ雰囲気中で(空気中でもよい)、このガラス基
体をエネルギー線(電子線、X線、γ線、紫外線若しくはイオン線)で3Mra
d程度照射し、第2図に示したようにビニル基部2に水酸(−OH)基4(酸素
雰囲気の場合)、または第3図に示したようにアミノ(−NH2)基5(窒素雰
囲気の場合)を導入した。なお、雰囲気が空気の場合はこの両者が生成する。 なお、これらの官能基がビニル基に付加することは、FTIR分析により確認
された。 また、このとき表面に並んだビニル基は、O2及び/またはN2を含んだプラズ
マ中で処理する方法でも、第2図に示したような−OH基を付加させた単分子吸
着保護膜3b、または第3図に示したような−NH2基を付加させた単分子吸着
保護膜3cを形成できる。 最後に、フッ化炭素基を含むシラン系の界面活性剤として下記一般式[6] F(CF2m(CH2nSiRq3-q [6] (式中、m=1〜15、n=0〜15、m+n=10〜30、q=0〜2の各整
数を示し、Rはアルキル基を表わし、XはF,Cl,Br,I等のハロゲン原子
またはアルコキシ基を表わす。なお前記において、m+nが10未満であると分
子鎖がみじか過ぎて配向しにくくなり、また30を越えると流動性が失われる。
またRはメチル基のような低級アルキル基である。) または下記一般式[7] F(CF2m(CH2nA(CH2pSi(CH3q3-q [7] (式中、m=1〜8、n=0〜2、m+n=1〜10、p=5〜25、q=0〜
2の各整数を示し、Aはジメチルシリル基(−Si(CH32−)を表わし、X
はF,Cl,Br,I等のハロゲン原子またはアルコキシ基を表わす。なお前記 において、m+nが1未満及びpが5未満であると分子鎖がみじか過ぎて配向し
にくくなり、またm+nが10を越えかつpが25を越えると流動性が失われる
。) で表わされる物質、例えばフッ化炭素基とクロロシリル基を含む下記式[8] CF3CH2O(CH215SiCl3 [8] を用い、あらかじめ作製しておいた80%n−ヘキサデカン、12%四塩化炭素
、8%クロロホルムよりなる有機溶媒の混合溶液に2×10-3〜5×10-2M程
度の濃度で溶かした化学吸着液を調製し、前記単分子吸着保護膜3b、もしくは
3cが形成されたガラス基体1を1時間程度室温で浸漬すると(このときも、ガ
ラス基材は必ずしも化学吸着液に浸漬する必要はなく、液を塗布したりスプレー
して、化学吸着液とガラス基材を接触させておけば良い)、第2図に示したよう
に表面に−OH基や、第3図に示したように表面に−NH2基が露出しているた
め、フッ化炭素基を含むクロロシラン系界面活性剤のクロロシリル基と−OH基
または−NH2基とが脱離反応して表面に下記式[9] の結合、または下記式[10] の結合が生成され、ガラス基体の表面にフッ化炭素基を含む単分子吸着膜6が、
第4図に示したような下層の単分子吸着保護膜3dと層間で化学結合した状態で
単分子累積膜7として形成でき、もしくは第5図に示したような下層の単分子吸
着保護膜3eと層間で化学結合した状態で単分子累積膜8として形成できた。 なお、表面の撥水撥油性膜とガラス基体の間に保護膜を必要としない場合には
、第1回目の化学吸着工程で、フルオロカーボン基を含むクロロシラン界面活性
剤を用いて、ガラス表面にフルオロカーボン基を含む単分子吸着膜のみ1層形成 することができた。 一方、複数層の単分子保護膜を必要とする場合には、吸着試薬としてCH2
CH−(CH2n−SiCl3を用い、化学吸着と放射線照射の工程を繰り返し
た後、最後に吸着試薬としてフルオロカーボン基を含むクロロシラン系界面活性
剤を吸着すれば、必要とする層数の保護膜を介して最表面にフルオロカーボン基
を含む単分子吸着膜が累積形成されたガラスを作製できた。 なお、上記実施例では、最表面に形成すべきフッ化炭素基を含むシラン系界面
活性剤としてCF3CH2O(CH215SiCl3を用いたが、これ以外にも例え
ば CF3(CH22Si(CH32(CH215SiCl3 F(CF24(CH22Si(CH32(CH29SiCl3 CF3COO(CH215SiCl3 CF3(CF27(CH22SiCl3 等が利用できた。また、上記物質においてクロロシリル基をアルコキシシリル基
に置換した物質をそれぞれ用いてもガラス基体表面に同様の被膜を形成できた。 次に、吸着形成した種々の単分子膜の臨界表面エネルギーを求めるために、い
ろいろな表面張力を持った各種液体を用い、液滴の濡れ角度による評価(自動接
触角計(協和界面科学(株)製))を行った。結果を第6図に示す。なお、第6
図では測定した接触角のcosθと液滴の表面張力との関係で示した。前記第6
図を用いると、各種被膜の臨界表面エネルギーを、それぞれのデータをcosθ
が1.0になるまで外挿することで求めることができる。 第6図より明らかなように、臨界表面エネルギーは被膜に含まれるフッ素の数
が多くなるほど小さくなり、フッ素の数が9以上では約17dyne/cm以下
となった。この値は、ポリ4フッ化エチレン(約18dyne/cm:機能性含
ふっ素高分子、日刊工業新聞社刊)のそれより小さく、これら被膜の表面では撥
水撥油性が極めて高いことが確認できた。 さらに、この表面の水に対する濡れ角度を測定すると、基材表面の粗さにも依
存するが100〜150度となった。 従って、このガラス窓を用いれば乗り物の窓ガラスをワイパーレス化できたり 、眼鏡表面の曇を防止できる。 なお第6図中、 F17は、F(CF28Si(CH32(CH29SiCl3、 F9は、F(CF24(CH22O(CH215SiCl3、 F3は、CF3COO(CH215SiCl3、 NTSは、CH3(CH219SiCl3、 でそれぞれ作成された被膜を示す。 なお、上記実施例では、基材に強化ガラスを用いたが、本発明の方法は、家、
または自動車、電車、飛行機等の乗り物に用いられている窓ガラスや鏡、または
ガラス容器やレンズ等のガラス表面、その他撥水撥油性を必要としたガラス表面
の改質を目的とする全てのガラスに応用できる。また、無色透明なガラスに限定
されるものでもなく、例えば表面を粗面化したすりガラスや、さらに着色された
色ガラス、またはガラス繊維等でもよい。 要するに本発明は、親水性基を表面に有するガラスと、フルオロカーボン基を
含有するシラン界面活性剤とを化学吸着法を用いてガラス表面に化学結合させる
技術であれば、全て範疇にはいる。 なお保護膜は必ずしも単分子膜である必要はない。塗装された有機薄膜、その
他ゾルゲル法を用いたシリカコート膜や透明性の蒸着膜でもよい。ただし、表面
が親水性でない場合には、コロナ照射或はスパッタリング等の通常の手法により
表面を親水性にした後、本発明のフルオロカーボン基含有シラン界面活性剤を作
用させる必要がある。 発明の効果 本発明のガラスでは、ガラスまたは保護膜を有したガラスの表面にフルオロカ
ーボン基を含むクロロシラン系またはフルオロカーボン基を含むアルコキシシラ
ン系界面活性剤を吸着反応させて、表面にはフッ化炭素基が露出し、ガラスや保
護膜との界面ではガラスや保護膜と共有結合した、すなわち基材と一体になった
ナノメーターレベルの膜厚の撥水撥油性の被膜を形成できるので、ガラスの透明
性や光沢を損なうことなく、防汚性が高く且つ実用上剥離しない耐久性に優れた
ガラスを提供できる効果がある。 さらに、本発明のガラスでは、表面がフッ化炭素の有機基で覆われているため
、表面の摩擦係数が低くなりガラス自体の耐擦傷性が向上するので、基材ガラス
そのものよりもさらに強靭性を向上できる効果もある。
Description: FIELD OF THE INVENTION The present invention relates to glass. For more information,
A monomolecular film-like coating made of a surfactant containing fluorine, either directly or via a protective film, on the glass surface of windows and mirrors used for vehicles such as trains and airplanes, or glass containers and glasses. The present invention is to provide a glass which is covered with, and has excellent water and oil repellency. 2. Description of the Related Art Conventionally, methods for improving the water / oil repellency of a glass surface include applying a Si-based surfactant to the glass surface (for example, Japanese Patent Application Laid-Open No. 55-9652) and suspending a fluorocarbon polymer. A method of applying a liquid has been used. Problems to be Solved by the Invention However, the conventional coating method is easy to manufacture, but has poor oil repellency with a silicon-based surfactant, has a very small surface energy of a fluorocarbon-based polymer film, and has a reaction with glass. Therefore, there is a limit in improving the adhesion between the glass surface and the coating film, and there is a problem that a coating film with good durability cannot be obtained. In particular, when pinholes were mixed in the coating film, the pinholes became triggers and the film was easily peeled. In view of the above-mentioned drawbacks of the conventional method, an object of the present invention is to provide a monomolecular film-like water- and oil-repellent film having a high peeling strength, which is made of a surfactant containing a fluorocarbon group uniformly and without pinholes on the surface. To provide antifouling glass. Means for Solving the Problems In order to achieve the above object, the glass of the present invention has the following general formula [1] (Wherein, m = 1 to 15, n = 0 to 15, where m + n = integers of 10 to 30) or the following general formula [2] (Wherein, m = 1~8, n = 0~2 proviso m + n = 1~10,, represent each an integer of p = 5 to 25, A is di methylsilyl (-Si (CH 3) 2 - a) The organic group represented by is a monomolecular film with a thickness of nanometer level, and the hydrophilic group is
Glass substrate covered with a protective film having a hydrophilic group or the outermost surface of a glass substrate having
It is characterized by being chemically bonded to the outermost surface of the material via oxygen or nitrogen atoms. In order to obtain the glass of the present invention, the following general formula [3] F (CF 2 ) m (CH 2 ) n SiR q X 3-q [3] (where m = 1 to 15, n = 0) To 15, where m + n = 10 to 30; R represents an alkyl group; X represents a halogen atom or an alkoxy group) or the following general formula [4]: F (CF 2 ) m (CH 2 ) n A (CH 2) p Si ( CH 3) q X 3-q [4] ( wherein m = 1~8, n = 0~2 proviso m + n = 1~10,, p = 5~25, q =
Indicates each integer of 0 to 2, A is di methylsilyl (-Si (CH 3) 2 - ) represents, X represents a halogen atom or an alkoxy group. The reaction is integrated with the glass surface using a silane-based surfactant represented by the formula (1). Action In the glass of the present invention, a fluorocarbon group is exposed on the surface, and is covalently bonded to the glass or the protective film at the interface with the glass or the protective film, that is, the nanometer level which is not practically peeled off integrally with the substrate. A water-repellent and oil-repellent film having a film thickness of? Therefore, there is an effect that the original transparency and gloss of the glass can be utilized and an antifouling effect having excellent durability can be exhibited. Furthermore, since the surface of the glass of the present invention is covered with an organic group of fluorocarbon, the surface has a function of reducing the friction coefficient and improving the scratch resistance of the glass itself. Embodiment Hereinafter, an embodiment will be described with reference to FIGS. In the following examples,% means% by weight. For example, as shown in FIG. 1, a well-washed glass substrate 1 (for example, a tempered glass plate) is prepared in advance. On the other hand, a mixed solution of an organic solvent consisting of 80% n-hexadecane, 12% carbon tetrachloride, and 8% chloroform was added to a vinyl group 2 (CH 2 CC
Silane surfactant containing H-), for example, CH 2 = CH- (CH 2 ) n -SiC
l 3 (n: an integer; about 10 to 20 is easiest to handle) is 3 × 10 −3 to 5 × 10 −2
A chemically adsorbed liquid dissolved at a concentration of about M is prepared, and the glass substrate 1 is immersed at room temperature for about 1 hour (at this time, the glass substrate does not necessarily have to be immersed in the chemically adsorbed liquid. It is sufficient that the glass substrate is brought into contact with the chemically adsorbed liquid by applying or spraying), and since the surface of the glass substrate 1 contains a hydroxyl group as shown in FIG. The chlorosilyl group reacts with the hydroxyl group to form a bond of the following formula [5] on the surface, and the monolayer protective film 3a containing the vinyl group 2 is chemically bonded via an oxygen atom to form a single layer. It was formed as a protective film. The thickness was 20-30 Angstroms (2-3 nm). Next, in an atmosphere containing oxygen or N 2 (even in air), the glass substrate is irradiated with an energy beam (electron beam, X-ray, γ-ray, ultraviolet ray or ion beam) at 3 Mra.
Irradiation of about d, a hydroxyl (—OH) group 4 (in an oxygen atmosphere) on the vinyl group 2 as shown in FIG. 2, or an amino (—NH 2 ) group 5 (as shown in FIG. 3) (In a nitrogen atmosphere). When the atmosphere is air, both are generated. The addition of these functional groups to the vinyl group was confirmed by FTIR analysis. In addition, the vinyl groups arranged on the surface at this time can be treated in a plasma containing O 2 and / or N 2 by a single-molecule adsorption protective film to which an —OH group is added as shown in FIG. 3b or a monomolecular adsorption protective film 3c to which an -NH 2 group is added as shown in FIG. 3 can be formed. Finally, the following general formula as a silane-based surfactant containing a fluorocarbon group [6] F (CF 2) m (CH 2) n SiR q X 3-q [6] ( wherein, m =. 1 to 15, n = 0 to 15, m + n = 10 to 30, and q = 0 to 2; R represents an alkyl group; X represents a halogen atom such as F, Cl, Br, I or an alkoxy group. In the above, if m + n is less than 10, the molecular chains are too short to be easily oriented, and if it exceeds 30, the fluidity is lost.
R is a lower alkyl group such as a methyl group. Or the following general formula [7] F (CF 2 ) m (CH 2 ) n A (CH 2 ) p Si (CH 3 ) q X3 -q [7] (where m = 1 to 8, n = 0-2, m + n = 1-10, p = 5-25, q = 0
Indicates each integer of 2, A is di methylsilyl (-Si (CH 3) 2 - ) represents, X
Represents a halogen atom such as F, Cl, Br, I or an alkoxy group. In the above, if m + n is less than 1 and p is less than 5, the molecular chains are too short to be easily oriented, and if m + n exceeds 10 and p exceeds 25, the fluidity is lost. Substances represented by), for example, using the following equation containing a fluorocarbon group and a chlorosilyl group [8] CF 3 CH 2 O (CH 2) 15 SiCl 3 [8], 80% n- hexadecane had been previously prepared , 12% carbon tetrachloride, 8% chloroform in a mixed solution of an organic solvent at a concentration of about 2 × 10 −3 to 5 × 10 −2 M to prepare a chemical adsorption solution, Alternatively, when the glass substrate 1 on which 3c is formed is immersed at room temperature for about 1 hour (in this case, the glass substrate does not necessarily need to be immersed in the chemical adsorption solution, and the solution is applied or sprayed to form the chemical adsorption solution. And a glass substrate). As shown in FIG. 2, the surface has --OH groups, and as shown in FIG. 3, --NH 2 groups are exposed on the surface. Chlorosilane Surfactants Containing Fluorinated Carbon Groups Formula on the surface and chlorosilyl groups and -OH group or -NH 2 groups by elimination reaction [9] Or the following formula [10] Is formed, and the monomolecular adsorption film 6 containing a fluorocarbon group is formed on the surface of the glass substrate.
The monomolecular accumulation protective film 3e shown in FIG. 5 can be formed as a monomolecular accumulation film 7 in a state of being chemically bonded to the lower monomolecular adsorption protective film 3d, or as shown in FIG. Thus, a monomolecular cumulative film 8 was formed in a state of being chemically bonded between the layers. When a protective film is not required between the water-repellent and oil-repellent film on the surface and the glass substrate, a fluorocarbon group-containing chlorosilane surfactant is used on the glass surface in the first chemical adsorption step. Only one monomolecular adsorption film containing groups could be formed. On the other hand, when a plurality of monolayer protective films are required, CH 2 =
Using CH— (CH 2 ) n —SiCl 3 and repeating the steps of chemisorption and irradiation, and finally adsorbing a chlorosilane-based surfactant containing a fluorocarbon group as an adsorption reagent, the number of required layers can be reduced. A glass having a monomolecular adsorption film containing fluorocarbon groups accumulated on the outermost surface via the protective film was produced. In the above embodiment, CF 3 CH 2 O (CH 2 ) 15 SiCl 3 was used as a silane-based surfactant containing a fluorocarbon group to be formed on the outermost surface. However, other than this, for example, CF 3 ( CH 2) 2 Si (CH 3 ) 2 (CH 2) 15 SiCl 3 F (CF 2) 4 (CH 2) 2 Si (CH 3) 2 (CH 2) 9 SiCl 3 CF 3 COO (CH 2) 15 SiCl 3 CF 3 (CF 2 ) 7 (CH 2 ) 2 SiCl 3 could be used. In addition, a similar coating could be formed on the surface of the glass substrate by using each of the above substances in which a chlorosilyl group was substituted with an alkoxysilyl group. Next, in order to determine the critical surface energy of various monolayers formed by adsorption, various liquids with various surface tensions were evaluated by the wetting angle of the droplets (automatic contact angle meter (Kyowa Interface Science Co., Ltd. ))). The results are shown in FIG. The sixth
The figure shows the relationship between the measured contact angle cos θ and the surface tension of the droplet. The sixth
Using the figure, the critical surface energies of the various coatings are expressed as cos θ
Can be obtained by extrapolating until is 1.0. As is clear from FIG. 6, the critical surface energy became smaller as the number of fluorine contained in the coating increased, and became about 17 dyne / cm or less when the number of fluorine was 9 or more. This value was smaller than that of polytetrafluoroethylene (about 18 dyne / cm: functional fluorine-containing polymer, published by Nikkan Kogyo Shimbun), and it was confirmed that the water- and oil-repellency of the surface of these films was extremely high. . Further, when the wetting angle of the surface with water was measured, it was 100 to 150 degrees depending on the roughness of the substrate surface. Therefore, by using this glass window, the window glass of the vehicle can be made wiper-less, and fogging of the eyeglass surface can be prevented. In FIG. 6, F17 is F (CF 2 ) 8 Si (CH 3 ) 2 (CH 2 ) 9 SiCl 3 , and F9 is F (CF 2 ) 4 (CH 2 ) 2 O (CH 2 ) 15 SiCl 3 , F3 indicates a film formed of CF 3 COO (CH 2 ) 15 SiCl 3 , and NTS indicates a film formed of CH 3 (CH 2 ) 19 SiCl 3 . In addition, in the said Example, although the tempered glass was used for the base material, the method of this invention
Or any glass used for vehicles such as automobiles, trains, airplanes, etc., for the purpose of modifying glass surfaces such as window glass and mirrors, glass containers and lenses, and other glass surfaces that require water and oil repellency Applicable to Further, the glass is not limited to colorless and transparent glass, and may be, for example, frosted glass having a roughened surface, colored glass that is further colored, or glass fiber. In short, the present invention is included in any category as long as it is a technique in which glass having a hydrophilic group on the surface and a silane surfactant containing a fluorocarbon group are chemically bonded to the glass surface using a chemisorption method. Note that the protective film does not necessarily need to be a monomolecular film. It may be a coated organic thin film, a silica coat film using a sol-gel method, or a transparent vapor-deposited film. However, when the surface is not hydrophilic, it is necessary to make the surface hydrophilic by a usual method such as corona irradiation or sputtering, and then act on the fluorocarbon group-containing silane surfactant of the present invention. Effects of the Invention In the glass of the present invention, a chlorosilane-based surfactant containing a fluorocarbon group or an alkoxysilane-based surfactant containing a fluorocarbon group is caused to adsorb to the surface of glass or glass having a protective film, and a fluorocarbon group is formed on the surface. Is exposed and covalently bonded to the glass and the protective film at the interface with the glass and the protective film, that is, a water- and oil-repellent film with a thickness of nanometer level integrated with the substrate can be formed. This has the effect of providing a glass having high antifouling properties and practically excellent durability which does not peel off without impairing the properties and gloss. Furthermore, in the glass of the present invention, since the surface is covered with an organic group of fluorocarbon, the friction coefficient of the surface is reduced and the scratch resistance of the glass itself is improved, so that the glass is more tough than the base glass itself. There is also an effect that can be improved.

【図面の簡単な説明】 第1図〜第5図は、本発明の一実施例の化学吸着膜作成時のガラス表面の状態
を分子レベルまで拡大した工程断面概念図、第6図は各種化学吸着膜の表面エネ
ルギーを求めるためにそれぞれの被膜上で測定した、各種表面張力を有する液滴
に対する接触角のcosθをプロットした図である。 1 ガラス基体 2 ビニル基 3a,3b,3c 単分子吸着保護膜 3d,3e 下層の単分子吸着保護膜 4 水酸基 5 アミノ基 6 フルオロカーボン基を含む単分子吸着膜 7,8 単分子累積膜
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 to FIG. 5 are conceptual diagrams of process cross-sections in which the state of a glass surface at the time of forming a chemisorption film according to one embodiment of the present invention is enlarged to the molecular level, and FIG. FIG. 9 is a diagram plotting cos θ of a contact angle with respect to a droplet having various surface tensions, which is measured on each of the films to determine the surface energy of the adsorption film. DESCRIPTION OF SYMBOLS 1 Glass base 2 Vinyl group 3a, 3b, 3c Monomolecular adsorption protective film 3d, 3e Lower monomolecular adsorption protective film 4 Hydroxyl group 5 Amino group 6 Monomolecular adsorption film containing fluorocarbon group 7,8 Monomolecular accumulation film

Claims (1)

【特許請求の範囲】 (1)下記一般式[1] (式中、m=1〜15、n=0〜15、ただしm+n=10〜30の各整数を表
わす) または下記一般式[2](式中、m=1〜8、n=0〜2、ただしm+n=1〜10、p=5〜25の各
整数を表し、Aはジメチルシリル基(−Si(CH32−)を表わす。) で表わされる有機基がナノメーターレベルの膜厚の単分子膜で、親水性基を表面
に有するガラス基材の最表面または親水性基を有する保護膜で覆われたガラス基
材の最表面に酸素または窒素原子を介して化学結合してなることを特徴としたガ
ラス。
[Claims] (1) The following general formula [1] (Wherein, m = 1 to 15, n = 0 to 15, where m + n = integers of 10 to 30) or the following general formula [2] (Wherein, m = 1~8, n = 0~2 proviso m + n = 1~10,, represent each an integer of p = 5 to 25, A is di methylsilyl (-Si (CH 3) 2 - a) The organic group represented by is a monomolecular film with a thickness of nanometer level, and the hydrophilic group is
Glass substrate covered with a protective film having a hydrophilic group or the outermost surface of a glass substrate having
Glass characterized by being chemically bonded to the outermost surface of a material via oxygen or nitrogen atoms.

Family

ID=

Similar Documents

Publication Publication Date Title
JP2545642B2 (en) Glass
EP0492545B1 (en) Transparent substrate with monomolecular film thereon and method of manufacturing the same
JP4198598B2 (en) Super water-repellent substrate
JP3588364B2 (en) Surface treated substrate and surface treatment method for substrate
JP2809889B2 (en) Water- and oil-repellent coating and method for producing the same
JP3334611B2 (en) Method for producing water-repellent article, water-repellent article and solution for forming water-repellent coating
JPH08337772A (en) Automatic surface treatment for imparting water repellency
US6503567B2 (en) Transparent substrate and method of manufacturing the same
US6521334B1 (en) Transparent substrate and method of manufacturing the same
JP2004136630A (en) Functional film coated article, and its manufacturing method
JP2622316B2 (en) Water / oil repellent film and method for producing the same
JP3165672B2 (en) Article having water / oil repellent coating and method for producing the same
JP2577203B2 (en) Method for producing antifouling glass
JP2004002187A (en) Water repellent and oil repellent coating film
JP2577204B2 (en) Water and oil repellent glass
JPH0786146B2 (en) Water- and oil-repellent antifouling coating and method for producing the same
JP2545642C (en)
JP2007137767A (en) Water-repellent and oil-repellent glass substrate
JP3150133B2 (en) Article having a water-repellent and oil-repellent surface and a hydrophilic surface and method for producing the same
JP3017965B2 (en) Article having a water- and oil-repellent coating and method for forming the same
JP3444524B2 (en) Article and glass article having water- and oil-repellent coating
JP2577204C (en)
JP2577203C (en)
JP2807451B2 (en) Method for producing translucent substrate
JP2690876B2 (en) Translucent substrate