JP2544998B2 - Indoor permeability tester - Google Patents

Indoor permeability tester

Info

Publication number
JP2544998B2
JP2544998B2 JP2323505A JP32350590A JP2544998B2 JP 2544998 B2 JP2544998 B2 JP 2544998B2 JP 2323505 A JP2323505 A JP 2323505A JP 32350590 A JP32350590 A JP 32350590A JP 2544998 B2 JP2544998 B2 JP 2544998B2
Authority
JP
Japan
Prior art keywords
pressure
pressure side
valve
storage tank
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2323505A
Other languages
Japanese (ja)
Other versions
JPH04194640A (en
Inventor
勝志 中野
章 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Doryokuro Kakunenryo Kaihatsu Jigyodan
Original Assignee
Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Doryokuro Kakunenryo Kaihatsu Jigyodan filed Critical Doryokuro Kakunenryo Kaihatsu Jigyodan
Priority to JP2323505A priority Critical patent/JP2544998B2/en
Publication of JPH04194640A publication Critical patent/JPH04194640A/en
Application granted granted Critical
Publication of JP2544998B2 publication Critical patent/JP2544998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は難透水性岩石等を対象とする室内透水試験装
置に関するものである。更に詳しく述べると、高圧側と
低圧側を同容積に設定することで短時間でトランジェン
トパルス法による測定を実施でき且つ配管系を工夫する
ことで定水位法による測定も実施可能とした透水試験装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial field of use] The present invention relates to an indoor water permeability test apparatus for difficult-to-permeate rocks and the like. More specifically, by setting the same volume on the high-pressure side and the low-pressure side, the transient pulse method can be measured in a short time, and the constant water level method can also be used by devising the piping system. It is about.

この装置は、地下空間利用(高レベル放射性廃棄物地
層処分施設、地下石油備蓄施設、無重量実験施設等)や
高温岩体発電など岩盤の水理特性評価に係わる室内透水
試験において有用な技術である。
This device is a useful technique in indoor permeability tests related to the hydraulic characteristics evaluation of bedrock such as underground space utilization (high-level radioactive waste geological disposal facility, underground oil storage facility, weightless experimental facility, etc.) and hot rock power generation. is there.

[従来の技術] 従来型の試験装置では、定水位法に代表されるように
水量変化を計測し、透水係数を求める方法が広く用いら
れている。この定水位法は、供試体(試験サンプル)の
両端を一定の圧力水頭差に保ち、供試体内の飽和間隙水
に動水勾配を与えて流れが定常状態(単位時間当たりの
排出水量が安定している状態)になった後、単位時間当
たりの排出水量を計測して透水係数を求める方法であ
る。
[Prior Art] In a conventional test apparatus, a method of measuring a water flow rate and obtaining a water permeability coefficient is widely used as represented by a constant water level method. In this constant water level method, both ends of the specimen (test sample) are kept at a constant pressure head difference, and a hydraulic gradient is applied to the saturated pore water in the specimen so that the flow is in a steady state (the discharge water amount per unit time is stable. It is a method of obtaining the hydraulic conductivity by measuring the amount of discharged water per unit time after the current state).

しかし定水位法を難透水性岩石に適用した場合、供試
体の一端から排出する水量は極めて少なくなり試験時間
が長くかかる。また排出水量が少ないために、配管接続
部からの漏洩や室温変化に伴う水の体積変化の測定系へ
の影響が顕著となり、測定精度が大幅に低下する。
However, when the constant water level method is applied to a poorly permeable rock, the amount of water discharged from one end of the specimen is extremely small and the test time is long. In addition, since the amount of discharged water is small, the influence of the leakage from the pipe connection portion and the volume change of water due to the room temperature change on the measurement system becomes remarkable, and the measurement accuracy is significantly reduced.

そこで難透水性岩石の透水試験方法としてトランジェ
ントパルス法が提案された。これによる評価方法は一次
元の非定常浸透流の微分方程式から導かれるが、大別す
ると近似解による評価方法と厳密解による評価方法とが
ある。試験は、第2図に示すように、供試体10の両端に
体積V1,V2が既知の貯留槽12,14を用いて行う。初期状態
で各貯留槽内の圧力P1,P2及び供試体内の間隙水圧を等
しく設定し(PINIT)、試験開始時(t=0)において
圧力パルスΔPを貯留槽12に与えると、時間の経過と共
に供試体10内の動水勾配が変化し、圧力伝播が生じる。
近似解に基づく評価方法では、第3図に示すように、P1
−Pf(但しPfは収束圧)は時間の経過に伴い指数関数的
に減少し、時間tとP1−Pfの対数との傾きαから透水係
数を求めることができる。
Therefore, the transient pulse method was proposed as a permeability test method for poorly permeable rocks. The evaluation method based on this is derived from the differential equation of one-dimensional unsteady seepage flow. When roughly classified, there are an evaluation method by an approximate solution and an evaluation method by an exact solution. As shown in FIG. 2, the test is carried out using storage tanks 12 and 14 having known volumes V 1 and V 2 at both ends of the specimen 10. In the initial state, the pressures P 1 and P 2 in each storage tank and the pore water pressure in the specimen are set to be equal (P INIT ), and a pressure pulse ΔP is applied to the storage tank 12 at the start of the test (t = 0), The hydraulic gradient in the specimen 10 changes with the passage of time, and pressure propagation occurs.
In the evaluation method based on approximate solution, as shown in FIG. 3, P 1
−P f (where P f is the convergent pressure) decreases exponentially with the passage of time, and the hydraulic conductivity can be obtained from the slope α between the time t and the logarithm of P 1 −P f .

[発明が解決しようとする課題] 例えば高レベル放射性廃棄物の地層処分施設の設計に
際しては、非常に長期間にわたる岩盤中の地下水の流れ
を正確に予測することが必要となる。このような長期間
の地下水流動を考える場合には、従来、不透水層あるい
は半透水層のように取り扱われてきた難透水性岩盤も試
験対象となり、その透水性を評価しなければならない。
しかしながら、前述したように、既存の定水位法による
試験装置では難透水性岩石の測定は極めて困難であり、
その測定精度は信頼性に乏しい。
[Problems to be Solved by the Invention] For example, when designing a geological disposal facility for high-level radioactive waste, it is necessary to accurately predict the groundwater flow in rock for a very long period of time. When considering such a long-term groundwater flow, a poorly permeable rock bed that has been conventionally treated as an impermeable layer or a semi-permeable layer should also be tested, and its permeability should be evaluated.
However, as mentioned above, it is extremely difficult to measure the hardly permeable rock with the existing test equipment by the constant water level method.
The measurement accuracy is poor in reliability.

他方、上記トランジェントパルス法の近似解に基づく
評価方法は厳密解に基づく評価方法にくらべ比較的大き
な容積の貯留槽を必要とし、最終的な収束圧Pfを確認す
る必要があるため測定に時間がかかる欠点がある。また
厳密解による評価方法では、本質的に室温変化に伴う間
隙圧力の変動を補正することが困難であり、透水係数評
価の際にカーブフィッティング等に多大な時間を要し非
効率的であるなどの欠点がある。
On the other hand, the evaluation method based on the approximate solution of the transient pulse method requires a storage tank with a relatively large volume compared to the evaluation method based on the exact solution, and it is necessary to confirm the final convergence pressure P f There is a drawback. In addition, it is difficult to correct the fluctuation of the pore pressure due to the room temperature change by the evaluation method based on the exact solution, and it takes a lot of time for the curve fitting etc. in the evaluation of the hydraulic conductivity, which is inefficient. There is a drawback of.

いずれにしても難透水性岩石を対象とした試験方法に
ついては未だ詳細な検討がなされておらず、標準的な試
験装置についても提案されていない。
In any case, a detailed examination has not yet been made on the test method for the hardly permeable rock, and no standard test device has been proposed.

本発明の目的は、上記のような従来技術の問題点を解
決し、トランジェントパルス法と定水位法の両方法を実
施可能であり、難透水性岩石でも短時間でより高精度で
測定できる室内透水試験装置を提供することにある。
The object of the present invention is to solve the problems of the above-mentioned conventional techniques, and to be able to carry out both the transient pulse method and the constant water level method. It is to provide a water permeability test apparatus.

[課題を解決するための手段] 本発明は、内部に供試体を収容し拘束圧力を与える圧
力容器と、高圧側及び低圧側の貯留槽を具備し、それら
の弁や圧力センサを備えた配管系で結合した室内透水試
験装置である。
[Means for Solving the Problems] The present invention includes a pressure vessel for accommodating a specimen therein to apply a restraining pressure, a high-pressure side storage tank and a low-pressure side storage tank, and a pipe provided with these valves and pressure sensors. It is an indoor water permeation test device connected by a system.

供試体は、その両端に加圧盤を配置すると共に側面を
メンブレムで覆った状態で圧力容器内部に収容され、該
圧力容器の内部と連絡する拘束圧力配管系により圧力容
器内部に充満する圧力流体によってメンブレムの外側か
ら拘束圧力が与えられる。
The specimen is housed inside the pressure vessel with pressure plates arranged at both ends and the side surfaces covered with a membrane, and the pressure fluid filled inside the pressure vessel by the restraint pressure piping system communicating with the inside of the pressure vessel. Restraint pressure is applied from the outside of the membrane.

配管系は、高圧側及び低圧側の貯留槽からそれぞれ第
1及び第2の弁を介して圧力容器の供試体の相対向する
端部に連絡する高圧側及び低圧側の間隙圧力配管系と、
間隙圧力配管系の第1の弁と圧力容器の間と第2の弁と
圧力容器の間の連絡路であって高圧側圧力センサと第3
の弁と低圧側圧力センサとが直列になり且つ第3の弁と
並列に差圧センサを設けた圧力センサ系配管と、高圧側
又は低圧側の間隙圧力配管系の圧力容器側に組み込まれ
る第4の弁と、高圧側及び低圧側の貯留槽にそれぞれ接
続される第5及び第6の弁を有する配管系と、高圧側貯
留槽と第5の弁の間と低圧側貯留槽と第6の弁の間を連
絡する連絡配管系とからなる。そして高圧側貯留槽及び
それに付属する高圧側配管系の容積と、低圧側貯留槽及
びそれに付属する低圧側配管系の容積とか等しくなるよ
うに設定してある。
The piping system is a high-pressure side and low-pressure side gap pressure piping system that communicates from the high-pressure side and low-pressure side storage tanks to the opposite ends of the specimen of the pressure vessel via the first and second valves, respectively.
A communication path between the first valve and the pressure vessel of the pore pressure piping system and between the second valve and the pressure vessel, which is the high pressure side pressure sensor and the third path.
No. 1 and a low pressure side pressure sensor are connected in series, and a pressure sensor system piping provided with a differential pressure sensor in parallel with the third valve and a pressure vessel side of a high pressure side or low pressure side gap pressure piping system are installed. No. 4 valve, a piping system having fifth and sixth valves respectively connected to the high pressure side and low pressure side storage tanks, between the high pressure side storage tank and the fifth valve, and the low pressure side storage tank and the sixth valve. It consists of a communication piping system that connects between the valves. The volumes of the high-pressure side storage tank and the high-pressure side piping system attached thereto are set to be equal to the volumes of the low-pressure side storage tank and the low-pressure side piping system attached thereto.

ここで両貯留槽の外側をパイプで取り囲み一定温度の
液体を自動循環させると共に、両貯留槽とその周辺配管
及び圧力センサを保護容器に納め、その保護容器内に断
熱材を充填して両貯留槽を同温で制御することが好まし
い。
Here, the outsides of both storage tanks are surrounded by pipes to automatically circulate a liquid at a constant temperature, and both storage tanks and their surrounding pipes and pressure sensors are placed in a protective container, and the protective container is filled with a heat insulating material to store both of them. It is preferable to control the bath at the same temperature.

[作用] 各弁の開閉の制御とそれに伴う配管経路の選択、圧力
供給状態の制御などにより、トランジェントパルス法又
は定水位法を択一的に実施する。同容積の高圧側貯留槽
と低圧側貯留槽(いずれも配管系も含めて)は、トラン
ジェントパルス法を実施する場合に最終的な収束圧を予
測可能とし、試験時間の短縮に寄与する。
[Operation] The transient pulse method or the constant water level method is selectively performed by controlling the opening / closing of each valve, the selection of the piping path associated therewith, and the control of the pressure supply state. The high-pressure side storage tank and the low-pressure side storage tank (both including the piping system) of the same volume make it possible to predict the final converged pressure when performing the transient pulse method, and contribute to shortening the test time.

また両貯留槽の一定温度制御は、温度変動に伴う測定
精度の低下を最小限に抑える作用を果たす。
In addition, the constant temperature control of both storage tanks serves to minimize the decrease in measurement accuracy due to temperature fluctuations.

[実施例] 第1図は本発明に係る室内透水試験装置の一実施例を
示している。この装置は全体を試験室内に設置するもの
であって、圧力容器20と、高圧側貯留槽22と、低圧側貯
留槽24を具備し、それらが弁や圧力センサを備えた各種
配管系で結合されている。
[Example] FIG. 1 shows an example of an indoor water permeation test apparatus according to the present invention. This device is installed in a test chamber as a whole and includes a pressure vessel 20, a high pressure side storage tank 22, and a low pressure side storage tank 24, which are connected by various piping systems equipped with valves and pressure sensors. Has been done.

圧力容器20の内部には供試体26を収容する。柱状の供
試体26の上下を加圧盤27a,27bで挾み、周囲をゴム製
(フッ素ゴムまたはクロロプレンゴム)のメンブレム28
で取り囲み、締付けバンド29で固定する。これらと圧力
容器20の内壁との間の空間に拘束圧力配管系30が連絡
し、供試体26にメンブレム28を密着させるようになって
いる。
The sample 26 is housed inside the pressure vessel 20. A columnar specimen 26 is sandwiched between the top and bottom with pressure plates 27a and 27b, and the periphery is made of rubber (fluorine rubber or chloroprene rubber) membrane 28
Enclose with and tighten with the tightening band 29. The restraining pressure piping system 30 communicates with the space between these and the inner wall of the pressure vessel 20, and the membrane 28 is brought into close contact with the sample 26.

ここで圧力容器20は、締め付けボルト21により上蓋20
aと胴部20b及び底蓋20cに3分割できる構造である。圧
力容器20の上蓋20aと胴部20bを取り外した状態で、メン
ブレム28で被覆した供試体26を加圧盤27bの上に載せ、
上方の加圧盤27aを上から被せてメンブレム28が上下の
加圧盤27a,27bを覆っている部分を締め付けバンド29で
固定する。この後、間隙圧力を供給する配管42aを加圧
盤27aに接続し、圧力容器20の胴部20bと上蓋20aを上側
から被せるように取り付ける。更に、圧力容器20の上蓋
20aの中央に取り付けられた軸押さえシャフト25を圧力
容器20内部の加圧盤27aの上端まで挿入して供試体26の
位置を固定する。例えば、軸押さえシャフト25にはネジ
加工を施し、スパナ等で回転させることで圧力容器内部
へ挿入できるようにし、試験中に圧力容器内部の圧力が
漏洩しないようにテーパー面とOリングを併用した遮水
機能を施しておく。
Here, the pressure vessel 20 is fixed to the upper lid 20 with the tightening bolts 21.
It is a structure that can be divided into three parts, a, the body portion 20b, and the bottom lid 20c. With the upper lid 20a and the body portion 20b of the pressure vessel 20 removed, the specimen 26 covered with the membrane 28 is placed on the pressure plate 27b,
The upper pressure plate 27a is covered from above, and the portion where the membrane 28 covers the upper and lower pressure plates 27a and 27b is fixed with the tightening band 29. After that, the pipe 42a for supplying the gap pressure is connected to the pressure plate 27a, and the body 20b of the pressure vessel 20 and the upper lid 20a are attached so as to cover from above. Furthermore, the upper lid of the pressure vessel 20
The shaft pressing shaft 25 attached to the center of 20a is inserted to the upper end of the pressure plate 27a inside the pressure vessel 20 to fix the position of the sample 26. For example, the shaft holding shaft 25 is threaded so that it can be inserted into the pressure vessel by rotating it with a spanner or the like, and a tapered surface and an O ring are used together so that the pressure inside the pressure vessel does not leak during the test. Have a water blocking function.

ここで上下の加圧盤27a,27bは供試体26とほぼ同じ直
径の円筒形状である。加圧盤27a,27bの一面は直接供試
体26に接触して間隙水圧を供試体端面に与える。つまり
加圧盤27a,27bは、供試体両端の間隙水圧の配管系と接
続して水を供試体26の端面まで供給する役目をしてい
る。加圧盤中の三角形の黒塗りした部分は、間隙水圧が
円柱形の供試体端面にまんべんなくいきわたるようにす
る部分であり、例えば、蜂の巣状(放射状)に間隙水圧
系ラインを分散させるためのピンホールが開けられた構
造などとする。また加圧盤27a,27bの側面はメンブレム2
8の上下端と面接触し、供試体26に拘束圧力要の圧力流
体(例えばシリコンオイル)が直接接触するのを防ぐ役
割も果たしている。
Here, the upper and lower pressing plates 27a and 27b have a cylindrical shape having substantially the same diameter as the sample 26. One surface of the pressure plates 27a and 27b directly contacts the specimen 26 to apply pore water pressure to the end surface of the specimen. That is, the pressure plates 27a, 27b are connected to the pore water pressure piping system at both ends of the test piece to supply water to the end surface of the test piece 26. The triangular black-painted part in the pressure board is a part that allows the pore water pressure to spread evenly over the end face of the cylindrical specimen. The structure should be open. Also, the side faces of the pressure plates 27a and 27b have a membrane 2
It also makes a surface contact with the upper and lower ends of 8 and plays a role of preventing the pressure fluid (for example, silicone oil) that requires a restraining pressure from directly contacting the specimen 26.

高圧側貯留槽22と圧力容器20内の下部との間の第1の
弁31を有する高圧側間隙圧力配管系40を接続する。この
高圧側間隙圧力系は下部加圧盤27bを貫通して供試体26
の下端面に達している。低圧側貯留槽24と圧力容器20と
の間には第2の弁32を有する低圧側間隙圧力配管系42を
接続する。低圧側間隙圧力系は圧力容器内空間に設置し
た配管42a及び上部加圧盤27aを通って供試体26の上端面
に達している。高圧側間隙圧力配管系40の第1の弁31と
圧力容器20との間と、低圧側間隙圧力配管系42の第2の
弁32と圧力容器20との間に連絡路を設ける。この連絡路
は高圧側圧力センサ44と第3の弁33(差圧センサ48の安
全弁)と低圧側圧力センサ46とが直列になり且つ第3の
弁と並列に差圧センサ48を設けた圧力センサ系配管50で
ある。また高圧側間隙圧力配管系40の圧力容器20側に第
4の弁34を組み込んである。更に高圧側貯留槽22には第
5の弁35を有する配管52を接続し、低圧側貯留槽24に第
6の弁36を有する配管54を接続する。そして高圧側貯留
槽22と第5の弁35との間の、低圧側貯留槽24と第6の弁
36の間を、第7の弁37を備えた連絡配管56で連絡する。
A high pressure side gap pressure piping system 40 having a first valve 31 is connected between the high pressure side storage tank 22 and a lower portion inside the pressure vessel 20. This high-pressure side gap pressure system penetrates the lower pressure plate 27b and
Has reached the bottom surface of. A low pressure side gap pressure piping system 42 having a second valve 32 is connected between the low pressure side storage tank 24 and the pressure vessel 20. The low-pressure side gap pressure system reaches the upper end surface of the sample 26 through the pipe 42a installed in the space inside the pressure vessel and the upper pressure plate 27a. A communication path is provided between the first valve 31 of the high pressure side clearance pressure piping system 40 and the pressure vessel 20 and between the second valve 32 of the low pressure side clearance pressure piping system 42 and the pressure vessel 20. This communication path is a pressure in which the high pressure side pressure sensor 44, the third valve 33 (safety valve of the differential pressure sensor 48) and the low pressure side pressure sensor 46 are in series and the differential pressure sensor 48 is provided in parallel with the third valve. The sensor system piping 50. Further, a fourth valve 34 is incorporated on the pressure vessel 20 side of the high pressure side gap pressure piping system 40. Further, a pipe 52 having a fifth valve 35 is connected to the high pressure side storage tank 22, and a pipe 54 having a sixth valve 36 is connected to the low pressure side storage tank 24. Then, between the high pressure side storage tank 22 and the fifth valve 35, the low pressure side storage tank 24 and the sixth valve
A communication pipe 56 having a seventh valve 37 is connected between 36.

そして本発明では、高圧側貯留槽22及びそれに付属す
る高圧側配管系の容積と、低圧側貯留槽24及びそれに付
属する低圧側配管系の容積とが等しくなるように設定す
る。
Further, in the present invention, the volumes of the high-pressure side storage tank 22 and the high-pressure side piping system attached thereto are set to be equal to the volumes of the low-pressure side storage tank 24 and the low-pressure side piping system attached thereto.

この装置全体を試験室に設置する。試験室は密閉構造
とし、外部環境から隔離する。そして空調機を連続運転
して試験室に隣接した温度制御室から間接的に試験室温
度を制御する。両貯留槽22,24の外壁を銅パイプ60で取
り囲み、その中を試験室温と同温の水を自動循環させる
と共に、両貯留槽22,24とその周辺配管及び圧力センサ
等を保護容器(図示せず)に納め、その保護容器内に断
熱材を充填する。その他の配管部分も管長を極力短くし
断熱処理を施す。これによって温度変化に伴う試験水の
体積変化、圧力変化を最小限にとどめるようしている。
高圧側貯留槽22と低圧側貯留槽24にはそれぞれ温度セン
サ62a,62bを設け、貯留槽内の流体温度を連続記録でき
る構造になっている。
The entire device is installed in the test room. The test room shall be sealed and isolated from the external environment. Then, by continuously operating the air conditioner, the temperature of the test room is indirectly controlled from the temperature control room adjacent to the test room. The outer walls of both storage tanks 22 and 24 are surrounded by a copper pipe 60, and water having the same temperature as the test room temperature is automatically circulated inside the storage tanks 22 and 24 and their surrounding pipes and pressure sensors, etc. (Not shown) and fill the protective container with heat insulating material. The other pipes should be heat-insulated by making the pipe length as short as possible. As a result, changes in the volume and pressure of the test water due to changes in temperature are minimized.
The high-pressure side storage tank 22 and the low-pressure side storage tank 24 are provided with temperature sensors 62a and 62b, respectively, so that the fluid temperature in the storage tank can be continuously recorded.

トランジェントパルス法及び定水位法による基本的な
試験方法は前述した通りである。本装置では次のような
手順で行う。
Basic test methods by the transient pulse method and the constant water level method are as described above. This device uses the following procedure.

まず拘束圧力は、トランジェントパルス法でも定水位
法でも同じように、供試体26を周辺から包む圧力であ
り、通常シリコンオイルを使用して加えられる。この拘
束圧力は供試体が本来地層中に存在していたことから、
その時の岩盤地圧に相当する圧力である。第1図におい
て「拘束圧力」と表示した部分からポンプ等(図示せ
ず)によりシリコンオイルを圧力容器内へ注入し、充満
した後はブースターポンプ等(図示せず)の市販の加圧
装置によって所定の圧力になるまで加圧する。この時、
供試体26は、上下端が加圧盤27a,27bで、側面がメンブ
レム28で覆われているので、直接シリコンオイルが供試
体に接触することはなく、メンブレム28及び加圧盤27a,
27bを周辺から包み込む圧力として供試体26を拘束す
る。なお、シリコンオイルの充満部分は、第1図におい
て点々お付して表してある。
First, the constraining pressure is the pressure that wraps the sample 26 from the periphery, similarly to the transient pulse method and the constant water level method, and is usually applied using silicone oil. This restraining pressure is because the specimen originally existed in the formation,
The pressure is equivalent to the ground pressure at that time. Silicone oil is injected into the pressure vessel by a pump or the like (not shown) from the portion labeled as "restraint pressure" in Fig. 1, and after filling, it is boosted by a commercially available pressurizing device such as a booster pump or the like (not shown). Pressurize to the prescribed pressure. This time,
Since the specimen 26 has pressure plates 27a and 27b at the upper and lower ends and a membrane 28 on the side surface, the silicone oil does not directly contact the specimen, and the membrane 28 and the pressure plate 27a,
The specimen 26 is restrained as a pressure to wrap 27b from the periphery. The filled portion of silicone oil is indicated by dots in FIG.

次に、供試体両端への間隙圧力は、通常は蒸留水又は
地下水を用いて加えられる。試験前の間隙水圧配管系へ
は、ポンプ等(図示せず)により第5の弁35の配管系か
ら、第6の弁36を閉鎖し他の弁全てを開いた状態で供給
する。ここでの間隙圧力は試験前の状態なので供試体26
の両端で等しい圧力になっている。通常この時点の間隙
水圧は供試体が本来地層中に存在していた際に受けてい
た水圧に等しい程度となる。なお、この間隙水圧は上述
した拘束圧力以上となることはない。もし拘束圧力以上
であると、間隙水圧として利用した水がメンブレムを外
側へ押しやって拘束圧力側へ逃げる現象が発生してしま
い、供試体の透水性を把握することができなくなるから
である。
Then, the pore pressure on both ends of the specimen is usually applied using distilled water or groundwater. The pore water pressure piping system before the test is supplied from the piping system of the fifth valve 35 by a pump or the like (not shown) with the sixth valve 36 closed and all other valves open. Since the gap pressure here is the state before the test, the specimen 26
The pressure is equal at both ends of. Normally, the pore water pressure at this point is about the same as the water pressure the specimen had when it originally existed in the formation. It should be noted that this pore water pressure never exceeds the constraint pressure described above. If the pressure is equal to or higher than the binding pressure, the water used as the pore water pressure pushes the membrane outward and escapes to the binding pressure side, which makes it impossible to grasp the water permeability of the specimen.

トランジェントパルス法による試験では、拘束圧力を
加えて供試体26を安定した後、第6の弁36を閉とし、そ
れ以外の全ての弁を開とする。次に第5の弁35を通して
間隙圧力を供給し、所定圧力に達したならば該第5の弁
35を閉じる。そして閉鎖区間内の圧力の安定を待って第
3の弁33、第4の弁34、及び第7の弁37を閉として、供
試体26の両端に加わる間隙水圧配管系を完全に分離す
る。その後、第5の弁35を開として圧力パルス(数kgf/
cm2)を加えて直ちに第5の弁35を閉じる。高圧側貯留
槽22の圧力が安定した後、第4の弁34を開として試験を
開始する。供試体の両端に加わる間隙水圧に差が存在し
ているので、間隙水圧の高い供試体下側から間隙水圧の
低い供試体上側へ供試体の中を通過して圧力が伝播す
る。この時の圧力変化を差圧センサ48で測定し、この際
の時間と圧力変化の関係より透水係数を求める。
In the test by the transient pulse method, after restraining pressure is applied to stabilize the sample 26, the sixth valve 36 is closed and all the other valves are opened. Next, the gap pressure is supplied through the fifth valve 35, and when the predetermined pressure is reached, the fifth valve 35
Close 35. After the pressure in the closed section stabilizes, the third valve 33, the fourth valve 34, and the seventh valve 37 are closed to completely separate the pore water pressure piping system applied to both ends of the specimen 26. After that, the fifth valve 35 is opened and the pressure pulse (several kgf /
cm 2 ) is added and the fifth valve 35 is closed immediately. After the pressure in the high-pressure side storage tank 22 has stabilized, the fourth valve 34 is opened and the test is started. Since there is a difference in the pore water pressure applied to both ends of the specimen, the pressure propagates through the specimen from the lower side of the specimen with high pore pressure to the upper side of the specimen with low pore pressure. The pressure change at this time is measured by the differential pressure sensor 48, and the hydraulic conductivity is obtained from the relationship between the time and the pressure change at this time.

本発明では高圧側貯留槽と低圧側貯留槽とは配管など
も含めて容積を等しく設計してあるため、最終的な収束
圧Pf(第3図参照)を予測することができ、試験を短時
間で実施できる。また温度変化に伴う試験水の体積変化
や圧力変動が生じても、それらの影響が相殺される。近
似解による評価方法では供試体26内部に貯留する水量を
無視しているために、供試体26の間隙内の貯留量が増え
るに伴い誤差が大きくなる。この誤差を最小限にとど
め、且つ10-7cm/secのオーダーまで測定可能とするため
に各貯留槽の容積を約1183ccにしてある。
In the present invention, since the high-pressure side storage tank and the low-pressure side storage tank are designed to have the same volume including the pipes and the like, the final converged pressure P f (see FIG. 3) can be predicted, and the test can be performed. Can be implemented in a short time. Further, even if the volume of the test water changes or the pressure changes due to the temperature change, those effects are offset. In the evaluation method based on the approximate solution, since the amount of water stored inside the specimen 26 is ignored, the error increases as the amount of storage in the gap of the specimen 26 increases. The volume of each storage tank is set to approximately 1183 cc in order to minimize this error and enable measurement to the order of 10 -7 cm / sec.

定水位法で加えるのは圧力水頭と背圧であが、トラン
ジェントパルス法で供試体両端にそれぞれ加える間隙水
圧と同じ配管系を使えるので、装置としては基本的には
同じでよい。定水位法による試験では、上記と同様、拘
束圧力を加えて供試体26を安定した後、第1の弁31、第
2の弁32、第4の弁34、第5の弁35、第6の弁36をそれ
ぞれ開とし、第3の弁33と第7の弁37を閉とする。次に
第5の弁35を通して圧力水頭を供給し、第1の弁31及び
第4の弁34を通過して供試体26の下端面に圧力を与え
る。供試体26の上端面から排出される水は第2の弁32、
低圧側貯留槽24、第6の弁36を経由して水量計測装置
(図示せず)で測定する。この試験の際、気泡の影響を
最小限にとどめるため、計測系から空気による背圧も加
えられるようになっている。
The pressure head and back pressure are applied by the constant water level method, but the same piping system as the pore water pressure applied to both ends of the specimen by the transient pulse method can be used, so basically the same equipment is sufficient. In the test by the constant water level method, similarly to the above, after restraining the sample 26 by stabilizing pressure, the first valve 31, the second valve 32, the fourth valve 34, the fifth valve 35, and the sixth valve The valves 36 are opened, and the third valve 33 and the seventh valve 37 are closed. Next, the pressure head is supplied through the fifth valve 35, passes through the first valve 31 and the fourth valve 34, and pressure is applied to the lower end surface of the sample 26. The water discharged from the upper end surface of the specimen 26 is supplied to the second valve 32,
It is measured by a water amount measuring device (not shown) via the low pressure side storage tank 24 and the sixth valve 36. At the time of this test, in order to minimize the effect of bubbles, back pressure due to air is also applied from the measurement system.

このように本装置はトランスジェントパルス法と定水
位法が可能であり、両方法を連続して実施できる。この
装置はトランジェントパルス法では10-7cm/sec〜10-12c
m/sec程度、定水位法では10-4cm/sec〜10-8cm/sec程度
の測定範囲を有する。
As described above, this apparatus can perform the transient pulse method and the constant water level method, and both methods can be continuously performed. This device is 10 -7 cm / sec to 10 -12 c for transient pulse method.
It has a measuring range of about m / sec, and about 10 -4 cm / sec to 10 -8 cm / sec by the constant water level method.

なお、供試体26とメンブレン28との間の側面流を防止
するために、側面からの漏水を確認する実験に基づき拘
束圧力と圧力水頭との間に7kgf/cm2以上の差圧を与える
ようになっている。
In order to prevent lateral flow between the specimen 26 and the membrane 28, it is necessary to apply a pressure difference of 7 kgf / cm 2 or more between the restraining pressure and the pressure head based on an experiment to confirm water leakage from the side. It has become.

本試験装置では従来極めて測定困難とされてきた難透
水性岩石を短時間で且つ高精度で測定することが可能と
なった。試験結果を第1表〜第4表に示す。
With this test equipment, it has become possible to measure highly impervious rocks that have been extremely difficult to measure in a short time with high accuracy. The test results are shown in Tables 1 to 4.

第1表は福島県産の三城目安山岩を用い、定水位法に
より3個の供試体を3回ずつ測定したものである。この
結果より、それぞれのデータはほぼ等しく、10-8cm/sec
オーダーにおける定水位法の再現性が高いことが分か
る。
Table 1 shows three test specimens measured three times by the constant water level method using the Sanjo Nodoriyama rock from Fukushima Prefecture. From this result, each data is almost equal, 10 -8 cm / sec
It can be seen that the constant water level method in order has high reproducibility.

第2表に示す試験結果は、上記第1表と同様に三城目
安山岩を用い、トランジェントパルス法で4回(*印を
付したK−1a〜K−1d)、定水位法で1回(K−1e)、
同じ供試体を繰り返し試験したものである。この結果よ
り、両方法のデータはほぼ等しくトランジェントパルス
法での再現性が高いことが分かる。またここでの試験時
間を比較すると、定水位法では約3時間であるのに対し
てトランジェントパルス法では数分で済み、トランジェ
ントパルス法を用いた場合は大幅な試験時間の短縮が可
能である。
The test results shown in Table 2 are the same as those in Table 1 above, using the Mijo Nohyama rock, four times by the transient pulse method (K-1a to K-1d marked with *), and once by the constant water level method. (K-1e),
The same test piece was repeatedly tested. From this result, it can be seen that the data of both methods are almost equal and the reproducibility of the transient pulse method is high. Also, comparing the test time here, it takes about 3 hours for the constant water level method, but only a few minutes for the transient pulse method, and it is possible to greatly reduce the test time when the transient pulse method is used. .

第3表は、岐阜県産の土岐花崗岩を用い、トランジェ
ントパルス法により繰り返し2回試験を行った結果であ
る。2回の試験データはほぼ等しく、10-10cm/secオー
ダーにおいても再現性が高いことが分かる。
Table 3 shows the results of two repeated tests by the transient pulse method using Toki granite produced in Gifu Prefecture. The two test data are almost the same, and it can be seen that the reproducibility is high even in the order of 10 -10 cm / sec.

第4表は、西南日本外帯結晶片岩を用い、トランジェ
ントパルス法により繰り返し2回試験を行った結果であ
る。2回の試験データはほぼ等しく、10-12cm/secオー
ダーにおいても再現性が高いことが分かる。
Table 4 shows the results obtained by repeating the test twice by the transient pulse method using the crystal schist of the outer zone of Southwest Japan. The two test data are almost the same, and it can be seen that the reproducibility is high even in the order of 10 -12 cm / sec.

なお本発明の装置はトランジェントパルス法において
厳密解に基づく評価にも使用できる。また圧力媒体とし
て水に限らず他の液体や気体でも測定可能であり、その
ため例えばモルタルや合成樹脂などの人工材料の透過性
や透気性の評価にも利用可能である。
The apparatus of the present invention can also be used for evaluation based on an exact solution in the transient pulse method. Further, not only water but also other liquids or gases can be measured as the pressure medium, and therefore, it can be used for evaluation of permeability and air permeability of artificial materials such as mortar and synthetic resin.

[発明の効果] 本発明は上記のように構成した貯留槽システム(配管
経路、弁、圧力センサ、差圧センサ等の配置)であるた
め、トランジェントパルス法のみならず定水位法も可能
であり、両方法を連続的に実施できる。また本発明では
高圧側貯留槽と低圧側貯留槽の容積を配管も含めて等し
く設定してあるため、圧力の収束点Pfを予測でき、それ
によって大幅な試験時間の短縮が可能であるし、室温変
化に伴う流体の体積変化や圧力変動が生じても、その影
響を相殺でき測定精度が向上する。
EFFECTS OF THE INVENTION Since the present invention is a storage tank system (arrangement of piping paths, valves, pressure sensors, differential pressure sensors, etc.) configured as described above, not only the transient pulse method but also the constant water level method is possible. Both methods can be carried out continuously. Further, in the present invention, since the volumes of the high-pressure side storage tank and the low-pressure side storage tank are set equal, including the piping, the convergence point P f of the pressure can be predicted, and thereby the test time can be significantly shortened. Even if a change in volume of the fluid or a change in pressure occurs due to a change in room temperature, the influence can be offset and the measurement accuracy is improved.

特に両貯留槽の外側をパイプで取り囲み一定温度の液
体を自動循環させる共に、両貯留槽とその周辺配管及び
圧力センサを保護容器に納め、その保護容器内に断熱材
を充填して両貯留槽を同温で制御するように構成する
と、測定精度は更に向上する。
In particular, the outsides of both storage tanks are surrounded by pipes to automatically circulate a liquid at a constant temperature, and both storage tanks and their peripheral pipes and pressure sensors are placed in a protective container, and the protective container is filled with a heat insulating material. The measurement accuracy is further improved by configuring so as to be controlled at the same temperature.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る室内透水試験装置の一実施例を示
す説明図、第2図はトランジェントパルス法の説明図、
第3図は近似解に基づく評価方法の説明図である。 20……圧力容器、22……高圧側貯留槽、24……低圧側貯
留槽、26……供試体。
FIG. 1 is an explanatory view showing an embodiment of an indoor water permeability test apparatus according to the present invention, FIG. 2 is an explanatory view of a transient pulse method,
FIG. 3 is an explanatory diagram of an evaluation method based on an approximate solution. 20 …… pressure vessel, 22 …… high pressure side storage tank, 24 …… low pressure side storage tank, 26 …… specimen.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】供試体の両端に加圧盤を配置すると共に供
試体の側面をメンブレムで覆った状態でそれらを内部に
収容できる圧力容器と、 該圧力容器の内部と連絡し、圧力容器内部に充満する圧
力流体によってメンブレムの外側から供試体に拘束圧力
を与える拘束圧力配管系と、 高圧側及び低圧側の貯留槽と、 高圧側及び低圧側の貯留槽からそれぞれ第1及び第2の
弁を介し圧力容器内の加圧盤を貫通して供試体の相対向
する端部に間隙圧力を印加する高圧側及び低圧側の間隙
圧力配管系と、 間隙圧力配管系の第1の弁と圧力容器の間と、第2の弁
と圧力容器の間との連絡路であって、高圧側圧力センサ
と第3の弁と低圧側圧力センサとが直列になり且つ第3
の弁と並列に差圧センサを設けた圧力センサ系配管と、 高圧側又は低圧側の間隙圧力配管系の圧力容器側に組み
込まれる第4の弁と、 高圧側及び低圧側の貯留槽にそれぞれ接続される第5及
び第6の弁を有する配管系と、 高圧側貯留槽と第5の弁の間と、低圧側貯留槽と第6の
弁の間とを連絡すると共に、第7の弁を有する連絡配管
系を具備し、 高圧側貯留槽及びそれに付属する高圧側配管系と低圧側
貯留槽及びそれに付属する低圧側配管系を同容積に設定
したことを特徴とする室内透水試験装置。
1. A pressure vessel having pressure plates arranged at both ends of the specimen and capable of accommodating them while the side surfaces of the specimen are covered with a membrane, and connecting the inside of the pressure vessel to the inside of the pressure vessel. A constraint pressure piping system that applies a constraint pressure to the sample from the outside of the membrane by the pressure fluid that is filled, a high-pressure side and a low-pressure side storage tank, and a high-pressure side and a low-pressure side storage tank, respectively. Through the pressure plate in the pressure vessel to apply the gap pressure to the opposite ends of the test piece, the high and low pressure side gap pressure piping systems, the first valve of the gap pressure piping system and the pressure vessel Between the second valve and the pressure vessel, the high pressure side pressure sensor, the third valve and the low pressure side pressure sensor are in series and
Pressure sensor piping provided with a differential pressure sensor in parallel with the valve, a fourth valve installed on the pressure vessel side of the high pressure side or low pressure side gap pressure piping system, and a high pressure side and low pressure side storage tank, respectively. A pipe system having fifth and sixth valves connected to each other, a high pressure side storage tank and a fifth valve, a low pressure side storage tank and a sixth valve, and a seventh valve An indoor water permeation test device, comprising: a communication pipe system having a high pressure side storage tank and a high pressure side piping system attached thereto, and a low pressure side storage tank and a low pressure side piping system attached thereto.
【請求項2】両貯留槽の外側をパイプで取り囲みその中
を一定温度の液体を自動循環させると共に、両貯留槽と
その周辺配管及び圧力センサを保護容器に納め、その保
護容器内に断熱材を充填して両貯留槽を同温で制御する
請求項1記載の装置。
2. The outside of both storage tanks is surrounded by pipes, a liquid having a constant temperature is automatically circulated therein, and both storage tanks and their peripheral pipes and pressure sensors are housed in a protective container, and a heat insulating material is provided in the protective container. 2. The apparatus according to claim 1, wherein both storage tanks are filled with and are controlled at the same temperature.
JP2323505A 1990-11-27 1990-11-27 Indoor permeability tester Expired - Fee Related JP2544998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2323505A JP2544998B2 (en) 1990-11-27 1990-11-27 Indoor permeability tester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2323505A JP2544998B2 (en) 1990-11-27 1990-11-27 Indoor permeability tester

Publications (2)

Publication Number Publication Date
JPH04194640A JPH04194640A (en) 1992-07-14
JP2544998B2 true JP2544998B2 (en) 1996-10-16

Family

ID=18155442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2323505A Expired - Fee Related JP2544998B2 (en) 1990-11-27 1990-11-27 Indoor permeability tester

Country Status (1)

Country Link
JP (1) JP2544998B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100478854B1 (en) * 2002-04-25 2005-03-24 한국항공우주산업 주식회사 Apparatus to test pressure for a tube

Also Published As

Publication number Publication date
JPH04194640A (en) 1992-07-14

Similar Documents

Publication Publication Date Title
JP3041417B2 (en) Permeability test equipment for rock specimens
CN111122416B (en) Test system for measuring gas permeation parameters of ultra-low permeability medium under multi-field multi-phase coupling condition
US4253327A (en) Method and apparatus for measuring rock permeability at elevated pressures and temperature
US3850040A (en) Sorption analysis apparatus and method
US4555934A (en) Method and apparatus for nonsteady state testing of permeability
JP3381991B2 (en) Water permeability measuring apparatus and water permeability measuring method using the same
CN103940722B (en) The proving installation of a kind of gas bearing shale factor of porosity and absorption parameter and method
US4562726A (en) Method and apparatus for testing the compressibility of subterranean samples
CN101526442A (en) A high suction double-cell extractor
WO1987004246A1 (en) System for measuring the pore volume and permeability of very tight core plugs and method therefor
JP2544998B2 (en) Indoor permeability tester
US3140599A (en) Method and apparatus for determining permeability of earth formations
US2829515A (en) Porosimeter
CN111693676B (en) System and method for measuring bubble point pressure of crude oil in porous medium
US3180133A (en) Method and apparatus for determining permeability
JP3120674B2 (en) Permeability test equipment
Martín et al. GMT: Material Tests on Specimens of Kunigel VI Bentonite/Sand (20/80) Mixture
Senseny et al. Influence of deformation history on permeability and specific storage of Mesaverdes and stone
US20240019351A1 (en) Test system for measuring gas permeation parameters of ultra-low permeability medium in multi-field and multi-phase coupling conditions
Heck Development of equipment for studying pore pressure effects in rock
CN114324008A (en) Temperature control type high-suction unsaturated soil triaxial test system and method
CN112362551B (en) Indoor convenient determination method and system for permeability of tight rock
US8806954B1 (en) Steady state method to determine unsaturated hydraulic conductivity at the ambient water potential
US3152471A (en) Permeability measurement
Pollard et al. Air diffusion through membranes in triaxial tests

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees