JP2544616B2 - Solid-state laser device - Google Patents

Solid-state laser device

Info

Publication number
JP2544616B2
JP2544616B2 JP7607887A JP7607887A JP2544616B2 JP 2544616 B2 JP2544616 B2 JP 2544616B2 JP 7607887 A JP7607887 A JP 7607887A JP 7607887 A JP7607887 A JP 7607887A JP 2544616 B2 JP2544616 B2 JP 2544616B2
Authority
JP
Japan
Prior art keywords
laser medium
cooling
lamp
solid
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7607887A
Other languages
Japanese (ja)
Other versions
JPS63244692A (en
Inventor
信紀 井澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HOOYA KK
SHINGIJUTSU JIGYODAN
Original Assignee
HOOYA KK
SHINGIJUTSU JIGYODAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HOOYA KK, SHINGIJUTSU JIGYODAN filed Critical HOOYA KK
Priority to JP7607887A priority Critical patent/JP2544616B2/en
Publication of JPS63244692A publication Critical patent/JPS63244692A/en
Application granted granted Critical
Publication of JP2544616B2 publication Critical patent/JP2544616B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0404Air- or gas cooling, e.g. by dry nitrogen

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアニーリングマスクリペアなどの精密加工に
利用される固体レーザ装置に関するものである。
The present invention relates to a solid-state laser device used for precision processing such as annealing mask repair.

〔従来の技術〕[Conventional technology]

従来からある代表的な固体レーザ装置としては、楕円
体形状のリフレクタの各焦点位置に、それぞれ円柱状の
レーザ活性媒体(以下レーザ媒体と略す)と励起用ラン
プとを平行に対向配置したものなどが知られているが、
このようなものにおいては入力エネルギが増加してくる
と、円柱状(ロツド型)レーザ媒体の中心と表面での温
度差が原因で、出力エネルギが不安定になつたり、レー
ザ媒体が破壊したりしてしまいレーザ発振が停止してし
まうなどの問題があつた。そのため、近年スラブ(SLA
B)型〔SPIE Vol 69(1975)Laser Systems P38〜4
4〕と呼ばれる表面冷却、表面励起形の固体レーザ装置
が開発、使用されるに至つている。
A typical conventional solid-state laser device is one in which a cylindrical laser active medium (hereinafter abbreviated as a laser medium) and an excitation lamp are arranged in parallel at each focal position of an ellipsoidal reflector. Is known,
In such a device, when the input energy increases, the output energy becomes unstable or the laser medium is destroyed due to the temperature difference between the center and the surface of the cylindrical (rod type) laser medium. However, there was a problem that the laser oscillation stopped. Therefore, in recent years slab (SLA
B) type [SPIE Vol 69 (1975) Laser Systems P38〜4
A surface-cooled, surface-pumped solid-state laser device called 4] has been developed and used.

これは板状のレーザ媒体を挟んで励起用ランプを配置
し、その間に冷却水,圧縮空気等の冷媒を流すように構
成したもので、レーザ光はレーザ媒体の励起用ランプに
面する対向主表面で全反射を繰り返すことによりジグザ
グの光路を通り、その際冷却された主表面の低温部分と
中心の高温部分とを交互に繰り返して進行することか
ら、平均化された温度分布状態のスラブ型レーザ媒体中
を伝搬することで、前記のロッド型レーザ媒体の欠点が
軽減される。第7図および第8図はこのようなスラブ型
固体レーザ装置の従来例を示すもので、これを概略説明
すると、1はレーザ媒体、2はレーザ媒体1を保持する
保持器、3は前記保持器2および励起用ランプ4を収納
するランプハウジングで、このランプハウジング3は保
持器2を挟んで対向配置された左右一対のハウジング本
体3A,3Bで構成され、その夫々の互いに対向する内側面
には前記ランプ4を収納する収納凹部5A,5Bが形成され
ており、これらの凹部5A,5Bにはそれぞれ2本のランプ
4が上下にかつレーザ媒体1と平行に収納配置され、ま
た該凹部5A,5Bの内壁面は円弧状に湾曲形成されかつ金
めつきが施されることにより各ランプ4から出射した光
を反射し前記レーザ媒体1の主表面1a,1bにそれぞれ集
光させるリフレクタ6,7を形成している。各ランプ4は
冷却管8によつて囲繞されている。そして各収納凹部5
A,5Bはその前面開口部が透光性ガラス基板9A,9Bによつ
てそれぞれ機密に密閉され、内部に前記ランプ4を冷却
するための冷却水13がパイプ10を介して供給されるよう
に構成されている。また各励起用ランプ4の両端部に設
けられた電極取出部11を保持する保持器12は前記冷却管
8にイオン交換水15(又は冷却ガス)を供給するための
パイプ14がそれぞれ接続されている。
This is a structure in which excitation lamps are arranged with a plate-shaped laser medium sandwiched between them, and a coolant such as cooling water or compressed air is flown between them. By repeating the total reflection on the surface, it passes through the zigzag optical path, and at that time, the low temperature part of the cooled main surface and the high temperature part of the center are alternately repeated. Propagation in the laser medium alleviates the drawbacks of the rod-type laser medium described above. FIG. 7 and FIG. 8 show a conventional example of such a slab type solid-state laser device. The outline thereof will be described. 1 is a laser medium, 2 is a holder for holding a laser medium 1, and 3 is the holder. Is a lamp housing for accommodating the container 2 and the excitation lamp 4, and the lamp housing 3 is composed of a pair of left and right housing bodies 3A and 3B that are opposed to each other with the retainer 2 interposed therebetween. Are formed with storage recesses 5A, 5B for storing the lamps 4, and two lamps 4 are respectively stored in the recesses 5A, 5B in the vertical direction and in parallel with the laser medium 1, and the recesses 5A are also disposed. The inner wall surfaces of 5B are curved in a circular arc shape and are plated with gold to reflect the light emitted from each lamp 4 and focus it on the main surfaces 1a, 1b of the laser medium 1, respectively. Forming 7. Each lamp 4 is surrounded by a cooling pipe 8. And each storage recess 5
The front openings of A and 5B are hermetically sealed by translucent glass substrates 9A and 9B, and cooling water 13 for cooling the lamp 4 is supplied to the inside through a pipe 10. It is configured. A holder 12 for holding the electrode lead-out portions 11 provided at both ends of each excitation lamp 4 is connected with a pipe 14 for supplying ion-exchanged water 15 (or cooling gas) to the cooling pipe 8. There is.

前記ランプハウジング3の上面中央部には図示を省略
した循環器から送出された冷却ガス16を前記レーザ媒体
1の各主表面1a,1bに直接供給するための冷媒供給部材1
7が配設されている。冷却ガス16は前記各主表面1a,1bと
前記透光性ガラス基板9A,9Bとの間にそれぞれ形成され
た冷媒通路18A,18Bに送り込まれることにより、前記各
主表面1a,1bに沿つて下方に流れてレーザ媒体1を冷却
し、ランプハウジング3が載置固定されている光学ベー
ス20内に設けられた排出通路21A,21Bを通つてパイプ22
に導かれる。この場合、前記冷却ガス16と前記冷却管8
に供給されるイオン交換水15とは、前記パルイプ10によ
つて各収納凹部5A,5B内に循環供給される冷却水13によ
つて冷却される。
At the center of the upper surface of the lamp housing 3, a coolant supply member 1 for directly supplying a cooling gas 16 sent from a circulator (not shown) to the main surfaces 1a, 1b of the laser medium 1 is provided.
7 are provided. Cooling gas 16 is sent into the refrigerant passages 18A, 18B formed between the main surfaces 1a, 1b and the translucent glass substrates 9A, 9B, respectively, along the main surfaces 1a, 1b. The laser medium 1 flows downward to cool the laser medium 1, and the pipe 22 passes through the discharge passages 21A and 21B provided in the optical base 20 on which the lamp housing 3 is mounted and fixed.
Be led to. In this case, the cooling gas 16 and the cooling pipe 8
The ion-exchanged water 15 supplied to the above is cooled by the cooling water 13 that is circulated and supplied into each of the storage recesses 5A and 5B by the palup 10.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

しかしながら、このような従来の固体レーザ装置におい
ては、レーザ媒体1の各主表面1a,1bの温度分布は、励
起用ランプ4の直射光を最も強く受ける部分、すなわち
ランプ4と対向する部分が他の部分に比して高温になつ
ているので、このような不均一な温度分布を呈している
レーザ媒体1の主表面1a,1bに冷却ガス16を該面と平行
に流すと、どの部分に対しても冷却能力は同じであるた
め、レーザ媒体1の高温部を十分にかつ効果的に冷却す
ることができなかつた。特に、励起用ランプ4からの入
力エネルギの繰り返しが早くなつたとき、レーザ媒体1
の第9図A−A線で切断した断面方向に第10図(a)に
示すような不均一な温度分布を生じ、しかもレーザ媒体
1の中心部の温度だけが冷却ガス16と接している主表面
1a,1bと比較して高い温度となり、そのため熱応力が発
生してレーザ媒体1を破壊するという問題があつた。
However, in such a conventional solid-state laser device, the temperature distribution on each of the main surfaces 1a and 1b of the laser medium 1 is different from that of the portion most strongly receiving the direct light of the excitation lamp 4, that is, the portion facing the lamp 4. Since the temperature is higher than that of the portion, the cooling medium 16 is flown in parallel to the main surfaces 1a and 1b of the laser medium 1 having such a non-uniform temperature distribution. On the other hand, since the cooling capacity is the same, it was impossible to sufficiently and effectively cool the high temperature portion of the laser medium 1. In particular, when the input energy from the excitation lamp 4 is rapidly repeated, the laser medium 1
9A shows a non-uniform temperature distribution as shown in FIG. 10A in the cross-sectional direction taken along the line AA, and only the temperature of the central portion of the laser medium 1 is in contact with the cooling gas 16. Main surface
Since the temperature is higher than that of 1a and 1b, there is a problem that thermal stress is generated and the laser medium 1 is destroyed.

したがつて、本発明では上記のような欠点を改善し、
レーザ媒体の主表面を効果的に冷却し得、熱応力による
破壊を未然に防止し得る固体レーザ装置を提供しようと
するものである。
Therefore, the present invention improves the above-mentioned drawbacks,
An object of the present invention is to provide a solid-state laser device capable of effectively cooling the main surface of a laser medium and preventing damage due to thermal stress.

〔問題点を解決するための手段〕[Means for solving problems]

本発明に係る固体レーザ装置は上記目的を達成するた
めに、励起用ランプにより励起されるレーザ媒体の高温
部分と低温部分のうち少なくとも高温部分に対して冷媒
を実質的に垂直に吹きつける噴出口と、前記レーザ媒体
の高温部分から低温部分に沿つて冷媒を流通させる冷媒
通路とを設けたものである。
In order to achieve the above-mentioned object, the solid-state laser device according to the present invention has an ejection port for blowing a refrigerant substantially vertically to at least a high temperature portion of a high temperature portion and a low temperature portion of a laser medium excited by an excitation lamp. And a coolant passage for allowing a coolant to flow from a high temperature portion to a low temperature portion of the laser medium.

〔作用〕[Action]

本発明においてはレーザ活性媒体の主表面高温部分に
冷媒をほぼ垂直に吹きつけているので、該高温部分を効
果的に冷却し、主表面全体の温度分布を均一化させる。
In the present invention, the cooling medium is blown almost vertically to the high temperature portion of the main surface of the laser active medium, so that the high temperature portion is effectively cooled and the temperature distribution on the entire main surface is made uniform.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例に基づいて詳細に説
明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第1図は本発明に係る固体レーザ装置の一実施例を示
す第3図I−I線断面図、第2図は一方のハウジング本
体の斜視図、第3図は同装置の外観斜視図、第4図は第
3図IV−IV線断面図、なお、図中第7図〜第9図に示し
た従来装置と同一構成部品,部分に対しては同一符号を
以つて示し、その説明を省略する。本実施例は各ハウジ
ング本体3A,3Bの収納凹部5A,5Bに励起用ランプ4をそれ
ぞれ1つずつ配置した例を示す。また、レーザ媒体1と
してはNd3+を6重量%含んだリン酸塩系レーザガラスLH
G−5(HOYA製)を、幅W=15mm,流さL=55mm,厚さt
=4mmの薄板状に加工したもので、θ=33゜に加工した
端面から入射した光が互いに平行な対向主表面1a,1bで
交互に6回全反射を繰り返すように形成されている。そ
して、前記励起用ランプ4は内径6mm,肉厚1mmの真空容
器を用いた円柱状のXeランプで、励起長は約50mmとされ
る。
1 is a sectional view taken along the line I--I of FIG. 3 showing an embodiment of a solid-state laser device according to the present invention, FIG. 2 is a perspective view of one housing body, and FIG. 3 is an external perspective view of the same device. FIG. 4 is a sectional view taken along the line IV-IV in FIG. 3, in which the same components and parts as those in the conventional apparatus shown in FIGS. Omit it. The present embodiment shows an example in which one excitation lamp 4 is arranged in each of the housing recesses 5A, 5B of the housing bodies 3A, 3B. Further, as the laser medium 1, a phosphate laser glass LH containing 6% by weight of Nd 3+
G-5 (made by HOYA), width W = 15mm, flow L = 55mm, thickness t
It is processed into a thin plate of 4 mm, and light incident from the end surface processed to θ = 33 ° is formed so that total reflection is alternately repeated six times on the opposite main surfaces 1a and 1b parallel to each other. The excitation lamp 4 is a cylindrical Xe lamp using a vacuum container having an inner diameter of 6 mm and a wall thickness of 1 mm, and the excitation length is about 50 mm.

さて、前記各ハウジング本体3A,3Bはレーザ媒体1の
保持器2を挟んで対向するように光学ベース20上にビス
30によつて固定され、その互いに対向する内側面中央部
には適宜深さの凹陥部31A,31Bが形成されており、この
各凹陥部31A,31Bの内底面中央部に前記ランプ4を収納
する半円形の収納凹部5A,5Bが該ランプ4の長手方向に
形成されている。各収納凹部5A,5Bの内壁面は金めつき
処理されることによりリフレクタ6,7をそれぞれ形成し
ている。また、各収納凹部5A,5Bは、厚さ2mm程度でパイ
レツクスガラス等からなり表面が光の散乱を防ぐために
精密研磨された透光性ガラス基板9A,9Bによつて機密に
密閉され、さらに前記各凹陥部31A,31Bの開口部にもそ
れぞれ上下一対からなる透光性ガラス基板32aと32b,33a
と33bがそれぞれ配設されている。この場合、前記透光
性ガラス基板9A,9Bはその周縁部を前記各凹陥部31A,31B
の内底面にOリング34を介して密接させ、かつ押えプレ
ート35によつて押圧固定されている。押えプレート35は
止めねじ36によつて凹陥部内底面に固定されている。同
様に前記透光性ガラス基板32a,32b,33a,33bも各ハウジ
ング本体3A,3Bの内側面にOリング37を介して密接さ
れ、かつねじ止め固定される押えプレート38によつてそ
れぞれ押圧固定されている。そして前記各透光性ガラス
基板32aと32bおよび33aと33bとの間に形成されたスリッ
ト状の隙間は、冷媒としての冷却ガス16を前記レーザ媒
体1の各主表面1a,1bに対してほぼ垂直に噴射する冷媒
噴出口39A,39Bを形成している。
Now, the housing bodies 3A, 3B are screwed on the optical base 20 so as to face each other with the holder 2 for the laser medium 1 interposed therebetween.
The recesses 31A and 31B having a proper depth are formed in the central portions of the inner side surfaces which are fixed by 30, and are opposed to each other, and the lamp 4 is housed in the central portion of the inner bottom surface of each of the recessed portions 31A and 31B. Semicircular storage recesses 5A, 5B are formed in the longitudinal direction of the lamp 4. The inner wall surfaces of the storage recesses 5A, 5B are plated with gold to form reflectors 6, 7, respectively. Each of the storage recesses 5A, 5B is hermetically sealed by a translucent glass substrate 9A, 9B whose surface is made of pyrex glass or the like with a thickness of about 2 mm and precision-polished to prevent light scattering. The translucent glass substrates 32a and 32b and 33a, each of which has a pair of upper and lower sides, are also formed in the openings of the recesses 31A and 31B.
And 33b are arranged respectively. In this case, the translucent glass substrate 9A, 9B has a peripheral edge portion of each of the concave portions 31A, 31B.
It is brought into close contact with the inner bottom surface of the plate through an O-ring 34, and is pressed and fixed by a holding plate 35. The pressing plate 35 is fixed to the inner bottom surface of the recess by a set screw 36. Similarly, the translucent glass substrates 32a, 32b, 33a, 33b are also pressed and fixed by pressing plates 38 that are closely attached to the inner surfaces of the housing bodies 3A, 3B via O-rings 37 and fixed by screws. Has been done. The slit-shaped gaps formed between the translucent glass substrates 32a and 32b and 33a and 33b allow the cooling gas 16 serving as a coolant to be substantially applied to the main surfaces 1a and 1b of the laser medium 1. Refrigerant ejection ports 39A, 39B for vertically ejecting are formed.

これらの噴出口39A,39Bは前記ランプ4、換言すれば
前記各主表面1a,1bのうちの励起用ランプ4と最も接近
し、その直射光を最も多く受ける最高部に対応して形成
されている。
These jet ports 39A, 39B are formed so as to correspond to the lamp 4, that is to say, the closest to the excitation lamp 4 of the main surfaces 1a, 1b and to receive the most direct light. There is.

この場合、本実施例は各冷媒噴出口39A,39Bを2枚の
ガラス基板32aと32b,33aと33bによつてその全長に亘つ
て等間隔に形成したが、これに限らず例えば第5図
(a),(b)に示すような形状のガラス基板32aと32b
(33aと33bも同様)を用いて中央部分の噴出口幅を大き
くしたり、あるいは同図(c)に示すように1枚のガラ
ス基板32に形成された多数の小孔により冷媒噴出口39を
形成してもよいものである。
In this case, in the present embodiment, the respective refrigerant ejection ports 39A, 39B are formed at equal intervals over the entire length by the two glass substrates 32a and 32b, 33a and 33b, but not limited to this, for example, FIG. Glass substrates 32a and 32b having shapes as shown in (a) and (b)
(The same applies to 33a and 33b) to increase the width of the jet port in the central portion, or as shown in FIG. 7 (c), the refrigerant jet port 39 is formed by a large number of small holes formed in one glass substrate 32. May be formed.

前記各ハウジング本体3A,3Bの内部には一端が該本体3
A,3Bの外側面に開口し他端が前記各凹陥部31A,31Bに連
通する合計6つの冷媒流路41,42が3個ずつ上下2段に
それぞれ形成され、これら通路41,42の一端開口部には
パイプ43がそれぞれ接続されている。
One end of each housing body 3A, 3B is located inside the housing body 3A, 3B.
A total of six refrigerant flow channels 41, 42, which are open to the outer side surfaces of A and 3B and communicate with the recessed portions 31A and 31B at the other end, are formed in three upper and lower two stages, one end of each of the passages 41 and 42. Pipes 43 are connected to the openings, respectively.

前記各ハウジング本体3A,3Bの内側面と保持器2との
間には前記各冷却ガス16の冷媒通路18A,18Bが形成され
ており、これらの通路18A,18Bは、光学ベース20に設け
られた排出通路21A,21Bおよびランプハウジング3上に
設置された冷媒排出部材47の排出通路48にそれぞれ連通
されている。
Refrigerant passages 18A, 18B for the cooling gas 16 are formed between the inner surfaces of the housing bodies 3A, 3B and the cage 2, and the passages 18A, 18B are provided in the optical base 20. The discharge passages 21A, 21B and the discharge passage 48 of the refrigerant discharge member 47 installed on the lamp housing 3 are respectively communicated with each other.

次に、上記構成からなる固定レーザ装置の冷却につい
て説明する。冷却ガス循環器(図示せず)から供給され
る冷却ガス16(圧力0.5kg/cm2の圧縮空気)は、パイプ4
3を通つて各ハウジング本体3A,3B内に形成された冷媒流
路41,42に導かれ、凹陥部31A,31Bに流入すると、冷媒噴
出口39A,39Bからレーザ媒体1の各主表面1a,1bにほぼ垂
直に吹きつけられる。この時、各主表面1a,1bの冷却ガ
ス16が吹きつけられる部分は励起用ランプ4の直射光を
最も多く受け、最も高い温度に加熱された高温部である
ため、該高温部の熱エネルギが冷却ガス16に効率よく移
動し、高温部の温度を効果的に低下させることになる。
一方、高温部より熱エネルギを奪つた前記冷却ガス16
は、冷媒通路18A,18Bに沿つてレーザ媒体1の前記高温
部よりは励起用ランプ4の距離が離れているため比較的
熱エネルギの蓄積が少ない低温部へと熱交換を行いつつ
移動し、光学ベース20の排出通路21A,21Bおよび冷媒排
出部材47の排出通路48へと排出される。そして、これら
の通路から排出された冷却ガス16はパイプ22を通つて冷
媒の循環器に戻る。
Next, cooling of the fixed laser device having the above configuration will be described. The cooling gas 16 (compressed air having a pressure of 0.5 kg / cm 2 ) supplied from a cooling gas circulator (not shown) is supplied to the pipe 4
When it is guided to the coolant flow paths 41, 42 formed in the respective housing bodies 3A, 3B through 3 and flows into the recessed portions 31A, 31B, the main surface 1a of the laser medium 1 is discharged from the coolant ejection ports 39A, 39B. Sprayed almost vertically on 1b. At this time, since the portion of each main surface 1a, 1b to which the cooling gas 16 is blown is the high temperature portion that receives the most direct light of the excitation lamp 4 and is heated to the highest temperature, the heat energy of the high temperature portion is high. Efficiently moves to the cooling gas 16 and effectively lowers the temperature of the high temperature part.
On the other hand, the cooling gas 16 deprived of heat energy from the high temperature part
Is moved along the refrigerant passages 18A and 18B to the low temperature portion where the heat energy is relatively less accumulated because the excitation lamp 4 is located farther than the high temperature portion of the laser medium 1 while performing heat exchange, It is discharged to the discharge passages 21A and 21B of the optical base 20 and the discharge passage 48 of the refrigerant discharge member 47. Then, the cooling gas 16 discharged from these passages returns to the refrigerant circulator through the pipe 22.

一方、各励起用ランプ4自体を冷却するためにイオン
交換水15の循環器から供給される前記イオン交換水15
は、電極保持部12内に形成された流路(図示せず)を通
つて冷却管8内に流入し、前記ランプ4の外壁と接触す
るとこにより熱交換を行い、熱エネルギを奪つたイオン
交換水は他方の電極保持部12′に形成された流路を通つ
て再びイオン交換水の循環器へと戻る。
On the other hand, the ion-exchanged water 15 supplied from the circulator of the ion-exchanged water 15 for cooling the respective excitation lamps 4 itself.
The ions that have flowed into the cooling pipe 8 through a flow path (not shown) formed in the electrode holding portion 12 and exchange heat by contacting with the outer wall of the lamp 4 to remove the heat energy. The exchanged water passes through the flow path formed in the other electrode holding portion 12 'and returns to the ion exchanged water circulator again.

各ハウジング本体13A,13Bの収納凹部5A,5Bには冷却水
13が循環器よりパイプ10およびハウジング本体13A,13B
の通路50(第4図)を通つて供給され、励起用ランプ4
を冷却管の外部から冷却する。そして、この冷却水13は
ハウジング本体13A,13Bの通路51(第4図)およびパイ
プ10′を通つて循環器へと戻る。
Cooling water is stored in the storage recesses 5A, 5B of each housing body 13A, 13B.
13 is from the circulator Pipe 10 and housing body 13A, 13B
Is supplied through the passage 50 (FIG. 4) of the excitation lamp 4
Is cooled from the outside of the cooling pipe. Then, this cooling water 13 returns to the circulator through the passage 51 (FIG. 4) of the housing bodies 13A and 13B and the pipe 10 '.

かくしてこのような固体レーザ装置による冷却構造に
よれば、冷却ガス16をレーザ媒体1の高温部に集中的に
吹き付いているため、冷却効果が大で,第9図A−A線
で切断した断面での温度分布を第6図に示すようにほぼ
均一にすることができる。このため、温度差による熱応
力の発生を抑えることができ、安定したレーザ発振を維
持することができる。また、本実施例はランプハウジン
グ3が冷却ガス16の流路形成部材を兼ねているため、部
品点数を減少させると共に組付け手数を節約することが
できる。
Thus, according to the cooling structure using such a solid-state laser device, since the cooling gas 16 is intensively blown to the high temperature portion of the laser medium 1, the cooling effect is great, and the cutting is performed along the line AA in FIG. The temperature distribution in the cross section can be made almost uniform as shown in FIG. Therefore, the generation of thermal stress due to the temperature difference can be suppressed, and stable laser oscillation can be maintained. Further, in this embodiment, since the lamp housing 3 also serves as the flow path forming member for the cooling gas 16, the number of parts can be reduced and the number of assembling steps can be saved.

なお、上記実施例はスラブ型の固体レーザ装置に適用
したが、ロツド型の固体レーザ装置であつてもよく、ま
た冷媒16も圧縮空気の替りにN2ガス,Heガスなどであつ
ても同様の効果が得られるものである。
Although the above embodiment is applied to the slab type solid state laser device, it may be a rod type solid state laser device, and the refrigerant 16 is also N 2 gas instead of compressed air, He gas, etc. The effect of is obtained.

また、上記実施例では冷媒16とイオン交換水15を冷却
するための冷却水13を収納凹部5A,5Bに循環させたが、
冷却水の代わりに冷却ガスを使用してもよく、その場合
には透光性ガラス基板9A,9Bを取り外し、冷媒16と共に
冷媒噴出口39A,39Bよりレーザ媒体1の各主表面1a,1bに
吹き付けてもよい。
Further, in the above embodiment, the cooling water 13 for cooling the refrigerant 16 and the ion-exchanged water 15 was circulated in the storage recesses 5A, 5B,
Cooling gas may be used instead of the cooling water. In that case, the translucent glass substrates 9A and 9B are removed, and together with the cooling medium 16 from the cooling medium jet ports 39A and 39B to the respective main surfaces 1a and 1b of the laser medium 1. You may spray.

さらに、上記実施例はレーザ媒体1の各主表面1a,1b
に冷媒16を吹き付けるように構成したが、励起用ランプ
4が唯1つの場合は、ランプ4に対応して1つの噴射口
とし、一方の主表面のみを冷却すればよく、その場合も
ランプ側の主表面に限らず、反対側の主表面に吹き付け
てもレーザ媒体1の板厚が薄い場合には十分な冷却効果
が得られるものである。
Further, in the above embodiment, the main surfaces 1a and 1b of the laser medium 1 are
Although the cooling medium 16 is sprayed onto the lamp, if only one excitation lamp 4 is provided, then one injection port is provided corresponding to the lamp 4, and only one of the main surfaces needs to be cooled. Not only the main surface of the laser medium 1 but also the main surface on the opposite side, a sufficient cooling effect can be obtained when the plate thickness of the laser medium 1 is thin.

〔発明の効果〕〔The invention's effect〕

以上説明したように本発明に係る固体レーザ装置は、
励起用ランプによつて励起されたレーザ活性媒体の高温
部と低温部のうち少なくとも高温部分に冷媒をほぼ垂直
に吹き付けるように構成したので、該高温部分を効果的
に冷却することができ、温度分布の均一化を計ることが
できる。したがつて熱応力によるレーザ活性媒体の破壊
を効果的に防止でき、安定な発振動作をする固体レーザ
装置を提供することができる。
As described above, the solid-state laser device according to the present invention,
Since the refrigerant is blown almost vertically to at least the high temperature portion of the high temperature portion and the low temperature portion of the laser active medium excited by the excitation lamp, the high temperature portion can be effectively cooled, The distribution can be made uniform. Therefore, it is possible to effectively prevent destruction of the laser active medium due to thermal stress, and to provide a solid-state laser device that performs stable oscillation operation.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る固体レーザ装置の一実施例を示す
第3図I−I線断面図、第2図はハウジング本体の斜視
図、第3図は同レーザ装置の外観斜視図、第4図は第3
図IV−IV線断面図、第5図(a),(b),(c)はそ
れぞれ冷媒噴出口の他の実施例を示す図、第6図はレー
ザ媒体の温度分布図、第7図はスラブ型固体レーザ装置
の従来例を示す第8図VII−VII線断面図、第8図は同レ
ーザ装置の外観斜視図、第9図はレーザ媒体の斜視図、
第10図は従来装置におけるレーザ媒体の温度分布図であ
る。 1……レーザ活性媒体、1a,1b……主表面、3……ラン
プハウジング、3A,3B……ハウジング本体、4……励起
用ランプ、16……冷媒、18A,18B……冷媒通路、39A,39B
……冷媒噴出口、41,42……冷媒流路。
1 is a sectional view taken along the line I--I of FIG. 3 showing an embodiment of a solid-state laser device according to the present invention, FIG. 2 is a perspective view of a housing body, and FIG. 3 is an external perspective view of the same laser device. 4 is the third
FIG. IV-IV sectional view, FIGS. 5 (a), (b), and (c) are views showing other embodiments of the refrigerant outlet, FIG. 6 is a temperature distribution diagram of the laser medium, and FIG. Is a sectional view taken along line VII-VII of FIG. 8 showing a conventional example of a slab type solid-state laser device, FIG. 8 is an external perspective view of the same laser device, and FIG. 9 is a perspective view of a laser medium.
FIG. 10 is a temperature distribution diagram of the laser medium in the conventional device. 1 ... Laser active medium, 1a, 1b ... Main surface, 3 ... Lamp housing, 3A, 3B ... Housing body, 4 ... Excitation lamp, 16 ... Refrigerant, 18A, 18B ... Refrigerant passage, 39A , 39B
…… Refrigerant jet, 41, 42 …… Refrigerant flow path.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】レーザ媒体と励起用ランプとを互いに実質
的に平行に配置した固体レーザ装置において、前記励起
用ランプにより励起される前記レーザ媒体の高温部分と
低温部分のうち少なくとも高温部分に対して冷媒を実質
的に垂直に吹きつける噴出口と、前記レーザ媒体の高温
部分から低温部分に沿つて前記冷媒を流通させる冷媒通
路とを備えたことを特徴とする固体レーザ装置。
1. A solid-state laser device in which a laser medium and a pumping lamp are arranged substantially parallel to each other in at least a high temperature portion of a high temperature portion and a low temperature portion of the laser medium which is excited by the pumping lamp. A solid-state laser device, comprising: a jet port that blows a coolant substantially vertically through the cooling medium, and a coolant passage that circulates the coolant along a low-temperature portion from a high-temperature portion of the laser medium.
JP7607887A 1987-03-31 1987-03-31 Solid-state laser device Expired - Lifetime JP2544616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7607887A JP2544616B2 (en) 1987-03-31 1987-03-31 Solid-state laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7607887A JP2544616B2 (en) 1987-03-31 1987-03-31 Solid-state laser device

Publications (2)

Publication Number Publication Date
JPS63244692A JPS63244692A (en) 1988-10-12
JP2544616B2 true JP2544616B2 (en) 1996-10-16

Family

ID=13594775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7607887A Expired - Lifetime JP2544616B2 (en) 1987-03-31 1987-03-31 Solid-state laser device

Country Status (1)

Country Link
JP (1) JP2544616B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10243323B4 (en) * 2002-09-18 2005-11-10 Arccure Technologies Gmbh Optically pumped solid state laser
JP6003323B2 (en) * 2012-07-18 2016-10-05 国立大学法人大阪大学 LASER MEDIUM UNIT, LASER AMPLIFIER, LASER OSCILLATOR, AND COOLING METHOD
JP6493832B2 (en) * 2015-03-20 2019-04-03 三菱重工業株式会社 Laser oscillation cooling device

Also Published As

Publication number Publication date
JPS63244692A (en) 1988-10-12

Similar Documents

Publication Publication Date Title
US4713822A (en) Laser device
JP2690324B2 (en) Laser with improved cooling system
US8467429B2 (en) Scalable, efficient laser systems
US5394427A (en) Housing for a slab laser pumped by a close-coupled light source
US6347109B1 (en) High average power scaleable thin-disk laser
US6198759B1 (en) Laser system and method for beam enhancement
US4528671A (en) Multiple host face-pumped laser
JPH05508265A (en) Thin plate package for cooling arrays of edge-emitting laser diodes
RU2232454C2 (en) Laser device
US4697271A (en) Solid-state laser device capable of effectively exciting a plurality of slab-shaped laser media
JP2544616B2 (en) Solid-state laser device
EP0078654B1 (en) Multiple host face-pumped laser
Grechin et al. Diode-side-pumped laser heads for solid-state lasers
JP4398036B2 (en) Laser oscillator
US5900967A (en) Laser diode mounting technique to evenly deposit energy
US3611190A (en) Laser structure with a segmented laser rod
JP5424320B2 (en) Solid state laser equipment
JPH1022551A (en) Solid laser exciting module
EP1459415A2 (en) Diode-pumped solid-state thin slab laser
JP2000277837A (en) Solid state laser device
JPH05211361A (en) Semiconductor laser-pumping solid laser device
EP0079613B1 (en) Gas laser apparatus
JPH05335663A (en) Laser diode-excited solid-state laser device
JPS6016482A (en) Laser oscillator of high speed repetition
JPH10190094A (en) Excitation section of solid laser device