JP2544280B2 - Method for producing crystalline silicon ultrafine particles - Google Patents

Method for producing crystalline silicon ultrafine particles

Info

Publication number
JP2544280B2
JP2544280B2 JP22718892A JP22718892A JP2544280B2 JP 2544280 B2 JP2544280 B2 JP 2544280B2 JP 22718892 A JP22718892 A JP 22718892A JP 22718892 A JP22718892 A JP 22718892A JP 2544280 B2 JP2544280 B2 JP 2544280B2
Authority
JP
Japan
Prior art keywords
particles
ultrafine particles
gas
crystalline silicon
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22718892A
Other languages
Japanese (ja)
Other versions
JPH0672705A (en
Inventor
吉積 田中
猛 末益
哲夫 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP22718892A priority Critical patent/JP2544280B2/en
Publication of JPH0672705A publication Critical patent/JPH0672705A/en
Application granted granted Critical
Publication of JP2544280B2 publication Critical patent/JP2544280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、紫外光レーザービーム
を活用して結晶質珪素超微粒子を製造する方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing crystalline silicon ultrafine particles by utilizing an ultraviolet laser beam.

【0002】[0002]

【従来技術】近年、超微粒子は焼結用原料、触媒、生物
工学用担体等の種々の用途に用いられる新素材として関
心が持たれている。この場合、用いられる微粒子に望ま
れる条件として次のようなものが挙げられる。 粒子径が1μm以下の超微粒子であること、 粒子の凝集がないこと、 粒度分布が狭いこと、 粒子の形が等軸的であること、 化学組成と相組成が均一であること、 化学的に高純度であること、 これらの性質はすべて原料粉体の製造法によって決ま
る。そのため、このような微粒子を得るためのさまざま
な製造法が提案されている。例えば、固相反応法、液相
反応法、気相反応法等があるが、上記の条件に適合した
微粒子の製造方法としては気相反応法が最適である。
2. Description of the Related Art In recent years, ultrafine particles have been attracting attention as a new material used for various purposes such as a raw material for sintering, a catalyst and a carrier for biotechnology. In this case, the conditions desired for the fine particles used are as follows. Ultrafine particles with a particle size of 1 μm or less, no aggregation of particles, narrow particle size distribution, equiaxed particle shape, uniform chemical composition and phase composition, chemically High purity, all of these properties depend on the manufacturing method of the raw material powder. Therefore, various manufacturing methods for obtaining such fine particles have been proposed. For example, there are a solid-phase reaction method, a liquid-phase reaction method, a gas-phase reaction method, and the like, and the gas-phase reaction method is most suitable as a method for producing fine particles that meet the above conditions.

【0003】一方、近年のレーザー技術に関する進歩は
著しく、広い波長領域で強力な光を発振するレーザーが
開発されている。特に、典型的な紫外光レーザーである
エキシマレーザーは、その高効率、高出力のため、種々
の用途が考えられている。
On the other hand, recent advances in laser technology have been remarkable, and lasers that emit strong light in a wide wavelength range have been developed. In particular, excimer lasers, which are typical ultraviolet lasers, have been considered for various applications because of their high efficiency and high output.

【0004】[0004]

【発明が解決しようとする問題点】従来、SiCl4等のハ
ロゲン化シラン又はSiH4等の水素化シランを分解して気
相から超微粒子を生成させる場合、炭酸ガスレーザーを
照射することにより粒子径の揃った微粒子を生成させる
ことが知られている。しかし、炭酸ガスレーザーを用い
た場合、低出力では非晶質粒子が生成してしまい、高出
力では粒子径が大きくなるといった欠点があり、高純度
で結晶性が高く、かつ粒子径が小さい粒子を作製するこ
とは困難であった。本発明の目的は、前記問題点を解決
し、極めて高純度の結晶質珪素超微粒子を得ることがで
きる新規な製法を提供するものである。
[Problems to be Solved by the Invention] Conventionally, when halogenated silane such as SiCl 4 or hydrogenated silane such as SiH 4 is decomposed to generate ultrafine particles from a gas phase, the particles are irradiated with a carbon dioxide laser. It is known to generate fine particles having a uniform diameter. However, when a carbon dioxide gas laser is used, there is a drawback that amorphous particles are generated at low output and the particle size becomes large at high output, and particles with high purity and high crystallinity and small particle size are used. Was difficult to produce. An object of the present invention is to solve the above problems and provide a novel production method capable of obtaining crystalline silicon ultrafine particles of extremely high purity.

【0005】[0005]

【問題点を解決するための手段】本発明者等は、金属化
合物ガスから高純度の超微粒子を得るために鋭意研究し
た結果、紫外光レーザーを用いることにより、極めて結
晶性が良く、粒度分布の狭い微粒子を製造できることを
見いだし、本発明に到った。即ち、本発明は、気体状シ
リコン化合物に、紫外光レーザービームを照射すること
により該化合物を励起して分解反応を促進し、珪素粒子
を生成させることを特徴とする結晶質珪素超微粒子の製
造方法に関する。
[Means for Solving the Problems] The inventors of the present invention have earnestly studied to obtain ultrapure particles of high purity from a metal compound gas. As a result, by using an ultraviolet laser, the crystallinity is very good and the particle size distribution is It was found that fine particles having a narrow size can be produced, and the present invention has been completed. That is, according to the present invention, a crystalline silicon ultrafine particle is characterized in that a gaseous silicon compound is irradiated with an ultraviolet laser beam to excite the compound to accelerate a decomposition reaction to generate silicon particles. Regarding the method.

【0006】本発明によれば、粒子径が10〜200n
mで非常に均一な分布を示し、しかも球状の結晶質珪素
超微粒子を得ることができる。本発明における気体状シ
リコン化合物としては、SiH4,Si2H6,SiCl4,SiHCl3,SiH2
Cl2等が使用できる。紫外光レーザーとしては、高効
率、高出力のエキシマレーザーが好ましい。エキシマレ
ーザーの波長は、157nm(F2 )、193nm(A
rF)、248nm(KrF)、308nm(XeC
l)、351nm(XeF)等が使用でき、特に、照射
する気体状シリコン化合物の吸収波長に近いものを選ぶ
ことが望ましい。
According to the present invention, the particle size is 10 to 200 n.
It is possible to obtain spherical crystalline silicon ultrafine particles having a very uniform distribution in m. As the gaseous silicon compound in the present invention, SiH 4 , Si 2 H 6 , SiCl 4 , SiHCl 3 , SiH 2
Cl 2 etc. can be used. As the ultraviolet laser, an excimer laser having high efficiency and high output is preferable. The wavelengths of the excimer laser are 157 nm (F 2 ) and 193 nm (A
rF), 248 nm (KrF), 308 nm (XeC
l), 351 nm (XeF), etc. can be used, and it is particularly desirable to select one having a wavelength close to the absorption wavelength of the gaseous silicon compound to be irradiated.

【0007】また、レーザー光の照射は、エネルギー密
度が高いほど有利であり、例えばArF(193nm)
の場合、レーザー光のパルス当りのエネルギー密度は、
50mJ/cm2 /パルス以上、好ましくは100mJ/cm2
/パルス以上である。また、レーザーの繰り返し周波数
は、通常、50〜150パルス/秒である。本発明にお
ける反応圧力は、常圧でもよいが、好ましくは200To
rr以下である。反応ガスの濃度は100vol%でもよい
が、好ましくは50vol%以下、さらに好ましくは10vo
l%以下である。
Further, the higher the energy density is, the more advantageous the irradiation of laser light is. For example, ArF (193 nm)
In the case of, the energy density per pulse of laser light is
50 mJ / cm 2 / pulse or more, preferably 100 mJ / cm 2
/ Pulse or more. The repetition frequency of the laser is usually 50 to 150 pulses / second. The reaction pressure in the present invention may be atmospheric pressure, but is preferably 200 To.
It is less than or equal to rr. The concentration of the reaction gas may be 100 vol%, preferably 50 vol% or less, more preferably 10 vol.
l% or less.

【0008】以下に、本発明の超微粒子の製造方法を製
造装置の図面を参照して説明する。図1は、本発明で用
いられる超微粒子の製造装置の概略図である。図1にお
いて、2はガス導入ノズル、4は真空容器、3は真空容
器の側部に設けられたビーム透過窓、8は真空容器4に
設けられた排気ポートで、ガス導入ノズルの上方に位置
している。9は排気ポート8に接続された排気管、7は
真空容器の内部を真空脱気する排気装置で、排気管下流
側に設けられている。6は超微粒子を回収する回収装置
である。
The method for producing ultrafine particles of the present invention will be described below with reference to the drawings of the production apparatus. FIG. 1 is a schematic view of an apparatus for producing ultrafine particles used in the present invention. In FIG. 1, 2 is a gas introduction nozzle, 4 is a vacuum container, 3 is a beam transmission window provided on the side of the vacuum container, 8 is an exhaust port provided in the vacuum container 4, and it is located above the gas introduction nozzle. are doing. Reference numeral 9 denotes an exhaust pipe connected to the exhaust port 8, and reference numeral 7 denotes an exhaust device for vacuum degassing the inside of the vacuum container, which is provided on the downstream side of the exhaust pipe. Reference numeral 6 is a recovery device for recovering ultrafine particles.

【0009】まず、反応容器1の内部を0.003Torr以下
に排気装置7によって真空脱気後、真空容器4内にガス
導入ノズル2より所定の流量の原料ガスを導入して真空
容器4内を所定圧力に設定する。次に、エキシマレーザ
ーから発生した適切な波長のレーザービーム1をビーム
透過窓3を通して真空容器4内に導光し、ガス導入ノズ
ル2の直上の反応気体に照射する。これにより反応ガス
はレーザービーム1を吸収し、超微粒子を生成する。レ
ーザービームのエネルギーは、ほとんど原料ガスの分解
に費やされ、真空容器内の雰囲気ガスを励起しないの
で、粒子同士の衝突による凝集も起こらず、超微粒子の
粒径は均一となる。この超微粒子は排気ポート8を通っ
て排気管9内を流れ、排気管9の途中に設けられた超微
粒子回収装置6によって捕集される。
First, the inside of the reaction vessel 1 is vacuum degassed to 0.003 Torr or less by an exhaust device 7, and then a predetermined flow rate of a raw material gas is introduced into the vacuum vessel 4 from a gas introduction nozzle 2 to a predetermined degree inside the vacuum vessel 4. Set to pressure. Next, the laser beam 1 having an appropriate wavelength generated from the excimer laser is guided into the vacuum container 4 through the beam transmission window 3 and irradiated onto the reaction gas directly above the gas introduction nozzle 2. As a result, the reaction gas absorbs the laser beam 1 to generate ultrafine particles. Most of the energy of the laser beam is spent for decomposing the raw material gas and does not excite the atmosphere gas in the vacuum container, so that agglomeration due to collision between particles does not occur and the particle size of the ultrafine particles becomes uniform. The ultrafine particles flow in the exhaust pipe 9 through the exhaust port 8 and are collected by the ultrafine particle collecting device 6 provided in the middle of the exhaust pipe 9.

【0010】[0010]

【実施例】【Example】

実施例1 ガス導入ノズル2より500cc/minで導入されたSiH
4(紫外光の吸収端200nm、最大吸収波長120n
m)10%含有ArガスにArFエキシマレーザー(1
93nm)を照射した。この時のパルス当りのエネルギ
ー密度は、100mJ/cm2/パルス、繰り返し周波数は
100パルス/秒、反応圧力は150Torrであった。図
2に生成した微粒子のX線回折パターンを示す。得られ
た珪素微粒子は、高い結晶性を有していることが確認さ
れた。また、図3に生成した微粒子の粒径の分布を透過
型電子顕微鏡を用いて測定した結果を示す。得られた珪
素微粒子は、平均粒径が約20nmと非常に均一な分布
を示し、しかも球状の粒子であることが確認された。
Example 1 SiH introduced at 500 cc / min from the gas introduction nozzle 2
4 (UV absorption edge 200nm, maximum absorption wavelength 120n
m) ArF excimer laser (1
(93 nm). At this time, the energy density per pulse was 100 mJ / cm 2 / pulse, the repetition frequency was 100 pulses / second, and the reaction pressure was 150 Torr. The X-ray diffraction pattern of the produced fine particles is shown in FIG. It was confirmed that the obtained silicon fine particles had high crystallinity. Moreover, the result of having measured the particle size distribution of the produced fine particles using a transmission electron microscope is shown in FIG. It was confirmed that the obtained silicon fine particles had a very uniform distribution with an average particle diameter of about 20 nm and were spherical particles.

【0011】実施例2 ガス導入ノズル2より500cc/minで導入されたSiH4
0%含有ArガスにF 2エキシマレーザー(157n
m)を照射した。この時のパルス当りのエネルギー密度
は、6mJ/cm2/パルス、繰り返し周波数は50パルス
/秒、反応圧力は150Torrであった。得られた珪素微
粒子は、平均粒径が約30nmと非常に均一な分布を示
し、しかも球状の粒子であることが確認された。
Example 2 SiH introduced at 500 cc / min from the gas introduction nozzle 2Four1
F to 0% Ar gas 2Excimer laser (157n
m) was irradiated. Energy density per pulse at this time
Is 6 mJ / cm2/ Pulse, repetition frequency is 50 pulses
/ Sec, the reaction pressure was 150 Torr. Obtained silicon fine
The particles have a very uniform distribution with an average particle size of about 30 nm.
Moreover, it was confirmed that the particles were spherical.

【0012】実施例3 ガス導入ノズル2より500cc/minで導入されたSi2H6
(紫外光の吸収端210nm)10%含有ArガスにA
rFエキシマレーザー(193nm)を照射した。この
時のパルス当りのエネルギー密度は、100mJ/cm2
パルス、繰り返し周波数は100パルス/秒、反応圧力
は150Torrであった。得られた珪素微粒子は、平均粒
径が約30nmと非常に均一な分布を示し、しかも球状
の粒子であることが確認された。
Example 3 Si 2 H 6 introduced at 500 cc / min from the gas introduction nozzle 2
(Absorption edge of ultraviolet light 210 nm) A for 10% contained Ar gas
Irradiated with rF excimer laser (193 nm). The energy density per pulse at this time is 100 mJ / cm 2 /
The pulse and the repetition frequency were 100 pulses / second, and the reaction pressure was 150 Torr. It was confirmed that the obtained silicon fine particles had a very uniform distribution with an average particle diameter of about 30 nm and were spherical particles.

【0013】実施例4 ガス導入ノズル2より500cc/minで導入されたSi2H6
10%含有ArガスにF2エキシマレーザー(157n
m)を照射した。この時のパルス当りのエネルギー密度
は、6mJ/cm2/パルス、繰り返し周波数は50パルス
/秒、反応圧力は150Torrであった。得られた珪素微
粒子は、平均粒径が約40nmと非常に均一な分布を示
し、しかも球状の粒子であることが確認された。
Example 4 Si 2 H 6 introduced at 500 cc / min from the gas introduction nozzle 2
F 2 excimer laser (157n
m) was irradiated. At this time, the energy density per pulse was 6 mJ / cm 2 / pulse, the repetition frequency was 50 pulses / second, and the reaction pressure was 150 Torr. It was confirmed that the obtained silicon fine particles had a very uniform distribution with an average particle diameter of about 40 nm and were spherical particles.

【0014】実施例5 ガス導入ノズル2より500cc/minで導入されたSiH2Cl
210%含有ArガスにArFエキシマレーザー(19
3nm)を照射した。この時のパルス当りのエネルギー
密度は、100mJ/cm2/パルス、繰り返し周波数は1
00パルス/秒、反応圧力は150Torrであった。得ら
れた珪素微粒子は、平均粒径が約30nmと非常に均一
な分布を示し、しかも球状の粒子であることが確認され
た。
Example 5 SiH 2 Cl introduced at 500 cc / min from the gas introduction nozzle 2
2 ArF excimer laser (19% for Ar gas containing 10%)
3 nm). The energy density per pulse at this time is 100 mJ / cm 2 / pulse, and the repetition frequency is 1
The pulse pressure was 00 pulses / second and the reaction pressure was 150 Torr. It was confirmed that the obtained silicon fine particles had a very uniform distribution with an average particle diameter of about 30 nm and were spherical particles.

【0015】[0015]

【発明の効果】本発明によれば、紫外光レーザーを用い
ることにより、極めて結晶性が良く、粒子径が10〜2
00nmで非常に均一な分布を示し、しかも球状の珪素
超微粒子を製造できる。
According to the present invention, by using an ultraviolet laser, the crystallinity is extremely good and the particle size is 10 to 2.
It is possible to produce spherical silicon ultrafine particles which have a very uniform distribution at 00 nm.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、本発明で用いられる超微粒子の製造装
置の概略図である。
FIG. 1 is a schematic view of an apparatus for producing ultrafine particles used in the present invention.

【図2】図2は、本発明の実施例1で生成した微粒子の
X線回折パターンを示す図である。
FIG. 2 is a view showing an X-ray diffraction pattern of fine particles produced in Example 1 of the present invention.

【図3】図3は、本発明の実施例1で生成した微粒子の
粒径の分布を透過型電子顕微鏡を用いて測定した結果を
示す図である。
FIG. 3 is a diagram showing a result of measuring a particle size distribution of fine particles produced in Example 1 of the present invention using a transmission electron microscope.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−200278(JP,A) 特開 昭59−206042(JP,A) 特開 昭62−289224(JP,A) 特開 平5−9016(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-5-200278 (JP, A) JP-A-59-206042 (JP, A) JP-A-62-289224 (JP, A) JP-A-5- 9016 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 気体状シリコン化合物に、紫外光レーザ
ービームを照射することにより該化合物を励起して分解
反応を促進し、珪素粒子を生成させることを特徴とする
結晶質珪素超微粒子の製造方法。
1. A method for producing crystalline silicon ultrafine particles, which comprises irradiating a gaseous silicon compound with an ultraviolet laser beam to excite the compound to promote a decomposition reaction and generate silicon particles. .
JP22718892A 1992-08-26 1992-08-26 Method for producing crystalline silicon ultrafine particles Expired - Fee Related JP2544280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22718892A JP2544280B2 (en) 1992-08-26 1992-08-26 Method for producing crystalline silicon ultrafine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22718892A JP2544280B2 (en) 1992-08-26 1992-08-26 Method for producing crystalline silicon ultrafine particles

Publications (2)

Publication Number Publication Date
JPH0672705A JPH0672705A (en) 1994-03-15
JP2544280B2 true JP2544280B2 (en) 1996-10-16

Family

ID=16856874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22718892A Expired - Fee Related JP2544280B2 (en) 1992-08-26 1992-08-26 Method for producing crystalline silicon ultrafine particles

Country Status (1)

Country Link
JP (1) JP2544280B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0008494D0 (en) * 2000-04-07 2000-05-24 Secr Defence Microprojectile delivery system
WO2005090234A1 (en) * 2004-03-17 2005-09-29 Denki Kagaku Kogyo Kabushiki Kaisha Silicon particle, silicon particle superlattice and method for production thereof
JP4791697B2 (en) * 2004-03-17 2011-10-12 電気化学工業株式会社 Method for producing silicon particles
JP4966486B2 (en) 2004-09-27 2012-07-04 国立大学法人電気通信大学 Method for producing crystalline silicon-containing SiOx molded body and use thereof
JP4686666B2 (en) * 2004-12-28 2011-05-25 地方独立行政法人北海道立総合研究機構 Silicon manufacturing method
KR100945748B1 (en) * 2009-04-06 2010-03-05 (주)티에스티아이테크 Apparatus of manufacturing polysilicon

Also Published As

Publication number Publication date
JPH0672705A (en) 1994-03-15

Similar Documents

Publication Publication Date Title
Werwa et al. Synthesis and processing of silicon nanocrystallites using a pulsed laser ablation supersonic expansion method
Teh et al. An application of ultrasound technology in synthesis of titania-based photocatalyst for degrading pollutant
Takenaka et al. Structural change of Ni species in Ni/SiO2 catalyst during decomposition of methane
Wenzel et al. Shaping nanoparticles and their optical spectra with photons
US20130189446A1 (en) Low pressure high frequency pulsed plasma reactor for producing nanoparticles
JP2544280B2 (en) Method for producing crystalline silicon ultrafine particles
JP2005177983A (en) Manufacturing method of nano particles
US20170190584A1 (en) Method for preparing nanoparticles by using laser
US5607601A (en) Method for patterning and etching film layers of semiconductor devices
JPH0733243B2 (en) Manufacturing method of hard boron nitride by plasma CVD method combined with light irradiation
JP2006088141A (en) Titanium dioxide nanophotocatalyst powder, and method and apparatus for manufacturing the same
CN110724910B (en) Preparation method of gold nanowires
JPH02159021A (en) Control of orientation of microcrystal
Wu et al. Preparation of silver nanocrystals in microemulsion by the γ-radiation method
JP2933798B2 (en) Method for producing ultrafine carbon particles by decomposition of hydrocarbon using photosensitization reaction
Lu et al. A safe sonochemical route to iron, cobalt and nickel monoarsenides
JP2561866B2 (en) Method for producing fine particles of boron carbide
JPH0347140B2 (en)
JPH0723279B2 (en) Diamond film manufacturing method
JPH02255537A (en) Production of fine powder of molybdenum disulfide
Tamir et al. Laser induced deposition of nanocrystalline Si with preferred crystallographic orientation
Buttafuoco PLASMONIC SILVER-MODIFIED-ETS-10 HETEROSTRUCTURES AS EFFICIENT VISIBLE LIGHT PHOTOCATALYSTS
JPH05279183A (en) Production of diamond
JPH0677184A (en) Etching method of semiconductor atomic layer
JPH0662357B2 (en) Diamond powder manufacturing method

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees